
1.  
2.  
3.  

Configuring Gerrit

Overview
Tools
SSH
HTTP Workaround for Gerrit inside a Corporate firewall/proxy 
blocking SSH
A couple of other things specific to Gerrit

HTTP Sequence of events
SSH Sequence of events

Things to keep in your radar
Merge Conflict
Jenkins Intermittent Failure

Submitting a draft feature
Running a Command within Gerrit

Run-clm
Run-Sonar
Recheck
Remerge
Please Release

blocked URL

Overview
Gerrit is an Open Source web-based collaborative Code Review tool that integrates with Git.
For all ONAP projects, Gerrit is available at   and documentation at   https://gerrit.onap.org https://gerrit.onap.org/r/Documentation/index.html
Gerrit offers an extensive search capability by using a query syntax documented at   https://gerrit.onap.org/r/Documentation/user-search.html
To get started, you can watch this 14 minutes video that was done for  .OPNFV project

To understand deeper Gerrit UI, this is a good source of info   https://gerrit-review.googlesource.com/Documentation/user-review-ui.html
Log into Gerrit using your  (LFID). Linux Foundation ID

Anyone who has a valid Linux Foundation ID can submit code as a contributor. You simply need to login into Gerrit using your Linux Foundation ID.
The committer role requires specific permissions per project setup by Linux Foundation. Do not contact directly Linux Foundation's Help Desk to ask 
for Committer privileges but rather work with the   who will make it happen through the TSC.Release Manager

Project committers group are setup in the form of  . Connect to   to see which onap-gerrit-${PROJECT}-committers https://identity.linuxfoundation.org
group you are part of.
Committers are nominated according to  .Configuring Gerrit

Tools
Whatever OS your are using (Mac, Linux, PC) the following tools must be installed and configured:

git client : to perform all the Git task (clone, pull, branch, checkout,...) 
git-review : to submit your code into Gerrit
SSH client : to connect securely to Gerrit server

SSH
Most users use SSH to authenticate with remote servers. To perform such authentication with Gerrit, your have to provide your SSH Public key to 
Gerrit (User Account->Settings->SSH Public keys).
In case you can't use SSH (because network do not allow SSH on port 29418), you can use HTTPS.

HTTP Workaround for Gerrit inside a Corporate firewall/proxy blocking 
SSH

A couple of other things specific to Gerrit
Gerrit does not allow you push directly to your branch. If you're not using the git-review plugin then to push a change against your 
branch it will be as follows:

Info

 NEVER embed jar, war, tar, gz, gzip, zip in Gerrit

https://wiki.open-o.org/download/attachments/65944/GerritLogo.png?version=1&modificationDate=1479627318000&api=v2
https://gerrit.onap.org/
https://gerrit.onap.org/r/Documentation/index.html
https://gerrit.onap.org/r/Documentation/user-search.html
https://www.youtube.com/watch?v=N4av9ghQxX4&list=PLiM029E-zvrs15SWfjfcJ19FWCsTT49f0&index=5
https://gerrit-review.googlesource.com/Documentation/user-review-ui.html
https://wiki.onap.org/display/DW/Joining+the+ONAP+Technical+Community
mailto:gildas.lanilis@huawei.com
https://identity.linuxfoundation.org/
https://wiki.onap.org/pages/viewpage.action?pageId=48534441


Pushing Code into Gerrit

# in this case
BRANCH=master
git push origin HEAD:refs/for/$BRANCH

Your change will go to Gerrit to be reviewed. It will not be merged onto the branch until someone with committer rights gives it a Code-
Review +2. Normally there are verification jobs setup in Jenkins that would vote on the Verified field, but as your project(s) don't just yet 
(oparent being the exception as they pushed a verify job this afternoon) a committer will also have to flag Verified +1. Once both fields are at 
max value, then a committer will have the ability to   the code. It will not be merged until the final   has occurred.Submit Submit

Once the code is submitted, Gerrit moves the code from the   tab   to the   tabs Open https://gerrit.onap.org/r/#/q/status:open Merged https://gerrit.onap.
.org/r/#/q/status:merged

Your code import cannot be a historical import. That is, you can't be bringing history from an external SCM tool into a Gerrit repo under Linux 
Foundation control. This is a policy Linux Foundation had in place for a very long time and is non-negotiable. This means your import will be 
a squash commit of any code coming in.

