
Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
You may obtain a copy of the License at https://creativecommons.org/licenses/by/4.0/

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language

governing permissions and limitations under the License.

ECOMP and OpenECOMP are trademarks and service marks of AT&T Intellectual Property

VNF
Heat Template Requirements

for
OpenECOMP

Revision 1.0

Revision Date 2/1/2017

https://creativecommons.org/licenses/by/4.0/

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page i

Document Revision History

Date Revision Description

2/1/2017 1.0 Initial publication of VNF Heat Template Requirements for
OpenECOMP

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page ii

Table of Contents

1. Introduction ... 1

1.1 Program and Document Structure .. 1

1.2 Intended Audience .. 1

1.3 Scope .. 1

1.4 VNF Modularity Overview ... 2

2. General Guidelines ... 2

2.1 Filenames ... 2

2.2 Valid YAML Format ... 3

2.3 Parameter Categories & Specification .. 3

2.4 Use of Heat Environments .. 6

2.5 Independent Volume Templates ... 6

2.6 Nested Heat Templates .. 8

3. Networking .. 8

3.1 External Networks ... 8

3.2 Internal Networks .. 9

3.3 IP Address Assignment .. 9

4. Parameter Naming Convention .. 10

4.1 {vm-type} ... 10

4.2 {network-role} .. 10

4.3 Resource: OS::Nova::Server - Parameters ... 10

4.4 Resource: OS::Nova::Server - Metadata ... 13

4.5 Resource: OS::Neutron::Port - Parameters ... 15

4.6 Resource Property: name .. 24

4.7 Output Parameters ... 24

5. Heat Template Constructs .. 25

5.1 External References ... 25

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page iii

5.2 Heat Files Support (get_file) ... 26

5.3 Use of Heat ResourceGroup .. 26

5.4 Key Pairs .. 27

5.5 Security Groups .. 28

5.6 Anti-Affinity and Affinity Rules .. 28

6. Design Pattern: VNF Modularity ... 29

7. Scaling Considerations ... 32

8. High Availability .. 33

9. Resource Data Synchronization ... 33

Appendix A - Glossary .. 35

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page iv

Definitions
Throughout the document, these terms have the following meaning:

MUST This word, or the terms "REQUIRED" or "SHALL", mean that the definition is an absolute
requirement of the specification.

MUST NOT This phrase, or the phrase "SHALL NOT", mean that the definition is an absolute prohibition
of the specification.

SHOULD This word, or the adjective "RECOMMENDED", mean that there may exist valid reasons in
particular circumstances to ignore a particular item, but the full implications must be understood and
carefully weighed before choosing a different course.

SHOULD NOT This phrase, or the phrase "NOT RECOMMENDED" mean that there may exist valid
reasons in particular circumstances when the particular behavior is acceptable or even useful, but the full
implications should be understood and the case carefully weighed before implementing any behavior
described with this label.

MAY This word, or the adjective "OPTIONAL", mean that an item is truly optional. One vendor may
choose to include the item because a particular marketplace requires it or because the vendor feels that it
enhances the product while another vendor may omit the same item. An implementation which does not
include a particular option must be prepared to interoperate with another implementation which does
include the option, though perhaps with reduced functionality. In the same vein an implementation which
does include a particular option must be prepared to interoperate with another implementation which does
not include the option (except, of course, for the feature the option provides.)

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 1

1. Introduction
This reference document is the VNF Heat Template Requirements for OpenECOMP and supports the
first release of OpenECOMP.

1.1 Program and Document Structure
This document is part of a hierarchy of documents that describes the overall Requirements and
Guidelines for OpenECOMP. The diagram below identifies where this document fits in the hierarchy.

OpenECOMP Requirements and Guidelines

VNF Guidelines for Network Cloud and OpenECOMP Future OpenECOMP
Subject Documents

VNF Cloud
Readiness

Requirements
for

OpenECOMP

VNF
Management
Requirements

for
OpenECOMP

VNF Heat
Template

Requirements
for

OpenECOMP

Future
VNF

Requirements
Documents

Future Requirements
Documents

Document Summary

VNF Guidelines for Network Cloud and OpenECOMP
• Describes VNF environment and overview of requirements

VNF Cloud Readiness Requirements for OpenECOMP
• Cloud readiness requirements for VNFs (Design, Resiliency, Security, and DevOps)

VNF Management Requirements for OpenECOMP
• Requirements for how VNFs interact and utilize OpenECOMP

VNF Heat Template Requirements for OpenECOMP
• Provides recommendations and standards for building Heat templates compatible with

OpenECOMP– initial implementations of Network Cloud are assumed to be OpenStack based.

1.2 Intended Audience
This document is intended for persons developing Heat templates that will be orchestrated by
OpenECOMP.

1.3 Scope
The first implementations of Network Cloud are assumed to be OpenStack based and thus OpenECOMP
will be supporting Heat Orchestration Templates, also referred to as Heat templates or Heat in this
document.

OpenECOMP requires the Heat Templates to follow a specific format. This document provides the
mandatory, recommended, and optional requirements associated with this format.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 2

In addition, the OpenStack version deployed in the Network Cloud may impose additional constraints on
the Heat. These constraints are not covered in this document.

