
OpenECOMP Portal SDK Documentation

Copyright © 2017 AT&T Intellectual Property.

All rights reserved.

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); you may

not use this documentation except in compliance with the License.

You may obtain a copy of the License at

 https://creativecommons.org/licenses/by/4.0/

Unless required by applicable law or agreed to in writing, software distributed under the License

is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

KIND, either express or implied. See the License for the specific language governing

permissions and limitations under the License.

ECOMP and OpenECOMP are trademarks and service marks of AT&T Intellectual Property

https://creativecommons.org/licenses/by/4.0/

 Authentication

o Using External Credentials

 Authorization

o Managing Users/Roles

o Restrictions on Menus and URLs

o Access Control via Roles and Functions

 Role management

 Listing available roles

 Activating/deactivating roles

 Removing roles

 Creating new roles

 Role functions management

 Listing available role functions

 Editing role functions

 Removing role functions

 Creating new role functions

 Functional Menus

o Description

o Implementation

 Session Management

o Goal:

o Challenge(s):

o Solution:

 Utilities

o Cache Manager

o AppUtils

 Application Configuration

o System Properties

 Data Access Utilities

o Data Access Service

o Transactions

 Sample Pages / Controllers

o Spring Based Controllers

o Angularized Controllers

 REST APIs Exposed for Admin User Management

o Service APIs

 Examples:

 Visualization & Productivity Tools

o Widget Development API

 Key widget concepts

 Widgets on the portal dashboard

 SDK Database Schema

Authentication

Using External Credentials

Authentication using external credentials. This is the back door only used by developers.

Files: none

Front end: login_external.jsp

Back end: ExternalLoginController

Workflow:

Authorization

Managing Users/Roles

The following tables are used. Using Hibernate, these tables are managed using the role screens.

 FN_USER

 FN_USER_ROLE

 FN_ROLE_FUNCTION

 FN_FUNCTION

When user is assigned a role, he would have access to the appropriate resources (menus / urls).

Below is a Entity-Relation diagram showing the relations among the tables used to manage users

and roles:

Restrictions on Menus and URLs

The menus and URLs can be restricted by associating it with a 'function'. See the following

tables

 FN_MENU

 FN_RESTRICTED_URL

This applies to users via the User's role. Role is associated with a list of functions. If a user has

access to a function, he/she will be able to access that menu and url. The ED diagram below

shows the relations among the tables involved with the authorization process:

In order to protect a controller and add it to the restricted URL list, we just need to extend the

base controller RestrictedBaseController.java. Also look at AppConfig that applies an

interceptor ResourceInterceptor.java to all requests. The interceptor will check if the logged-in

user is allowed to see the page or not.

See the following:

Menu: LoginService.findUser

FN_RESTRICTED_URL (All the pages inside this table would be checked against user’s role

under ResourceInterceptor. Define function_cd for fn_role_function table)

FN_USER (Maintain user information)

 <IMAGE redacted pending creation of Open Source version>

FN_USER_ROLE (bind user_id and role_id)

FN_ROLE

FN_ROLE_FUNCTION (Define role_id’s right to access the function_cd)

Access Control via Roles and Functions

Role management

This section is a user guide to the management of the roles in a given system, including listing

available roles, creating new roles, activating/deactivating roles, and removing roles

Listing available roles

The JSP or Java files associated with these features are described below:

Front-end: role_list.jsp

Back-end: RoleListController.java

Workflow: The user clicks on “Admin->Roles” from menu items to view the list of

available roles.

 <IMAGE redacted pending creation of Open Source version>

Activating/deactivating roles

The user clicks on the toggle button under “Active?” column to activate or deactivate the

role.

Removing roles

The user clicks on the trash button under “Delete?” column to delete the role.

Creating new roles

Front-end: role.jsp

Back-end: RoleController.java

Workflow: The user clicks on the “Create” button as shown in the roles list screen shown

below to go to the screen where he/she can create a new role.

 <IMAGE redacted pending creation of Open Source version>

Roles list screen showing “Create” button.

Below is the screen to enter a new role name and priority. The user can add available role

functions and child roles using same screen. Once a new role is saved, it will appear in the roles

list screen.

 <IMAGE redacted pending creation of Open Source version>

Role functions management

This section is a user guide to the management of the role functions in a given system, including

listing available role functions, creating new role functions, editing role functions, and removing

role functions.

Listing available role functions

The JSP or Java files associated to these features described below:

Front-end: role_function_list.jsp

Back-end: RoleFunctionListController.java

Workflow: The user clicks on “Admin->Role Functions” from menu items to view the list

of available role functions.