HTTP Sequence of events

The HTTPS method does not use your LFID password; you need to have Gerrit generate a password for you (User Account->Settings->HTTPS 
Password-> ).  (The details of managing "git" credentials can be found here: Generate Password https://git-scm.com/book/en/v2/Git-Tools-Credential-

.)Storage

Clone using https syntax

export LFID=<YOUR_LFID_HERE>
export REPO=common-services-external-system-registration

# do this once
git config --global credential.helper store

git clone https://${LFID}@gerrit.onap.org/r/a/${REPO}.git
Cloning into '${REPO}'...
Password for 'https://${LFID}@gerrit.onap.org':
  # type or paste your generated password above.
  # this prompt will only appear once, after that, it will store it in ~/.git-credentials
  # and will re-use it for any future repos

cd ${REPO}
# acquire the commit hook - do this once
curl -Lo ./.git/hooks/commit-msg https://gerrit.onap.org/r/tools/hooks/commit-msg
chmod +x ./.git/hooks/commit-msg
# configure remote - do this once
git remote add gerrit https://${LFID}@gerrit.onap.org/r/a/${REPO}

# create your code commit
cp ${codeblob} ./
git add .
git commit -asm 'Initial code import'
git push origin HEAD:refs/for/master

# as an alternative to the above "git push" line:
git review

A couple of things to note here:

The URL will be /r/a/${REPO}.git (the .git is optional) /r == the web url that Gerrit lives on. 
/a == authenticated https. 
Without /a it will try to do an anonymous http connection and it will fail for pushes, at least when we open the repos to public access.

The commit has a -s which gives you the 'Signed-off-by: Name <email>' footer in your commit message. Your 'Name <email>' portion must match 
what Gerrit has registered. And it's case sensitive. ( )Commit message example

If you do not have the Gerrit commit hook installed you'll get an error when you push telling you how to get it. Once you've obtained it you'll want to run 
the following operation before trying to push again:

https://gerrit.onap.org/r/#/q/status:open
https://gerrit.onap.org/r/#/q/status:merged
https://gerrit.onap.org/r/#/q/status:merged
https://gerrit.onap.org/r/#/settings/http-password
https://git-scm.com/book/en/v2/Git-Tools-Credential-Storage
https://git-scm.com/book/en/v2/Git-Tools-Credential-Storage
https://gerrit.onap.org/r/#/c/31483/1//COMMIT_MSG


1.  
2.  
3.  

Amending commits

git commit --amend

Just resave your commit message. After you do that if you do a 'git log' you should notice that a 'Change-Id:' line was added above your 'Signed-off-
by' footer. This Change-Id is required by Gerrit.

SSH Sequence of events

Clone using ssh syntax

export LFID=<YOUR_LFID_HERE>
export REPO=common-services-external-system-registration

git clone ssh://${LFID}@gerrit.onap.org:29418/${REPO}.git

cd ${REPO}
# acquire the commit hook
curl -Lo .git/hooks/commit-msg https://gerrit.onap.org/r/tools/hooks/commit-msg
chmod +x .git/hooks/commit-msg
# creat your code commit
cp ${codeblob} ./
git add .
git commit -asm 'Initial code import'
git push origin HEAD:refs/for/master

You'll note that this is essentially the same. The primary difference is that you won't be getting prompted for a password as it only operates with SSH 
keys. 

Committer
In order to avoid delays merging the code, it is expected that committers or contributors  after review the code within the next 36 business hours
the contributor/committer has submitted his code.
There are 2 ways for a Committer/contributor to be notified by email on the code to review:

the contributor/committer specifically enters the committer/contributor name in the submission form.
any contributor/committer add their self to the list in gerrit
the contributor updates his Gerrit's settings to   his projects.Watch

Things to keep in your radar

Merge Conflict



1.  

2.  

3.  

It may happen that you cannot merge into the upper branch. Gerrit will 
render this behavior by indicating in the Status column the message Mer

.ge Conflict
You can also run the following query to display all the submissions in 
status  .Merge Conflict

To address the   issue 3 solution scenarios are possible:Merge Conflict

A change that has already been merged is in conflict with the 
current change, try to rebase the change by clicking the 
"Rebase" button in Gerrit UI. 
A simple rebase can't fix the problem because it is 
fundamentally unsolvable without making actual changes to the 
submission. The solution to this sort of error is to try to do the 
merge locally and find out what the actual problem is and then 
re-submit an update.
Abandoning and bringing in a new patch. This is of a last resort 
because you can't figure out what the real problem is.

