ONAP logging guidelines — Revision 1.0 (4/11/2017)

ONAP application! logging guidelines - Revision 1.0 (4/11/2017)

Copyright © 2017 AT&T Intellectual Property. All rights reserved.

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");
you may not use this documentation except in compliance with the License.
You may obtain a copy of the License at

https://creativecommons.org/licenses/by/4.0/

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

L “Application logging” refers to logs written by ONAP component “applications”. In contrast, say,
“system/infrastructure logging” refers to the separate/related set of logs produced by software components not
developed for ONAP (e.g. DBMS, application container, web servers, ‘middle boxes’, JVM, OS, hypervisor, etc.) that
are used in the implementation of these components.

ONAP logging guidelines — Revision 1.0 (4/11/2017)

Contents
ONAP application logging guidelines — Revision OL1/2017).......cccoecvvevvierrieeiireeeriesreseceeeeeesaeeens 1
ADOUL thiS AOCUMEIE ..ottt sttt et e et e et e e seenteentesnseeeesneesnsesnnesnsenneens 5
1)1 Yo [ox 1T o 1 TP 6
Y Lo 11 0 0T R USROS 8
BegINTIMESIAMP. . eeiciiie ettt et te e st e e e b e e e abe e sbbe e sabeesabaesbesesteeenbaeebaaans 9
A = 0T I T 4TS = g o T PR 9
G T L= To =] | PSPPSR 10
4. SerVICEINSTANCEID.........coiiiiieee ettt st st sb e st e e b e sbeeseeens 12
LT I 01 =7 Vo | S SSRN 12
6. Physical/Virtual SEIVEr NAME........ccuiiie ettt sttt et e e e enneeseeens 12
7. SEIVICENAIMIE ... oottt ettt sttt b e e s bt e s bt e bt e sbeesbeesbeebeesbeesbe e be e beebeesaeens 12
8. PaANNEINEIME. ..ottt ettt e b e sa e sae e e s te e s e 13
LS T = V1§ £ @ o = OSSN 13
10, RESPONSECOUEL....... oo ciieeieeie ettt e ette st ste et e s te et e e s et e st ente e beesseesseenteenseenseesseensennsennes 13
11, RESPONSEDESCIIPON......cciiiieiiie st sttt st et etee st ee e ste e e te e e ae e tae s sraeesseeessseesnseassneenns 13
12, INSTANCEUUID..... ..ottt et ettt e et e e ste e e e nbeenseesseenseenseenes 13
T O 1 (Yo [o] 4 2 (0T N [=1 = SRRSO RRUPTt 14
Y Y 1=] 1Y P SRUPPP 14
15, SErVEI IP AOAIESS. ... ueiiieitieiee ettt ettt ettt et ettt ettt et e ste et e et 14
T = - o 1= To [T = PSR 14
L7 GBIVttt et e bt e e s b et e e h b e et e e be e e e sabe e e abeeeeeanbeee s sarees 14
S O 11T o1 =T [| =TT PSSR 14
1O, CIASSNAIMIE.ciitiiiie ettt ettt sttt b e b e bt et e e s bt et e e bt et e e bt e sbeeabeebeenteenbeenseenbeenee 14
20, UNUSE.... oottt st h e b e b e b e s bt e sbe e she e bt e sbe e st e e be e bt e beesaeen 14
A T o (0 o] ST T] (=) VAP PSR 14
22, CUSIOMEIEIAL. ... ettt st sbe e b e sbe e st e beesbeebeesaeens 15
23, CUSIOMFIEIAZ...... ettt st e ste et e saeessee e enseeneeneeens 15
24, CUSIOMEIEIAS. ettt st esteesteesaeesseenseenseeneeseeens 15
25, CUSIOMIEIAA.ottt sh e sb e b e st ebe e beebeeseeens 15
P T o (= = V] 1 oT T ST= Vo 1= USSP 15
MELIHCS LOQG FOMMAL......ccciiiiiieiiee sttt ettt ste e s be s sate e srt e ssbeeesteeeteeenseesnsseennnessreens 16
1. BegINTIMESIAMP. .ciiiiiiii ettt et e ste e stte e st beesbeesbaeebeeeabeeestaeetaeestbeessseenasassaresssseeans 17

ONAP logging guidelines — Revision 1.0 (4/11/2017)

