OpenECOMP SDC

Developer Guide

Copyright © 2017 AT&T Intellectual Property. All rights reserved.

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); you may not use this
documentation except in compliance with the License.

Product: OpenECOMP SDC

Title: Developer Guide
Product version: v1.0
Publication date: 01/30/2017
Reference number: OECSDCDEV170130
Revision number 1
Disclaimer

Copyright © 2017 AT&T Intellectual Property.
Copyright © 2017 Amdocs.
All rights reserved.

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); you may not
use this documentation except in compliance with the License.

You may obtain a copy of the License at

https://creativecommons.org/licenses/by/4.0/

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

ECOMP and OpenECOMP are trademarks and service marks of AT&T Intellectual Property

OpenECOMP SDCv1.0 Developer Guide

https://creativecommons.org/licenses/by/4.0/

Contents

1 Overview of SDC il 4
Technologies Used in SDC .. e 4
High-level architecture . .. 4
Data model OVerview ... 5

2 SDC PrOJECRS 6
ASACEESES PrOJ Ot 6
asdctool ProJeCt . .. 7
Catalog-be ProJeCt <o o 7
Catalog-dao ProJeCt .. 9
Catalog-fe ProJeCt 11
catalog-model project ... 12
COMMON-aPP-aPi PrOJeCt . 13

OpenECOMP SDCv1.0 Developer Guide

Overview of SDC

The SDC (service, design, and creation) application provides service designers with a GUI interface
for creating, testing, and distributing services.

SDC serves as a warehouse of building blocks provided by different vendors. From these building
blocks, designers can create any required service. Once those services are created, they can be
used by different applications to instantiate these services.

Technologies used in SDC
SDC utilizes the following technologies:

o Back-end technology
e Java 8
e JUnit
o Cassandra
o Elastic Search
o Titan Graph DB
o Kibana
o Jetty
e Spring
¢ Maven

o Front-end technology
o TypeScript
o AngularlS
« Cytoscape.js
e NPM
e Grunt
« Bower

High-level architecture

The following diagram shows the high-level relationship between the system components.

OpenECOMP SDCv1.0 Developer Guide

Cassandra

Jetty FE

The SDC architecture uses the Jetty server as an application server.

o The Jetty front end:
o supplies the static content of web pages, and all resources that required by the GUL.
o serves as a proxy for the REST API requests coming from the GUI.

Every request originating from the GUI is passed to the Jetty front-end server before it is
executed.

o The Jetty back end contains all the logic for the SDC.
SDC uses two storage components: Elastic Search (ES) and Cassandra.

o Elastic Search is used to index the auditing data received from different operations in the
SDC.

This information can then be analyzed with Kibana. The Kibana server enables statistical
analysis of the operations done, according to the business logic.

o Cassandrais used to store auditing data, artifacts and data model objects.

Data model overview
SDC uses a graph-based data model. The implementation is based on Titan's Graph Database.

Each object in the system is a graph vertex. From the vertex, we use edges to connect to edition
objects where the edges represent the relationship between two objects. The full business logic
object is represented as a subgraph.

Titan uses Cassandra as storage.

OpenECOMP SDC V1.0 Developer Guide 5

SDC projects

The following topics describe the projects included in the SDC application:

o "asdc-tests project" below

o "asdctool project" on the next page

o '"catalog-be project" on the next page
o '"catalog-dao project" on page 9

o '"catalog-fe project” on page 11

o '"catalog-model project" on page 12

e ''common-app-apiproject” on page 13

asdc-tests project

This project holds our testing infrastructures. It is a collection of all the integration tests available in
a project. Project packages separate the tests according to their subject.

The project uses TestNG as a testing framework. The collection of tests in this project are dedicated
for testing the back-end application. You must have a working SDC environment to use these tests.

The project compiles to a JAR file that can be executed to run the tests, according to a predefined
configuration.

The following table shows the project structure, and describes the included packages.

src
main
java
(contains all integration
tests for SDC)
e org.openecomp.sdc.ci.tests - packages are separated
according to the subject of the tests.
e org.openecomp.sdc.externalApis
e org.openecomp.sdc.post
resources
e conf—contains all the test configurations.
e scripts -the start test script.
o testSuits —the TestNG test suite xml
test
resources

OpenECOMP SDCv1.0 Developer Guide

asdctool project
This project:

o Comprises a collection of stand-alone utilities used in the application. Utilities included in the
project are export/import utils, and data migration utilities.

o Utilizes the application's business logic as the basis for all operations it provides.

« Compiles into a JAR file that can be executed with parameters to access the different
functionalities that it provides.