: <IMAGE redacted pending creation of Open Source version>

Editing role functions

The user clicks on the edit button under the “Edit?” column to view/edit the role function

name and code. Only the role function name can be edited from the edit popup, since editing

of the role function code is disabled.

Removing role functions

The user clicks on the trash button under “Delete?” column to delete the role function.

Creating new role functions

The user clicks on the circled “+” button under the tile as shown in below in the role

functions list screen to create the popup where he/she can create a new role function.

The user can add a new role function by entering a new name and code in the Add Role

Function popup:

Functional Menus

Description

Functional Menus provide seamless application integration. They help users maintain a sense of

orientation across different portal applications. Functional menus are a navigation device that

categorizes menu items into three major categories: Design, Runtime, and Platform. Important

links from each application should reside under these three categories. Users can use this menu

to jump between different applications.

The application owner needs to provide menu items that he/she wants to put into this navigation

device during the onboarding process. The owner also needs to decide which category each

menu item belongs to. Note that the Portal administrator will have final decision on the

name/link of the menu items.

The navigation menus should be clear to users. Multiple menu items can be added for the same

application. Within the top level menu, the Portal administrator can add application specific

menu items and hierarchy up to four levels deep.

Implementation

We have implemented a functional menu code in a directive called a q-header. Developers just

need to include header.css, portal_ebz_header.css, and header.js in the desired html file, and

enter the following code -- the functional menu should the be working:

Things that need to be modified when embeding the code – in the file header.js:

We are calling get_menu to get the menu data. This can be changed if necessary.

Session Management

Goal:

 To provide a positive user experience, a user should be able to jump from one authorized

application to another without a session expiration from one application. The applications need

to collectively keep their sessions alive during the idle time - last visited time-stamp does not

equal the session timeout.

Challenge(s):

1. When user navigates from app to app, URL Redirect and we loose browser access other

apps.

2. Application may have different session timeouts.

Solution:

1. OpenECOMP Portal conducts and manages the session timeouts on all applications.

2. OpenECOMP Portal will keep track of all active sessions across all applications

3. OpenECOMP Portal will retrieve last-visited-time-stamp from all applications.

4. Applications will attach the OpenECOMP Portal session ID in their application sessions.

5. Applications will periodically send the last-visited-time-stamp of each session to the

OpenECOMP Portal.

6. Before expiring a session, the application will check with the OpenECOMP Portal if

there was a recent activity across any other application. If so, the session will be

extended.

 <IMAGE redacted pending creation of Open Source version>

 <IMAGE redacted pending creation of Open Source version>

Session management is done via an interceptor. See AppUtils.addInterceptors. All urls that are

adding the SessionTimeoutInterceptor will be checked for a valid session before letting them

continue. If the session is expired, the user will be taken back to the login page.

Also look at UserUtils to see logged-in user’s details.

Utilities

Cache Manager

The following methods are used to the get access to FUSION’s CacheManager. The

CacheManager is an implementation of Java Caching System (JCS) which is a proven caching

mechanism that can cache data in memory, to disk, in a clustered server environment, or

distributed environment.

 public static AbstractCacheManager getCacheManager()

 public static boolean isCacheManagerAvailable()

AppUtils

The AppUtils class has the following static methods that can be used by developers to manage

lookup lists, email notifications, error handling, and feedback messaging.

The following methods are used to retrieve a List of name/value pairs needed for drop-down lists

or to decode an id. The objects returned in the list are of type

org.openecomp.fusion.domain.Lookup which has two properties: value and label. When these

methods are called, a SQL statement is constructed and ran based on the passed parameters. The

list that is returned is cached in memory unless the getLookupListNoCache method is called.

To remove a cached list, one needs to call the method removeLookupListsFromCache and pass

a key representing the SQL that was run.