2. ENATIMESIAMP.....tii ettt ettt e et e e s tbe e s bbeestae e s abe e bbeesateesaseesaraesaresssreeans 17
I T < T0 L= 1 D ST PPUR 18
4. SerVICEINSTANCEID.........coiiiiiee ettt st s b e s e st e e e b e sbeesaeens 18
LT I 01 =7 Vo | PSSR 18
6. Physical/Virtual SErVEI NAMIE.........coociiiiiiecir ettt se e te s srte e srseesbe e sreesaneeees 18
7. SEIVICENAIMIE ...ttt ettt ettt st b e e bt e s b e e bt e sbeesbeesbeebeesbeesbeenbeenbeenbeesaeens 18
8. PAITNEINGIME. ... ittt ee s st e et e e st e e s sbb e e e sabeeessbbaeesanbeeessanees 18
LS T = [T 1 =1 01 11 Y2 SRS UT USSP 18
10, TargetSEIVICENGIME........iiiiiie ettt ettt e et e et e e e te e e tbe e bae e stbeesbseeareesaresssbeeans 18
L1, SEAIUSCOUR. ... ittt ettt b e bt et e bt e b e bt e sbeeabe e bt enteesbeenbeenbeenee 18
12, RESPONSECOUE......cccuiieiie ettt sttt ettee st e ste e st beesteesseessteeesteeesseeetaeessseessseesssessnseessseeans 19
13, RESPONSEDESCIIPLON......ccciiiieitiie ettt ettt ete et rte e e tr e e b e e bae e stbeesbbe e araesareessbeeans 19
14, INSTANCEUUID........oeie ettt ettt et e e s te e e e nbeenteesseenseenseenes 19
T 01 (=T o [0 2 (0T N [= 1= SRS SUPR 19
T YL =T 4 | Y SRRSO PTUUPTt 19
17, SEIVEI IP AOAIESS. ... ittt ettt ettt et et et e nbe et e sbe et e 19
S T - Vo1 T =T I T 1 PSPPI 19
R 1T L= COP OO PP PUTOPRROTPPRPPPTROR 19
P20 TR | == To [0 =TSSR 20
P T O - 1= = o = S USRN 20
22, UNUSE.... ittt s h e bt et e bt e bt s bt e s bt bt e bt sbe e sbe e be e be e beesaeens 20
A T o (0 o] STt (=) Y APPSR 20
24, TargetVirtUBIENTILY........coiiiiieeciie ettt et ertee ettt e et e et be e sate e saveesbaesabeesabeeens 20
25, CUSIOMFIEIAL. ... ettt ettt st et e steesteesaeeseeeseenseenneeseeens 20
26, CUSIOMEIEIAZ.......coiiie ettt sh et b e e e be e beebeesaeens 20
27, CUSIOMEIEIAS. ... ettt st e steesteesaeesteen e enseeneeneeens 20
28, CUSIOMEIEIAAottt st ste et e saeesee e seenseeseeseeens 20
PAS o (= = V] 1 oT T ST= Vo 1= ST UPUPR 20
g o] g o To OSSO 22
I T4 4 1=TS) = U o o TSP RTUUPTt 22
2. REQUESLEID..... ..ot e e e e e e e e et e e e e e enbrreeaeeeannrraeeas 22
3o TRIEAAID. ...ttt b e sb e bt et sbe ettt e be e b saeen 23
A, SEIVICENAIMIEeitie ettt ettt ettt ettt et ea e st e at e st e shbesatesheesbeesheesbeenbeenbeenbeesteens 23
B PANEINGME. .. ettt ettt s b e bt ettt ettt saeeneennens 23
ST =1 (=1 1 =1 01 11 Y2 O STST USSP 23

ONAP logging guidelines — Revision 1.0 (4/11/2017)

7. TargetSEIVICENGIMIE........eiiiie ettt etee ettt e e rtae et e e s tbe e s ta e e s treesbeesbbeesateesabeesataesaresssseeans 23
S T =Y 1 o] (0= 1 (=0 o] Y PRSPPI 23
LS T Y ¢ (o] { OT0 Lo [OSSPSR 23
10, EITOrDESCHIPON. . eiiiiiii ettt ettt ettt te et e et e e eta e e be e e te e e bbeebaeestbeesbseenaraesareessseeans 24
B T o 1= =11 1Y TS T= o = PSR PP 24
(=T o 18 o 1 o T USSP 24
I T4 4 1=TS) = T o o TP USRSt 24
2. REQUESLEID.......eiiiie et e e e e e e e et e e e e e e baeeeaeeeannrreeeas 24
G T B 1= o 18 o | 9] o TO ST UT U SRUPRUPT 24
4. ENd of deDUQ rECOE.........cooiiiei e e 24

ONAP logging guidelines — Revision 1.0 (4/11/2017)

About this document

This document specifies a common logging format to be following by all ONAP component applications.
ONAP logging is intended to support operability, debugging and reporting on ONAP. It provides
common logging guidelines to address:

e “occurrences” that are written by ONAP components

e platform application (i.e. component or sub-component) to a log file type

e local file system directories/names for each log file type

* logrecord structure

These guidelines may evolve over time.

ONAP logging guidelines — Revision 1.0 (4/11/2017)

Introduction

The purpose of ONAP logging is to capture information needed to operate, troubleshoot and report on
the performance of the ONAP platform and its constituent components. Log records may be viewed and
consumed directly by users and systems, loaded into a database, and used to compute metrics or KPIs
about the platform and components.