Jenkins Intermittent Failure

For some yet unknown reason it may happen that Jenkins have intermittent failure and thus impact your build.
Look for typical message:

Jenkins error example

[ssh-agent] FATAL: Could not find a suitable ssh-agent provider
[ssh-agent] Diagnostic report
[ssh-agent]  Java/JNR ssh-agent
[ssh-agent] hudson.remoting.RequestAbortedException: java.io.IOException: Unexpected termination of the 
channel
................
FATAL: [ssh-agent] Unable to start agent
hudson.util.IOException2: [ssh-agent] Unable to start agent
................
Finished: FAILURE

To address the issue just hit the reply button in Gerrit add keyword 'recheck' or 'reverify' (do not enter the ') to the submission that failed. This will 
automatically retrigger the   job.verify
If the job was a merge job, then use the 'remerge' keyword. It will automatically retrigger the   job.merge

blocked URL

Submitting a draft feature
As part of the Development Best Practices, it is suggested to commit code multiple times a day. One may argue on the value of submitting code 
multiple a day if the code you are submitting does not bring value (working functionality) to the community. Developing a complete feature may take 
days or weeks and until it is complete it may not bring value - but will if work is being shared. Consider submitting unfinished code as an opportunity to 
show work in progress and get early feedback. However, as we do not want to break the CI paradigm of "Don't break the Build" by 
committing+merging unfinished work, Gerrit has a way to show work in progress by using the "Draft Feature" capability - however you can commit 
outside of the draft as long as you mark the review as WIP or "do not merge".

We are making the assumption that developers are working in a feature branch (named story-1 for the sake of the example)

To submit draft code in Gerrit, from a feature local branch, enter from your terminal the following:

git review -D

The name of the local branch (story-1) is used by Gerrit to set the topic.

You can perform the above command as often as you need until the developer has not completed his work. The CI build system is automatically 
triggered.

These commits CAN'T be +2 and merged in Master.

https://gerrit.onap.org/r/#/q/status:open+NOT+is:mergeable
https://wiki.open-o.org/download/attachments/3965240/GerritComment.PNG?version=1&modificationDate=1485985478000&api=v2


Once a developer has finished developing the functionality and need all these commits to be merged into Master, the developer will need to use the 
Gerrit UI and click for each commit the "Publish" button. The committers will then have 36 business hours to complete the review and merge the code 
into Master branch.

This Gerrit screenshoot illustrates 2 "Draft Feature" of topic: story-1 

Running a Command within Gerrit
Gerrit provides capabilities to run some command on the tip of the branch.

Note: all the command mentioned below must be entered without the double quote ".

Run-clm

CLM jobs can be triggered on demand after posting the comment "run-clm" in your Gerrit change.

The CLM jobs are still scheduled to run every Saturday, this feature can be useful for debugging on demand. 

Commenting "run-clm" in a gerrit that is not merged, will not trigger the CLM job based on that revision but will trigger the job based on the tip of the 
branch.

This job is designed to always run on the latest tip of the branch to avoid inconsistencies on the reports.

Run-Sonar

Sonar job can be triggered on demand after posting the comment "run-sonar" in your Gerrit change.

These jobs are scheduled to run every day, this is used to follow up closely on code coverage progress.

Recheck

In the case Jenkins is facing a failure or your need to re-run the Jenkins Verify job you can do so on demand by posting the comment "recheck" in 
your Gerrit change.

Remerge

In the case Jenkins is facing a failure or your need to re-run the Jenkins Merge job you can do so on demand by posting the comment "remerge" in 
your Gerrit change.

Please Release

Release jobs can be triggered on demand after posting the comment "please release" in your Gerrit change.

Release jobs can be seen in Jenkins by looking at job name containing this string "release-version-java-daily". The log file file contains the keyword 
"autorelease-xyz" with xyz a random number.



Autoreleased job are available in Nexus at https://nexus.onap.org/content/repositories/autorelease-zyz

The link to the autoreleased job is a mandatory input for LF to release the binary into Nexus Release.

These jobs are scheduled to run every day.

https://nexus.onap.org/content/repositories

	Configuring Gerrit