The key is of the form: dbTable + "|" + dbValueCol + "|" + dbLabelCol + "|" + dbFilter +

"|" + dbOrderBy.

 public static List getLookupList(String dbTable, String dbValueCol, String

dbLabelCol, String dbFilter, String dbOrderBy)

 public static List getLookupList(String dbTable, String dbValueCol, String

dbLabelCol)

 public static List getLookupListNoCache(String dbTable, String dbValueCol,

String dbLabelCol, String dbFilter, String dbOrderBy)

 public static synchronized void removeLookupListsFromCache(String

keyStartsWith)

The following methods go a step further than the ones above. A call to these methods will either

find a label in a List for the indicated value, or build a query based on the passed

parameters, cache the results, and return a label for the indicated value.

 public static String lookupValueLabel(String value, List lookupList)

 public static String lookupValueLabel(String codeValue, String dbTable, String

dbValueCol, String dbLabelCol,String dbFilter, String dbOrderBy)

 public static String lookupValueLabel(String codeValue, String dbTable, String

dbValueCol, String dbLabelCol

The following methods are used to send emails from the FUSION platform. These methods vary

based on supplied values, whether an attachment needs to be emailed, and MIME type.

 public static void notify(String message, String to, String from, boolean

contentTypeHtml)

 public static void notify(String message, String to, String from, String subject,

boolean contentTypeHtml)

 public static void notify(String message, String to, String from, String subject,

String cc, String bcc, boolean contentTypeHtml)

 public static void notify(String message, String[] to, String from, String subject,

String[] cc, String[] bcc, boolean contentTypeHtml)

 public static void notifyWithAttachments(String message, String[] to, String from,

String subject, String[] cc, String[] bcc, List mailAttachments, boolean

contentTypeHtml)

The following methods are used to add feedback messaging content, get feedback messages, and

check for feedback messages of a certain type.

 public synchronized static Vector getFeedback(String userSessionId, boolean

removeMessages)

 public synchronized static Vector getFeedback(String userSessionId) public

synchronized static void removeFeedback(String userSessionId)

 public synchronized static boolean hasError(String userSessionId)

 public synchronized static boolean hasWarning(String userSessionId)

 public synchronized static boolean hasSuccess(String userSessionId)

 public synchronized static void addFeedback(String userSessionId,

FeedbackMessage message)

The following method is used to the get the current user’s session

 public static HttpSession getSession(HttpServletRequest request)

The following methods are used to the get access to FUSION’s CacheManager. The

CacheManager is an implementation of Java Caching System (JCS) which is a proven caching

mechanism that can cache data in memory, to disk, in a clustered server environment, or

distributed environment.

 public static AbstractCacheManager getCacheManager()

 public static boolean isCacheManagerAvailable()

Application Configuration

System Properties

We maintain our static values like database information and menu setting in system.properties

file, which is located in quantum/war/WEB-INF/conf.

In order to get the values from the properties file, we create a java class, SystemProperties.java.

Simply call the java class to get the values stored in the properties.

For example, in HibernateConfiguration.java:

If there are multiple properties fields, simply add the path in SystemProperties.java by

using @PropertySource annotation.

Data Access Utilities

Data Access Service

We are using Hibernate to access the DB. Hibernate mapping for core SDK mapping is

maintained in Fusion.hbm.xml. The definition is done in HibernateCofiguration

OpenECOMP Portal SDK provides the following services for your use during development:

DataAccessService: is used to execute any HQL, native SQL select or update queries. It also has

services to access the hibernate objects.

Data Access Service methods: Gets an object of the domainClass having the indicated id. If

none exists, a new instance of the domain class is returned.

 DomainVo getDomainObject(Class domainClass, Serializable id);

Deletes the instance domainObject passed to the method from the database.

 void deleteDomainObject(DomainVo domainObject);

Deletes a set of records from the table represented by domainClass having the specified

whereClausecriteria from the database.

 void deleteDomainObjects(Class domainClass, String whereClause);

Inserts or updates the corresponding record in the database represented by instance

domainObject.

 void saveDomainObject(DomainVo domainObject);

the domain service provides that following get list method(s) that can retrieve a list of objects

representing rows from a table that domainClass maps to. If no filter is provided, all rows of the

http://hibernate.org/orm/

table will be retrieved. In general, Hibernate named queries should be used instead of these

methods because they are quicker and cleaner to implement.

 List getList(Class domainClass, List filter, String orderBy); //List of QueryFilter

objects used to filter

 List getList(Class domainClass, List filter, int fromIndex, int toIndex, String

orderBy); //List of QueryFilter

 objects List getList(Class domainClass, String filter, String orderBy); //HQL filter

 List getList(Class domainClass, String filter, int fromIndex, int toIndex, String

orderBy); //HQL Filter

The following methods run native SQL queries that return a list of Hibernate domain objects.

The executeQuery method runs the SQL specified and returns a list of domainClass objects. A

subset of rows can be returned by providing the fromIndex and toIndex parameters. The

executeNamedQuery method runs the query specified by queryName defined in a Hibernate

mapping file and returns a list of objects specified by the named query. A Map of params or the

subset of rows may be passed to the named query if needed.