The processing of, and possibly response to, a client request often involve multiple ONAP components
and/or their subcomponents (interchangeably referred to as ‘application’ in this document). The ability
to track such processing flows across components is critical to understanding ONAP’s behavior and
performance. ONAP logging uses a universally unique RequestID value in log records to track the
processing of every single client request across all the ONAP components involved in its processing.

An application should output log records as appropriate in the following four log? files:

Audit Log: is required and provides a summary view of the processing of a (e.g., transaction) request
within an application. It captures activity requests that are received by an ONAP component, and
includes such information as the time the activity is initiated, when it finishes, and the API that is
invoked at the component.

Metrics Log: is required and provides a more detailed view into the processing of a transaction within
an application. It captures the beginning and ending of activities needed to complete it. These can
include calls to or interactions with other ONAP or non-ONAP entities.

Error Log: is required and is intended to capture info, warn, error and fatal conditions sensed
(“exception handled”) by the software components.

Debug Log: is optional and is intended to capture whatever data may be needed to debug and correct
abnormal conditions of the application.

Audit log records are intended to capture the high level view of activity within an ONAP component.
Specifically, an APl request handled by an ONAP component is reflected in a single Audit log record that
captures the time the request was received, the time that processing was completed, as well as other
information about the API request (e.g., APl name, on whose behalf it was invoked, etc).

Suboperations invoked as part of the processing of the APl request are logged in the Metrics log. For
example, when a call is made to another ONAP component or external (i.e., non-ONAP) entity, a Metrics
log record captures that call. In such a case, the Metrics log record indicates (among other things) the
time the call is made, when it returns, the entity that is called, and the API invoked on that entity. The
Metrics log record contain the same RequestID as the Audit log record so the two can be correlated.

2 “console logging” may also be present and is intended to capture “system/infrastructure” records. That is stdout
and stderr assigned to a single “engine.out” file in a directory configurable (e.g. as an environment/shell variable)
by operations personnel.

ONAP logging guidelines — Revision 1.0 (4/11/2017)

Note that a single request may result in multiple Audit log records at an ONAP component and may
result in multiple Metrics log records generated by the component when multiple suboperations are
required to satisfy the APl request captured in the Audit log record.

General guidelines and conventions:

1. An application should provide the ability to change the logging level for each (all?) types of logs
with no/minimum impact to the running application.

2 Application logging program logic should be modularized to facilitate least time/effort
enhancement. This may be as a result of ONAP operational experience and may necessitate
changes such as using a different logging infrastructure, different log record structure, swapping
log4j with SLF4J, etc.

3. A configuration file should be used by logging application to determine the actual directory
specification where to write the log file. Directory specifications should have the following
syntax:

<logs-directory> ::= <log-directory> “/” <ONAP-component-name> “/” [¥*<ONAP-
subcomponent-name> “/”] <log-type-name>] “.log”

<log-directory> ::= <debug-dir> | <log-dir> ; 1 of 2 directories
<debug-dir>::= string directory path for debugging type logs from
<log-directory> ::= string directory path for all/each type of application logs

<ONAP-component-name>::= "MSO" | "DCAE" | "ASDC" | "AAI" |"Policy" | "SDNC" | "Portal" |
"APPC"

<ONAP-subcomponent-name> ::= string without reserved characters identifying the reporting
entity (e.g. varying granularity such as module, class, method,...)

<log-type-name>::="error" | "metrics" | "audit" | "debug"
4. All application logs are sequential files with records that:

a. consist of some number of variable length text fields that comply with left-to-right field
ordering. The fields and their meanings are described below in each of the four sections
pertaining to the different kind of log file.

b. use the (reserved) “|” character as field separator/delimiter. NB: do not use field
delimiter (‘|’) or log record terminator (‘\n’) characters embedded in the field values.

Ill |I’

C. Uuse consecutive character sequence to represent an unavailable, empty or not
applicable field value.

5. ONAP components written in Java should use the Event and Error Logging Framework (EELF)
library to write to their logs.

The following sections detail each respective log file’s record format.

ONAP logging guidelines — Revision 1.0 (4/11/2017)

Audit Log

The Audit log captures the high level activities ONAP components carry out. ONAP activities are
typically invoked by an API request, but may also be triggered by other actions, such as receipt of a
message or execution of a cron job. An Audit log record contains timestamps to indicate when the
activity begins (e.g., receipt of the API call or message) and ends, and an elapsed time. There is typically
one Audit log record associated with a single API call or other triggering activity. In the case of
asynchronous calls, two Audit log records are generated at different points in time. The first indicates
when the activity begins and is acknowledged as received. The second record indicates when the
activity is actually completed and a subsequent callback is made by the logging component in response.