The following table shows the project structure, and describes the included packages.

src
main
java
e org.openecomp.sdc.asdctool.impl/—contains the logic for the different
operations that the ASDC tool provides.
e org.openecomp.sdc.asdctool.main —the main classes which enable
users to call different functionality in the ASDC tool.
e org.openecomp.sdc.asdctool.servlets
resources

» config —a configuration example for the asdctool.
o scripts —sh script wrappers that allow executing the main class.
o es-resources — Python scripts for the migration of Elastic Search data

catalog-be project

This project contains all the business logic of the application. It has other projects as dependencies,
where each project provides a different functionality. The project contains the different servlets
that expose the SDC's REST API’s.

The project compiles into a WAR file.

The following table shows the project structure, and describes the included packages.

src
main
java
e org.openecomp.sdc.be.auditing —Contains the logic for auditing
executed operations.

e org.openecomp.sdc.be.components.clean — Contains the task
manager, which removes deleted components from the system

OpenECOMP SDCv1.0 Developer Guide

OpenECOMP SDCv1.0

after they are no longer needed.

org.openecomp.sdc.be.components.distribution.engine —
Contains the logic of the distribution mechanism for sending
notifications that services are available for distribution.
org.openecomp.sdc.be.components.impl —Contains the logic for
handling operations on the different SDC components, such as
services, resources ,products, artifacts, and so on.
org.openecomp.sdc.be.components.lifecycle — Manages the
transition between different component lifecycle states available in
SDC, such as: check-in, checkout, and certified.
org.openecomp.sdc.be.datamodel — Contains utilities for working
with data model objects.

org.openecomp.sdc.be.distribution — Includes the servlets and
business logic which handle requests from the SDC distribution
client for distributing services and their artifacts.
org.openecomp.sdc.be.ecomp — Contains the logic for managing
SDC users using the OpenECOMP Portal.
org.openecomp.sdc.be.externalapi.servlet — Contains servlets that
expose SDC's APIs externally. These APls are used by different
applications to access and query the SDC catalog.
org.openecomp.sdc.be.filters — Contains the following SDC filters:

« an authentication filter used to validate the credentials of

incoming requests to the external APls.

« afilter for logging incoming requests.

« afilter to deny requests in case the application is unavailable.
org.openecomp.sdc.be.impl—set of general utilities.
org.openecomp.sdc.be.info — Includes the POJO (Plain Old Java
Object) object used in the SDC for passing parameters.
org.openecomp.sdc.be.listen — configuration listener used to pick
up the configuration files.
org.openecomp.sdc.be.monitoring — Contains a proxy servlet
which passes requests to the Elastic Search.
org.openecomp.sdc.be.servlets —Contains the internal API servlets
which expose SDC functionality to the GUI.
org.openecomp.sdc.be.switchover.detector — Contains the
switchover mechanism which is activates if an SDC site becomes
unavailable.
org.openecomp.sdc.be.tosca —Contains the logic and model
objects which generate the CSAR (Cloud Service ARchive file).

Developer Guide

resources

test

Java

resources

org.openecomp.sdc.be.user — Contains the logic for user
management in SDC.

org.openecomp.sdc.common.transaction —an infrastructure for
transaction management across the different data storages,
currently not in use.

config —the configuration file for the SDC back-end application

import.tosca —the normative types which need to be preloaded
into the system.

Scripts—a set of Python scripts dedicated to the import of the base
entities needed for the system.

Swagger—the Swagger Ul

webapps —the WAR configuration and the Swagger Ul static
content.

The different Junit tests separated by packages according to the logic they
are testing.

Different file examples used in Junit and configurations used for testing.

catalog-dao project

The catalog-dao (DAO stands for Data Access Object) project contains all the functionality needed
to manage the different persistence layers used in the SDC. SDC uses three types of persistent

layers:

1. Titan Graph DB: the Titan Graph DB allows us to store data as a graph. Our data model entities
are represented as a collection of vertices and edges. The vertices represent data and the edges
represent the connection between the data. The Titan DB itself is a client application and uses
the Cassandra DB for the actual persistency.

2. Cassandra: Cassandra is used for storing auditing events registered during the system
operation, artifact files as binary data and we use Cassandra as a cache for our data model, we
de-serialize our objects and store them as binary date in the Cassandra for fast retrieval.

3. Elastic Search: we use Elastic Search as a secondary storage site for our auditing events. By
storing them in here we are able to use Kibana to analyze the operations that are performed on

the system.