 List executeSQLQuery(String sql, Class domainClass, HashMap

additionalParams);

 List executeSQLQuery(String sql, Class domainClass, Integer fromIndex, Integer

toIndex, HashMap additionalParams);

 List executeQuery(String sql, HashMap additionalParams);

 List executeQuery(String sql, Integer fromIndex, Integer toIndex, HashMap

additionalParams);

 List executeNamedQuery(String queryName, Integer fromIndex, Integer toIndex,

HashMap additionalParams);

 List executeNamedQuery(String queryName, Map params, HashMap

additionalParams);

 List executeNamedQuery(String queryName, Map params, Integer fromIndex,

Integer toIndex, HashMap additionalParams);

 List executeNamedQueryWithOrderBy(Class entity, String queryName, Map

params, String

_orderBy, boolean asc, Integer fromIndex, Integer toIndex, HashMap additionalPar

ams);

 List executeNamedCountQuery(Class entity, String queryName, String

whereClause, Map params);

 List executeNamedQuery(Class entity, String queryName, String whereClause, Map

params, Integer fromIndex, Integer toIndex, HashMap additionalParams);

 List executeNamedQueryWithOrderBy(Class entity, String queryName, String

whereClause, Map

params, String _orderBy, boolean asc, Integer fromIndex, Integer toIndex, HashMa

p additionalParams);

 int executeUpdateQuery(String sql, HashMap additionalParams) throws

RuntimeException;

 int executeNamedUpdateQuery(String queryName, Map params, HashMap

additionalParams) throws RuntimeException;

 void synchronize(HashMap additionalParams) //does hibernate flush

Transactions

The OpenECOMP Portal uses a HibernateTransactionManager and declarative transaction

management via Spring Annotation to demarcate transactions for the specified FUSION service

calls. Put @Transaction for the specified FUSION service calls to tell Spring to insert

transaction management code into the bytecode. The OpenECOMP Portal

uses @EnableTransactionManager annotation to enable Spring’s annotation-driven transaction

management capability. It

configured SessionFactory and TransactionManager in com/org.openecomp./fusion/core/con

fig/HibernateConfiguration

If you have new methods that require transactions, simply add @Transactional annotation

above methods. Transaction propagation is handled automatically.

Sample Pages / Controllers

Spring Based Controllers

Create an ecomp/jsp folder under WEB-INF

1. Put all the jsp files into the jsp folder.

2. Then define the page definition to extend ebz_template under definitions.xml (optional)

3. Put all the new java classes after this package: org.openecomp.fusionapp.ecomp

4. Create a controller class.

For pages that require a user’s access rights, you need to extend RestrictedBaseController.

Once the controller extends RestrictedBaseController, every time a user tries to access the

page, ResourceInterceptor will check to see if the user has the right to access the current page.

If user does not has right to access the page, it will throw an exception.

For pages that do not require a user’s access rights, you need to extend

UnRestrictedBaseController.

1 Create URL mapping in Spring Controller(UserProfileController) (for example : value =

{"/user_profile" }, method = RequestMethod.GET)

2 Add entry to definition.xml for view:

URL starts with with “/user_profile” will go to user_profile.jsp which is our main layout,

user_profile.jsp is embedded in ebz_template which has components like header, footer, left

menu and so on.

3 In user_profile.jsp, defined angular controller which includes page behavior and method in

script like this:

Angularized Controllers

New angular single page(No page refresh on page change) work flow

1 Create URL mapping in Spring Controller(AngularAdminController) (for example :

@RequestMapping(value = {"/admin" }, method = RequestMethod.GET)

2 Add entry to definition.xml for view (<definition name="admin"

template="/app/fusion/scripts/view-models/admin-page/admin.html"/>). All the URL starts

with with “/admin” will go to admin.html which is our main layout. ng-view is an Angular

directive that will include the template of the current route in the main layout file. In plain

words, it takes the file we want based on the route and injects it into our main layout

(admin.html)

3 In admin.html, we have a content div (<div ng-view></div>) to place our rendered pages

when URL changes.

4 Create the angular module and controller in JavaScript (app.js and specific controller js for

each page), include these js files in admin.html.