When processing terminates abnormally (e.g., due to a timeout), a log record must be written indicating
when processing began and when it terminated.

The format of the Audit Log is given in Table 1. Detailed description of the fields are provided in the

subsequent subsections.

Ord. Field Name All field values are required to be supplied in every log record
except where explicitly noted as “Optional”

1 BeginTimestamp Date-time of the start of a request activity

2 EndTimestamp Date-time of the end of a request activity

3 RequestID Universally unique transaction request ID (UUID)

4 servicelnstancelD | Uniquely identifies a service instance (e.g., “service graph”). It is used
as a primary key (e.g., in AAl) to reference/manage the service
instance as a unit

5 threadld Optional: used if wanting to trace processing of a request over a
number of threads of a single ONAP component

6 physical/virtual Optional: empty if determined that its value can be added by the

server name agent collecting log files

7 serviceName Externally advertised API invoked by clients of this component

8 PartnerName Client or user invoking the API

9 StatusCode High level success or failure of the request (COMPLETE or ERROR)

10 | ResponseCode Application-specific error code

11 | Response Human readable description of the application specific response

Description code

12 | instanceUUID Universally unique identifier used to differentiate between multiple
instances of the same (named) log writing component

13 | Category Enum: “INFO” | “WARN” |”"DEBUG” | “ERROR” | “FATAL”

log level

14 | Severity Optional: 0, 1, 2, 3 see Nagios monitoring/alerting for
specifics/details

15 | Server IP address | Optional: the logging component host server’s IP address

ONAP logging guidelines — Revision 1.0 (4/11/2017)

16 | ElapsedTime Elapsed time to complete processing of an API or request at the
granularity available to the component system. This value should be
the difference between BeginTimestamp and EndTimestamp fields.

17 | Server VM FQDN if virtualized else host name of the logging component

18 | ClientIPaddress Requesting remote client application’s IP address

19 | class name Optional: for OO programing languages that support this concept.
This is the name of the class that has caused the log record to be
created.

20 | Unused This field should be left blank

21 | ProcessKey Optional

22 | CustomFieldl Optional (specific attributes exposed by developers)

23 | CustomField2 Optional (specific attributes exposed by developers)

24 | CustomField3 Optional (specific attributes exposed by developers)

25 | CustomField4 Optional (specific attributes exposed by developers)

26 | detailMessage Optional: the rightmost (“last”) field in a log record. When present,
its value may be formatted if/as useful to meet specific/individual
use case(s).

Table 1 — ONAP Audit Log Record Structure

1. BeginTimestamp
Date-time that processing activities being logged begins. The value should be represented in UTC and
formatted per ISO 8601, such as “2015-06-03T13:21:58+00:00”. The time should be shown with the
maximum resolution available to the logging component (e.g., milliseconds, microseconds) by including

the appropriate number of decimal digits. For example, when millisecond precision is available, the
date-time value would be presented as, as “2015-06-03T13:21:58.340+00:00".

This field is required.

The use of UTC avoids the need for time zone conversion when processing multiple records related to
the same request that may be produced by ONAP components in different time zones.

2. EndTimestamp

Date-time that processing for the request or event being logged ends. Formatting rules are the same as
for the BeginTimestamp field above.

This field is required.

In the case of a request that merely logs an event and has not subsequent processing, the
EndTimestamp value may equal the BeginTimestamp value.

ONAP logging guidelines — Revision 1.0 (4/11/2017)

When processing ends abnormally due to a timeout, this field should indicate when the timeout
occurred.

3. RequestID

A requestlD is a universally unique value that identifies a single transaction request within the ONAP
platform. Its value is conformant to REC4122 UUID. This value is readily and easily obtained in most
programming environments. The requestID value is passed using a REST APl from one ONAP component
to another.

It is expected that requests that originate from components/applications external to the ONAP platform
(e.g., Operations Support Systems or Business Support Systems) provide this value in every distinct
ONAP REST API request.

If the requestID UUID value:

1. is missing from an API call or
is somehow deemed unreliable or

3. the request actually originates in an ONAP component (e.g., as a consequence of some
internally detected condition)

a new UUID value should be obtained by the sensing component and transmitted with any subsequent
request made as part of processing that request. Generation or substitution of requestID UUID value is
an action that should be logged by the effecting component. When doing so, the component would
create and write an additional log record to its log files. The record would contain the component
generated UUID value in the “RequestID” field and, in its “detailMessage” field (see below) one of the
following, appropriate messages:

“Missing requestID. Assigned <insert new UUID here>.”
or
“Replaced invalid requestID of <insert received requestID value here>.”

NB:
1. Please note that the replacement value used appears in the requestID field of this log record.
2. If EELF is being used to format the detailMessage field, then the messages above should appear
in a place consistent with its format.

What is a transaction requestID used for?