Note: catalog-dao contains code parts used for Neo4j persistence; Neo4j is a graph DB which in the
future may replace Titan. In the current version Neo4j is not deployed and the code is not used.

The project compiles into a JAR file which is used in the creation of the SDC Backend WAR file.

The following table shows the project structure, and describes the included packages.

OpenECOMP SDCv1.0

Developer Guide

src
main

java

test

java

OpenECOMP SDCv1.0

org.openecomp.sdc.be.dao.api—contains the Elastic Search base for the
different operations and base DAO for the No4;j .

org.openecomp.sdc.be.dao.cassandra —the package contains the
Cassandra client used by the DAO and the DAO implementation for the
different operations with the Cassandra.

org.openecomp.sdc.be.dao.cassandra.schema —the package contains
the logic and the date for the creation of the Cassandra keyspaces,
tables and indexes used by SDC.

org.openecomp.sdc.be.dao.es —the package contains the elastic search
client used by the Elastic Search DAO.

org.openecomp.sdc.be.dao.graph —the package continues enemas and
objects representing graph entities.

org.openecomp.sdc.be.dao.impl —the package contains the extended
Elastic Search DAO and the Neo4j DAO.

org.openecomp.sdc.be.dao.model —the package contains objects
representing different Elastic Search results.

org.openecomp.sdc.be.dao.neodj —the package includes the Neo4j
client and its modeling objects. The package also includes the enum
describing the different properties on the graph, their type and index.
On application startup the graph indexes are defined according to this
enum.

org.openecomp.sdc.be.dao.rest —the package contains the http client
and its configuration object. The HTTP client is used by the Neo4j client
for is communication with the server.

org.openecomp.sdc.be.dao.titan —the package contains the Titan client
and the Titan DAO used as a base for all operations on the graph.

org.openecomp.sdc.be.dao.utils —the package contains the utilities and
constants used by the different DAQO’s.

org.openecomp.sdc.be.resources.api—the package contents are
deprecated and will be removed in future releases.

org.openecomp.sdc.be.resources.data —the package includes all the
data objects used for storing data in the different persistency layers.
Using the ORM (Object-Relational Mapping) style we map the objects to
the data store. The DAO layer uses this object throughout.

The different Junit tests separated by packages according to the logic they are

Developer Guide

10

testing
resources Different files used in Junit and configurations used for testing

catalog-fe project

This project contains the Frontend (FE) server logic. The Frontend is used as a proxy between the Ul
and the Backend server. AREST request sent from the Ul is directed to the Frontend server and
from there to the Backend.

The project compiles into a WAR file. During a full build process of SDC the Ul minified source will be
placed in the WAR file created for the FE.

The following table shows the project structure, and describes the included packages.

src

main

o org.openecomp.sdc.fe.client —the package contains a rest client that is
deprecated and will be removed in future releases.

o org.openecomp.sdc.fe.impl—the package contains model object used
by the rest client, the code is deprecated and will be removed in future
releases.

« org.openecomp.sdc.fe.listen —the package contains the configuration
listening responsible for reading the configuration on the startup of
the server.

java

« org.openecomp.sdc.fe.servlets —the package contains the servlets
responsible for the proxy functionality, health check and access to
index.html etc. The package also contains the logic responsible for
managing the application health check.

resources
config - the folder contains all the configuration needed for the Frontend
server execution.
scripts —the content of the folder is not in use and will be removed in next
release.

webapps —the folder contains the servlet mapping and the context
definition for the deployed WAR file. On a full build the Ul content will be
placed here in order to allow the web server to supply it.
jasmine- The folder contains the framework used by the Frontend EAM (Enterprise
standalone- Asset Management) to develop unit testing.
2.0.0
The different Junit tests separated by packages according to the logic they

java .
are testing

OpenECOMP SDCv1.0 Developer Guide 11

resources Different files used in Junit and configurations used for testing
spec The folder content is not in use and will be removed in future releases.

testScripts The folder content is not in use and will be removed in future releases

catalog-model project
This project is the connection layer between the business logic and the Dao.
The project contains the data model objects and the operations used to interact with them.

An operation is a set of logic that manipulates the persistent data according to the changes made
to the model.

The project compiles into a JAR file which is used in the creation of the SDC Backend WAR file.

The following table shows the project structure, and describes the included packages.

src
main
java
e org.openecomp.sdc.be.model - the package contains all the model
objects used through the SDC.

e org.openecomp.sdc.be.model.cache —the package contains the
cache implementation,cache model objects and the async workers
responsible for handling requests to the cache. We use a cache to
store the data model objects in their de-serialized form for fast
retrieval.

o org.openecomp.sdc.be.model.cache.jobs —the package contains
the different jobs that can be given to the workers working with
the cache. Each job represents a different operation (update,
delete add etc).

e org.openecomp.sdc.be.model.cache.workers —the package
contains the workers implementation. The workers are async task
runners.