Method Path
Server side method

description

GET /roles

getAvailableRoles()

RESTful service method to fetch

available roles

GET /roles

getAvailableRoles()

RESTful service method to fetch

available roles

GET /user/{loginId}/roles

getUserRoles(java.lang.String

loginId)

RESTful service method to fetch

individual user's roles using

user's loginId

POST /user

pushUser(java.lang.String

userJson)

RESTful service method to save

new user - expects user details

in json string

POST /user/{loginId}

editUser(java.lang.String

loginId, java.lang.String

userJson)

RESTful service method to edit

existing user - expects user

details in json string

POST

/user/{loginId}/roles

pushUserRole(java.lang.String

loginId, java.lang.String

rolesJson)

RESTful service method to save

user roles using user's login Id

and details in roles Json string

GET /user/{loginId}
getUser(String loginId)

http://docs.angularjs.org/guide/module
http://docs.angularjs.org/guide/dev_guide.mvc.understanding_controller

5 Since we are making a single page application and we don’t want any page refreshes, we’ll use

Angular’s routing capabilities. Let’s look in our Angular file and add to our application. We will

be using $routeProvider in Angular to handle our routing. This way, Angular will handle all of

the magic required to go get a new file and inject it into our layout.

Create adminController.js which includes routes info,

As you can see by the configuration, you can specify the route, the template file to use, and

even controller. This way, each part of our application will use its own view and Angular

controller. By default, we put role_list.html as our home page.

6 Now we can test this single page angular. Just type in the following URLs in your browser and

you will see the pages changes without refreshing whole page(change the URL based on your

need).

RESTful service method to fetch

one user

GET /users

getUsers()

RESTful service method to fetch

all users

http://docs.angularjs.org/api/ngRoute.$routeProvider

REST APIs Exposed for Admin User

Management

Service APIs

Examples:

1. URL: http://localhost:8080/OpenECOMP_app/api/roles

Ouput:

[

{"id":1992,"name":"Document Library Admin","active":true,"priority":2},

{"id":1991,"name":"Document Library Users","active":true,"priority":4},

{"id":16,"name":"Standard User","active":true,"priority":5},

{"id":1,"name":"System Administrator","active":true,"priority":1},

{"id":5012,"name":"Test Role 7","active":false,"priority":7},

{"id":5002,"name":"Test role","active":false,"priority":null},

{"id":250,"name":"iTracker Support","active":true,"priority":null},

{"id":200,"name":"iTracker User","active":true,"priority":null},

{"id":5000,"name":"test role 1","active":false,"priority":10},

{"id":5005,"name":"test rolr 5","active":false,"priority":null}

]

2. URL: http://localhost:8080/OpenECOMP_app/api/user/mt2061/roles

Ouput:

[

{"id":16,"name":"Standard User","active":true,"priority":5},

{"id":1,"name":"System Administrator","active":true,"priority":1}

]

http://localhost:8080/ecomp_app/api/roles
http://localhost:8080/quantum/roles
http://localhost:8080/ecomp_app/api/user/mt2061/roles
http://localhost:8080/quantum/roles

3. URL: http://localhost:8080/OpenECOMP_app/api/user/mt2061 (Post)

Input:

{

"orgId": null,

"firstName": "DOE",

"lastName": "JOHN",

"phone": "+1 55555555",

"fax": null,

"email": "doe@openecom.org",

"hrid": "9999999",

"orgUserId": "jd9999",

"address1": "100 South Main Street",

"address2": "NA",

"city": "Anytown",

"state": "ST",

"zipCode": "99999",

"managerAttuid": "xy12345",

"locationClli": "XXXXXXXX",

"departmentName": "TECHNOLOGY",

"company": "Open ECOMP Inc.",

"jobTitle": "TECHNICAL ENGINEER",

"loginId": "jd9999",

"active": true

}

 Output:

{

"error": "{"response":"edit user success."}"

}

http://localhost:8080/ecomp_app/api/user/mt2061
mailto:talasila@research.att.com

4. URL: http://localhost:8080/OpenECOMP_app/api/user/{loginId}/role (push)

E.g. See the org.openecom.fusion.core.domain.Role. id is the same as returned

from getAvailableRoles

Input:

{"16":"Standard User"}

Output:

{

"error": "{"response":"push user role success."}"

}

5. URL: http://localhost:8080/OpenECOMP_app/api/user/{loginId}/roles (get

via getUserRoles())

Output:

[

{"id":1992,"name":"Document Library Admin"},

{"id":1991,"name":"Document Library Users"},

{"id":16,"name":"Standard User"}

]

http://localhost:8080/ecomp_app/api/user/%7bloginId%7d/role
http://localhost:8080/ecomp_app/api/user/%7bloginId%7d/roles

6. URL: http://localhost:8080/OpenECOMP_app/api/user/mt2061 (get via getUser())

Output:

{

"orgId": null,

"firstName": "DOE",

"lastName": "JOHN",

"phone": "+1 55555555",

"fax": null,

"email": "doe@openecom.org",

"hrid": "9999999",

"orgUserId": "jd9999",

"address1": "100 South Main Street",

"address2": "NA",

"city": "Anytown",

"state": "ST",

"zipCode": "99999",

"managerAttuid": "xy12345",

"locationClli": "XXXXXXXX",

"departmentName": "TECHNOLOGY",

"company": "Open ECOMP Inc.",

"jobTitle": "TECHNICAL ENGINEER",

"loginId": "jd9999",

"active": true

}

http://localhost:8080/ecomp_app/api/user/mt2061
mailto:talasila@research.att.com

7. URL: http://localhost:8080/OpenECOMP_app/api/users (get via getUsers())

[

{

"orgId": null,

"firstName": "DOE",

"lastName": "JOHN",

"phone": "+1 55555555",

"fax": null,

"email": "doe@openecom.org",

"hrid": "9999999",

"orgUserId": "jd9999",

"address1": "100 South Main Street",

"address2": "NA",

"city": "Anytown",

"state": "ST",

"zipCode": "99999",

"managerAttuid": "xy12345",

"locationClli": "XXXXXXXX",

"departmentName": "TECHNOLOGY",

"company": "Open ECOMP Inc.",

"jobTitle": "TECHNICAL ENGINEER",

"loginId": "jd9999",

"active": true

"roles":

[{

"id": 16

"name": "Standard User"

}]

}

{

"orgId": null,

"firstName": "ROE",

"lastName": "JANE",

"phone": "+1 55555556",

"fax": null,

"email": "roe@openecom.org",

"hrid": "9999999",

"orgUserId": "jr9999",

"address1": "100 South Main Street",

"address2": "NA",

"city": "Anytown",

"state": "ST",

"zipCode": "99999",

"managerAttuid": "xy12345",

"locationClli": "XXXXXXXX",

http://localhost:8080/ecomp_app/api/users
mailto:talasila@research.att.com
mailto:talasila@research.att.com

"departmentName": "TECHNOLOGY",

"company": "Open ECOMP Inc.",

"jobTitle": "TECHNICAL ENGINEER",

"loginId": "jr9999",

"active": true

"roles":

[{

"id": 1991

"name": "Document Library Users"

}

{

"id": 1992

"name": "Document Library Admin"

}

{

"id": 16

"name": "Standard User"

}]

}

]

Visualization & Productivity Tools

Widget Development API

Key widget concepts

1. Widgets will be hosted in the source applications.The OpenECOMP Portal

dashboard will use iframes to embed widgets hosted and served by source

applications. Source applications = OpenECOMP Portal on-boarded applications.

2. Widgets will be able to interact with each other, making it necessary that Widget

Registration is also part of the Application Onboarding / Registration process.

3. Widget-to-Widget communication will be based on well-defined contracts

managed and defined in the OpenECOMP Portal. Users should be able to define

these contracts on the Widgets Registration screen.

Widgets on the portal dashboard

A user logged in will be presented with a dashboard which will have two switchable

views: Widgets and Applications

1. Dashboard physical appearance:

1. Widgets View: Shows all widgets grouped by applications and sorted in

alphabetical order within each group. A Widget in this view can be

interacted with – In other words, it will not be an image but an interact-

able UI component. This will be the default selected tab on the landing

page / dashboard.

2. Applications View:User can click on a second tab ‘Applications’ to see

all applications he/she have access to. It is based on the user’s access to

the application. Each application is represented by a thumbnail (I

recommend we start calling this a Thumbnail going forward to

differentiate it from the Widgets described above). {This is the existing

dashboard view}

2. Dashboard preferences: The user should also be able to define various

preferences. A few are mentioned below; this item is open for suggestions.

1. Assign an ordering to each application. If no ordering is specified, a

default alphabetical order will be used.

2. Assign an ordering to each widget within the Application group (this will

override the default alphabetical order).

3. Use an automatic, dynamic ordering based on the user's most recent

interactions.

4. Other more comprehensive orderings can be added later.

3. Other dashboard requirements

1. One Application can have zero or more widgets. If a user doesn't have

access to widgets of any application – the Widgets view is empty – the

default view should be Applications, not Widgets.

SDK Database Schema

This document describes the schemata for the tables in the SDK Database. Most of these table

are prefixed by a code describing the table's general function.

 <SECTION redacted pending creation of Open Source version>