Each request along with certain related data is recorded by every component that handles it in its logs.
The requestID (also referred to as a “Transaction ID”) can be used to correlate and form an audit trail

10

ONAP logging guidelines — Revision 1.0 (4/11/2017)

from any number of log records from any number of ONAP components. This trail can be used for
various purposes including:

1) enabling metrics that show how many completed requests flow through ONAP in a given period of
time,

2) tracing of the flow of processing that tells what ONAP components and subcomponents are involved
in its processing,

3) enabling identification and planning to determine which components represent bottlenecks (by
examination of associated timestamps),

4) fault pattern detection that pinpoints the source of requests which ultimately fail somewhere in the
process flow and the components in which they fail.

When collected in a central location, logs can be enriched with the identity of the creating component.
That identity is obtained as the by-product of a separate log collection mechanism usually by extraction
from the log file directory path. In other words, a “request processing path” can be established across
any ONAP component instances that handled that request by finding and sorting in ascending
timestamp order all the log records with a common requestID UUID value. Other log record fields may
then be used to identify the outcome of a component’s handling.

How is a transaction requestID passed from one component to another?

Even though the use of “X-“ prefixed HTTP headers is deprecated (see
http://tools.ietf.org/html/rfc6648), one may continue to use that format for passing the Request ID
value in an HTTP request ‘extended header’ named “X-ECOMP-RequestID:” .

For example:

POST /onapcomponent/vl/api-handler HTTP/1.1
Host: hostl.onap.org
X-ECOMP-RequestID: 724229¢0-9945-11e5-bcde-0002a5d5¢51b

How is a transaction requestID logged?

There are some cases where an ONAP (sub)component (e.g., MSO) must, for the same given transaction
(i.e., requestID), make multiple, related, subsequent API (sub)requests to a second ONAP component.
The (sub)request receiving component has elected, in some cases, to interpret the HTTP header as a
nonce value in order to detect (and possibly reject) duplicate API requests. In these cases, the X-ECOMP-
RequestID HTTP header can use a composite value of the form “UUID:suffix”. For example

POST /onapcomponent/vl/api-handler HTTP/1.1
Host: hostl.onap.org
X-ECOMP-RequestID: 8305e770-f2db-11e5-a837-0800200c92a66:1234

When receiving a composite requestID value of the form UUID-1:UUID-2, the receiving component
should only use the UUID-1 portion (i.e., remove the “:” and any trailing suffix, e.g. UUID-2) as the
requestlD field value for its log files. Using the example immediately above, the requestID value to be

used in the log record is only the “8305e770-f2db-11e5-a837-0800200c9a66” portion.

11

ONAP logging guidelines — Revision 1.0 (4/11/2017)

4. ServicelnstancelD

This field is optional and should only be included if the information is readily available to the logging
component.

Transaction requests that create or operate on a particular instance of a service/resource can
identify/reference it via a unique “servicelnstancelD” value. This value can be used as a primary key for
obtaining or updating additional detailed data about that specific service instance from the inventory
(e.g., AAI). In other words:

- In the case of processing/logging a transaction request for creating a new service instance, the
servicelnstancelD value is determined by either a) the MSO client and passed to MSO or b) by MSO itself

upon receipt of a such a request.

- In other cases, the servicelnstancelD value can be used to reference a specific instance of a service as
would happen in a “MACD”-type request.

- ServicelnstancelD is associated with a requestID in log records to facilitate tracing its processing over
multiple requests and for a specific service instance. Its value may be left “empty” in subsequent record
to the 1% record where a requestID value is associated with the servicelnstancelD value.

NOTE: AAl won't have a servicelnstanceUUID for every service instance. For example, no
servicelnstanceUUID is available when the request is coming from an application that may import
inventory data.

5. ThreadlID

Optional: used if wanting to trace processing of a request over a number of sub-components of a single
ONAP component. It should be preceded by a log record that establishes its chaining back to the

corresponding requestID.

6. Physical/virtual server name

Optional: empty if determined that its value can be added by the agent that collects the log files
collecting.

7. serviceName

This field is required.

12

ONAP logging guidelines — Revision 1.0 (4/11/2017)

For Audit log records that capture API requests, this field contains the name of the APl invoked at the
component creating the record (e.g., Layer3ServiceActivateRequest).

For Audit log records that capture processing as a result of receipt of a message, this field should contain
the name of the module that processes the message.

8. PartnerName

This field contains the name of the client application user agent or user invoking the APl if known.

9. StatusCode

This field indicates the high level status of the request. It must have the value COMPLETE when the
request is successful and ERROR when there is a failure.

10. ResponseCode
This field contains application-specific error codes. For consistency, common error categorizations

should be used. The table below provides a recommended categorization which all new ONAP
components must adhere to.