» org.openecomp.sdc.be.model.category —the package contains the
model objects representing the different categories used to
describe resources/services/products.

e org.openecomp.sdc.be.model.heat —the package contains the
enum mapping the different heat types and there validators and
converters.

» org.openecomp.sdc.be.model.operations.api—the package

OpenECOMP SDCv1.0 Developer Guide 12

contains all the interfaces for the operations.

e org.openecomp.sdc.be.model.operations.impl—the package
contains the implementation of all the different operations in sdc.
The operation class is to aggregate all the operations needed to be
performed on the specific data model.

o org.openecomp.sdc.be.model.operations.utils —the package
contains utilities used by the different operations.

e org.openecomp.sdc.be.model.tosca.constraints —the package
contains the constraints objects and exceptions used on
constraints validation errors. Which are used to set constraints on
properties.

e org.openecomp.sdc.be.model.tosca.converters —the package
contains converters for converting property values into objects.

e org.openecomp.sdc.be.model.tosca.validators

e org.openecomp.sdc.be.model.tosca.version

e org.openecomp.sdc.be.unittests.utils

test
java The different Junit tests separated by packages according to the logic
they are testing.

resources Different files used in Junit and configurations used for testing

common-app-api project

This project contains a set of general utilities and shared logic that is needed in the Frontend and
Backend servers.

The project compiles into a JAR file that is referenced by both servers during their WAR file creation.

src
main
java
o org.openecomp.sdc.be.config —the package contains the logic for
reading and managing the different configuration files used in the
Backend server. The configuration is mapped in to objects on startup.
The objects are accessible anywhere in the application.

e org.openecomp.sdc.be.monitoring —the package holds the Backend
service responsible for collecting matrices regarding the system and
sending them to the monitoring end point for logging into Elastic
Search.

e org.openecomp.sdc.common.api—the package contains a number of

OpenECOMP SDCv1.0 Developer Guide 13

OpenECOMP SDCv1.0

general purpose enum’s and POJO objects used in the SDC.

org.openecomp.sdc.common.config —the package contains enum’s and
logic used for logging OpenECOMP notifications which occur in the SDC.

org.openecomp.sdc.common.datastructure —the package contains
general purpose data structures.

org.openecomp.sdc.common.impl—the package contains the logic
used for reading the configuration stored as YAML files, in addition the
package contains the implementation of the configuration change
listener that in the future will allow for making changes to the SDC
configuration at run time.

org.openecomp.sdc.common.kpi.api—the package contains the KPI
implementation. For the current release the KPI is not collected but the
APl is already called at the needed points.

org.openecomp.sdc.be.model.operations.impl—the package contains
the implementation of all the different operations in SDC. The operation
class is used to aggregate all the operations needed to be performed on
the specific data model.

org.openecomp.sdc.common.listener —the package contains the
context listener used for communication between the business logic and
the servlets.

org.openecomp.sdc.common.monitoring —the package contains logic
for retrieving the monitoring data and storing the data in a POJO sent to
the monitoring end point.

org.openecomp.sdc.common.rest —the package contains an HTTP client
and a wrapper layer for easier use of the client.

org.openecomp.sdc.common.servlets —the package contains a base
implementation of the servlet used in the Frontend and Backend server.

org.openecomp.sdc.common.util — the package contains utilities used
in the comman-app-api package and in the other projects.
org.openecomp.sdc.exception- the package contains common
exceptions used in both SDC servers.

org.openecomp.sdc.fe.config —the package contains the logic for
reading and managing the different configuration files used in the
Frontend server. The configuration is mapped in to objects on startup.
The objects are accessible anywhere in the application.
org.openecomp.sdc.fe.monitoring — the package holds the Frontend
service responsible for collecting matrices regarding the system and
sending them to the monitoring end point for logging into Elastic
Search.

Developer Guide

14

test

The different Junit tests separated by packages according to the logic they are

java .
testing.

resources Different files used in Junit and configurations used for testing

OpenECOMP SDCv1.0 Developer Guide

15

	1 Overview of SDC
	Technologies used in SDC
	High-level architecture
	Data model overview

	2 SDC projects
	asdc-tests project
	asdctool project
	catalog-be project
	catalog-dao project
	catalog-fe project
	catalog-model project
	common-app-api project