Error type Notes
0 Success
100 Permission errors
200 Availability errors/Timeouts
300 Data errors
400 Schema errors
500 Business process errors
900 Unknown errors

11. ResponseDescription

This field contains a human readable description of the ResponseCode.

12. instanceUUID

If known, this field contains a universally unique identifier used to differentiate between multiple
instances of the same (named) log writing service/application. Its value is set at instance creation time
(and read by it, e.g., at start/initialization time from the environment). This value should be picked up
by the component instance from its configuration file and subsequently used to enable differentiation of
log records created by multiple, locally load balanced ONAP component or subcomponent instances that
are otherwise identically configured.

13

ONAP logging guidelines — Revision 1.0 (4/11/2017)

13. Category log level

One of the following Enum: “INFO” | “WARN” |”DEBUG” | “ERROR” | “FATAL".

14. Severity

Optional: 0, 1, 2, 3 see Nagios monitoring/alerting for specifics/details.

15. Server IP address

This field contains the logging component host server’s IP address if known (e.g. Jetty container’s
listening IP address). Otherwise it is empty.

16. ElapsedTime

This field contains the elapsed time to complete processing of an API call or transaction request (e.g.,
processing of a message that was received). This value should be the difference between
EndTimestamp and BeginTimestamp fields and must be expressed in milliseconds. This field is required.

17. Server

This field contains the Virtual Machine (VM) Fully Qualified Domain Name (FQDN) if the server is
virtualized. Otherwise, it contains the host name of the logging component.

18. ClientIPaddress

This field contains the requesting remote client application’s IP address if known. Otherwise this field
can be empty.

19. ClassName

Optional: if available for OO programing languages that support this concept. This is the name of the
class that has caused the log record to be created.

20. Unused

This field is deprecated and should be left empty.

21. ProcessKey

14

ONAP logging guidelines — Revision 1.0 (4/11/2017)

This field is optional. This field can be used to capture the flow of a transaction through the system by
indicating the components and operations involved in processing. If present, it can be denoted by a
comma separated list of components and applications.

22. CustomField1

This field is optional and can be used by developers to include additional application-specific information
to support operation and troubleshooting of the system.

23. CustomField2

This field is optional and can be used by developers to include additional application-specific information
to support operation and troubleshooting of the system.

24. CustomField3

This field is optional and can be used by developers to include additional application-specific information
to support operation and troubleshooting of the system.

25. CustomField4

This field is optional and can be used by developers to include additional application-specific information
to support operation and troubleshooting of the system.

26. detailMessage

This field is optional and can be used by developers to extend the record. It may be formatted as is
deemed useful to support application-specific needs and use cases.

Please note:

* The field separator character should not appear in this field.

e The field may be used to carry an EELF formatted message.

e Operations may use values in this field as a way of categorizing certain classes of occurrences in a
way that improves their efficiency.

15

ONAP logging guidelines — Revision 1.0 (4/11/2017)

Metrics Log Format

The Metrics log captures the detailed suboperations and activities needed to complete the processing of
an APl request or other activity by an ONAP component. While the Audit log tracks requests received by
a component, the Metrics log captures the suboperations needed to fulfill those requests. As such, the

Audit log tracks inbound activity (i.e., requests received from external systems or other ONAP

components), and the Metrics log tracks outbound activity. The suboperations reflected in the Metrics
log may be calls to a subcomponent of the logging ONAP component, calls to other ONAP components,

or calls to external (non-ONAP) systems.

The format of the Metrics Log is given in Table 2. Detailed description of the fields are provided in the

subsequent sections.

Ord. Field Name All field values are required to be supplied in every log record
except where explicitly noted as “Optional”

1 BeginTimestamp Date-time when a suboperation activity is begun

2 EndTimestamp Date-time when a supoperation activity is completed

3 RequestID Universally unique transaction request ID (UUID)

4 servicelnstancelD Uniquely identifies a service instance (e.g., “service graph”). It is
used as a primary key (e.g., in AAl) to reference/manage the service
instance as a unit.

5 threadld Optional: used if wanting to trace processing of a request over a
number of threads of a single ONAP component.

6 physical/virtual Optional: empty if determined that its value can be added by the

server name agent collecting the log files

7 serviceName Externally advertised APl invoked by clients of this component

8 PartnerName Client or user invoking the API

9 TargetEntity ONAP component/subcomponent or non-ONAP entity which is
invoked for this suboperation

10 | TargetServiceName | External APl/operation activities invoked on TargetEntity (ONAP
component/subcomponent or non-ONAP entity)

11 | StatusCode High level success or failure of the suboperation
activities(COMPLETE or ERROR)

12 | ResponseCode Specific response code returned by the suboperation activities

13 | Response Human readable description of the response code

Description

14 | instanceUUID Optional: universally unique identifier used to differentiate between
multiple instances of the same (named) log writing component.

15 | Category Enum: “INFO” | “WARN” |”"DEBUG” | “ERROR” | “FATAL".

log level

16 | Severity Optional: 0, 1, 2, 3 see Nagios monitoring/alerting for
specifics/details.

17 | Server IP address The logging component host server’s IP address.

ONAP logging guidelines — Revision 1.0 (4/11/2017)

18 | ElapsedTime Elapsed time to complete processing of the suboperation activtities
at the granularity available to the component system. This value
should be the difference between EndTimestamp and
BeginTimestamp fields.

19 | Server VM FQDN if virtualized else host name of the logging component

20 | ClientIP Requesting remote client application’s IP address

21 | class name Optional: for OO programing languages that support this concept.
This is the name of the class that has caused the log record to be
created.

22 | Unused

23 | ProcessKey Optional

24 | TargetVirtualEntity | Target VNF or VM being acted upon by the component

25 | CustomField1l Optional (specific attributes exposed by developers)

26 | CustomField2 Optional (specific attributes exposed by developers)

27 | CustomField3 Optional (specific attributes exposed by developers)

28 | CustomField4 Optional (specific attributes exposed by developers)

29 | detailMessage Optional: the rightmost (“last”) field in a log record. When present,

its value may be formatted if/as useful to meet specific/individual
use case(s).

Table 2 — ONAP Metrics Log Record Structure

1. BeginTimestamp

Date-time that processing for the activities begins. See description in the Audit Log section for
formatting requirements.

This field is required.

2. EndTimestamp

Date-time that processing for the activities being logged ends. Formatting rules are the same as for the
BeginTimestamp field.

This field is required.

When processing for an activity does not return successfully and terminates due to a timeout, this field
should indicate when the timeout occurred.

17

ONAP logging guidelines — Revision 1.0 (4/11/2017)

3. RequestID

This field is required. Itis meant to enable tracing of processing through different operation activities.
When an operation activity invoked by an API call results in multiple suboperations that are logged in

Metrics Log records, the Metrics Log records all have the same RequestID as the Audit log record that
captures the API call.

See the description of the RequestID field in the Audit Log section for further details.

4. ServicelnstancelD

See the description of this field in the Audit Log section above.

5. ThreadlID

See the description of this field in the Audit Log section above.

6. Physical/virtual server name

See the description of this field in the Audit Log section above.

7. serviceName

This field is required. It contains the name of the API invoked at the logging component.

8. PartnerName

This field contains the name of the client or user invoking the API in the prior field, if known.

9. TargetEntity

This field is required. It contains the name of the ONAP component or sub-component, or external
entity, at which the operation activities captured in this metrics log record is invoked.

10. TargetServiceName

This field is required. It contains the name of the API or operation activities invoked at the TargetEntity.

11. StatusCode

This field is required. It contains a value of COMPLETE or ERROR to indicate high level success or failure
of the operation activities that is invoked.

18

ONAP logging guidelines — Revision 1.0 (4/11/2017)

12. ResponseCode

This field is required. It contains the application-specific response code returned by the operation
activities.

13. ResponseDescription

This field contains a human readable description of the response code.

14. instanceUUID

Optional: universally unique identifier used to differentiate between multiple instances of the same
(named), log writing service/application. Its value is set at instance creation time (and read by it, e.g. at
start/initialization time from the environment). This value should be picked up by the component
instance from its configuration file and subsequently used to enable differentiating log records created
by multiple, locally load balanced ONAP component or subcomponent instances that are otherwise
identically configured.

15. Category log level

One of the following Enum: “INFO” | “WARN” |”DEBUG” | “ERROR” | “FATAL".

16. Severity

Optional: 0, 1, 2, 3 see Nagios monitoring/alerting for specifics/details.

17. Server IP address

This field contains the logging component host server’s IP address if known (e.g. Jetty container’s
listening IP address). Otherwise it is empty.

18. ElapsedTime

This field contains the elapsed time to complete processing of the operation activities. This value should
be the difference between EndTimestamp and BeginTimestamp fields and must be expressed in
milliseconds. This field is required.

19. Server

This field contains the Virtual Machine (VM) Fully Qualified Domain Name (FQDN) if the server is
virtualized. Otherwise, it contains the host name of the logging component.

19

ONAP logging guidelines — Revision 1.0 (4/11/2017)

20. IP address

21. ClassName

Optional: if available for OO programing languages that support this concept. This is the name of the
class that has caused the log record to be created.

22. Unused

This field has been deprecated and should be left empty.

23. ProcessKey

This field is optional. This field can be used to capture the flow of a transaction through the system by
indicating the components and operations involved in processing. If present, it can be denoted by a
comma separated list of components and applications.

24. TargetVirtualEntity

For operation activities that act on a virtual entity (e.g., VNF, VM) this field contains the virtual entity
that is the target of the action. Otherwise, the field is empty.

25. CustomField1

This field is optional and can be used by developers to include additional application-specific information
to support operation and troubleshooting of the system.

26. CustomField2

This field is optional and can be used by developers to include additional application-specific information
to support operation and troubleshooting of the system.

27. CustomField3

This field is optional and can be used by developers to include additional application-specific information
to support operation and troubleshooting of the system.

28. CustomField4

This field is optional and can be used by developers to include additional application-specific information
to support operation and troubleshooting of the system.

29. detailMessage

20

ONAP logging guidelines — Revision 1.0 (4/11/2017)

This field is optional and can be used by developers to extend the record. It may be formatted as is
deemed useful to support application specific needs and use cases.

Please note:
e The field separator character should not appear in this field.
* The field may be used to carry an EELF formatted message.

e Operations support organizations may use values in this field as a way of categorizing certain classes
of occurrences in a way that improves their efficiency.

21

ONAP logging guidelines — Revision 1.0 (4/11/2017)

Error Log

The error log records contains information about error conditions encountered by the logging
application. The format of the Error Log is specified in Table 3.

Ord. Field Name All field values are required to be supplied in every log
record except where explicitly noted as “Optional”
1 Timestamp Date-time when error occurs
2 RequestID Universally unique transaction requestID (UUID).
3 Threadld Used if wanting to trace processing of a request over
several threads of a single ONAP component.
4 ServiceName Externally advertised APl invoked by clients of this
component
5 PartnerName Client or user invoking the API
6 TargetEntity ONAP component/subcomponent or non-ONAP entity
which is invoked for this suboperation activities
7 TargetServiceName Known name of External API/operation activities invoked
on TargetEntity (ONAP component/subcomponent or non-
ONAP entity)
8 ErrorCategory WARN, ERROR or FATAL
9 ErrorCode Code representing the error condition
10 | ErrorDescription Human readable description of the error
11 | detailMessage This field may contain any additional information that may
be useful in describing the error condition.

Table 3 — ONAP Error Log Record Structure

1. Timestamp

Date-time that the error condition occurred. Formatting rules are the same as for the timestamp fields
in the Audit and Metrics logs. This field is required.

2. RequestID

If the error occurs during processing activities for which there is a known RequestID, this field contains

that RequestID. Otherwise it is empty.

22

ONAP logging guidelines — Revision 1.0 (4/11/2017)

3. ThreadID

See the description of this field in the Audit Log section above.

4. serviceName

This field is required. It contains the name of the API invoked at the logging component.

5. PartnerName

This field contains the name of the client applicationm user agent or user invoking the API if known.

6. TargetEntity

This field shall be populated if the error occurred while invoking an operation at another entity. In this
case, it contains the name of the ONAP component or sub-component, or external entity at which the
error occurred. Otherwise it shall be empty.

7. TargetServiceName
This field shall be populated if the error occurred while invoking an operation at another entity. In this

case, it contains the name of the APl or operation activities invoked at the TargetEntity. Otherwise it
shall be empty.

8. ErrorCategory
This field indicates the type of error message. It must be one of ERROR, WARN or FATAL. This field is
required.

9. ErrorCode
This field is required and contains an error code representing the error condition. The codes can be

chose by the logging application but they should adhere to the guidelines embodied in the following
table:

Error type Notes
100 Permission errors
200 Availability errors/Timeouts
300 Data errors
400 Schema errors
500 Business process errors
900 Unknown errors

23

ONAP logging guidelines — Revision 1.0 (4/11/2017)

10. ErrorDescription

This field is required and conta

11. detailMessage

ins a human readable description of the error condition.

This field is optional and may contain any additional information relevant to the error condition.
the detailMessage field description in the Audit log record for additional formatting information.

Debug Log

The Debug Log is optional and may be used to capture any data that may be needed to debug and

correct abnormal conditions of the application.

See

Ord. Field Name

All field values are required to be supplied in every log record
except where explicitly noted as “Optional”

1 Timestamp

Date-time of the log record

2 RequestID

Universally unique transaction requestiD (UUID).

3 Debuglinfo

Debug Information

End of Record

Designate the logical end of a multi-line debug record

Table 4 — ONAP Debug Log Record Structure

1. Timestamp

Date-time that the debug record is created. Formatting rules are the same as for the timestamp fields in
the Audit and Metrics logs. This field is required.

2. RequestID

This field contains the RequestID associated with the operation being processed for which the debug

record is created.

3. Debuglnfo

This field is required and conta
information is at the discretion

4. End of debug record

ins information that may be useful in debugging. Format of the
of the application.

24

ONAP logging guidelines — Revision 1.0 (4/11/2017)

Because this information may include embedded new lines, an explicit end of record ‘marker (“|*\n”)
should be added as a ‘last field’ to designate the logical end of the debug record and facilitate
automated parsing.

25