1.4 VNF Modularity Overview
OpenECOMP supports a modular Heat design pattern, referred to as VNF Modularity. With this approach,
a single VNF may be composed from one or more Heat templates, each of which represents some subset
of the overall VNF. These component parts are referred to as “VNF Modules”. During orchestration,
these modules may be deployed incrementally to build up the complete VNF.

A Heat template can be either one of the following types of modules:

1. Base Module

2. Incremental Modules

3. Independent Cinder Volume Modules

The OpenECOMP Heat template naming convention must be followed (Section 2.1). The naming
convention identifies the module type.

A VNF must be composed of one “base” VNF module (also called a base module) and zero to many
“incremental” or “add on” VNF modules. The base module must be deployed first, prior to the add-on
modules.

A module can be thought of as equivalent to a Heat template, where a Heat template is composed of a
YAML file and an environment file (also referred to as an ENV file). A given YAML file must have a
corresponding environment file; OpenECOMP requires it.

A Heat template is used to create or deploy a Heat stack. Therefore, a module is also equivalent to a
Heat Stack.

OpenECOMP supports the concept of an optional, independent deployment of a Cinder volume via
separate Heat templates. This allows the volume to persist after VNF deletion so that the volume can be
reused on another instance (e.g. during a failover activity).

The scope of a volume module, when it exists, must be 1:1 with the VNF Module (base or add-on). A
single volume module must create only the volumes needed by a single VNF module (base or add-on).

These concepts will be described in more detail throughout the document. This overview is provided to
set the stage and help clarify the concepts that will be introduced.

2. General Guidelines
The Heat templates supported by OpenECOMP must follow the requirements enumerated in this section.

2.1 Filenames
In order to enable OpenECOMP to understand the relationship between Heat files, the following Heat file
naming convention must be followed.

• The file name for the base module Heat template must include “base” in the filename.

o Examples: base_xyz.yml or base_xyz.yaml; xyz_base.yml or xyz_base.yaml

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 3

• There is no explicit naming convention for the add-on modules.

o Examples: module1.yml or module1.yaml

• All Cinder volume templates must be named the same as the corresponding Heat template with
“_volume” appended to the file name.

o Examples: base_xyz_volume.yml or base_xyz_volume.yaml; xyz_base_volume.yml or
xyz_base_volume.yaml; module1_volume.yml or module1_volume.yaml (referencing the
above base module Heat template name)

• The file name of the environment files must fully match the corresponding Heat template filename
and have .env or .ENV extension.

o Examples: base_xyz.env or base_xyz.ENV; xyz_base.env or xyz_base.ENV;
base_xyz_volume.env or base_xyz_volume.ENV; module1.env or module1.ENV;
module1_volume.env or module1_volume.ENV (referencing the above base module Heat
template name)

• A YAML file must have a corresponding ENV file, even if the ENV file enumerates no parameters.
It is an OpenECOMP requirement.

2.2 Valid YAML Format
A Heat template (a YAML file and its corresponding environment file) must be formatted in valid YAML.
For a description of YAML, refer to the following OpenStack wiki:
https://wiki.openstack.org/wiki/Heat/YAMLTemplates

A Heat template must follow a specific format. The OpenStack Heat Orchestration Template (HOT)
specification explains in detail all elements of the HOT template format.
http://docs.openstack.org/developer/heat/template_guide/hot_spec.html

2.3 Parameter Categories & Specification

2.3.1 Parameter Categories
OpenECOMP requires the Heat template parameters to follow certain requirements in order for it to be
orchestrated or deployed. OpenECOMP classifies parameters into eight broad categories.

• OpenECOMP Metadata: OpenECOMP mandatory and optional metadata parameters in the
resource OS::Nova::Server.

o OpenECOMP dictates the naming convention of these Metadata parameters and must be
adhered to (See Section 4.4).

o Metadata parameters must not be enumerated in the environment file.
o The OpenECOMP Metadata are generated and/or assigned by OpenECOMP and

supplied to the Heat by OpenECOMP at orchestration time.

• OpenECOMP Orchestration Parameters: The data associated with these parameters are VNF
instance specific.

o OpenECOMP enforces the naming convention of these parameters and must be adhered
to (See Section 4).

https://wiki.openstack.org/wiki/Heat/YAMLTemplates
http://docs.openstack.org/developer/heat/template_guide/hot_spec.html

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 4

o These parameters must not be enumerated in the environment file.
o The OpenECOMP Orchestration Parameters are generated and/or assigned by

OpenECOMP and supplied to the Heat by OpenECOMP at orchestration time.

• VNF Orchestration Parameters: The data associated with these parameters are VNF instance

specific.

o While OpenECOMP does not enforce a naming convention, the parameter names should
include {vm-type} and {network-role} when appropriate. (See Section 4)

o These parameters must not be enumerated in the environment file.
o The VNF Orchestration Parameters Heat are generated and/or assigned by

OpenECOMP and supplied to the Heat by OpenECOMP at orchestration time.

• OpenECOMP Orchestration Constants: The data associated with these parameters must be

constant across all VNF instances.

o OpenECOMP enforces the naming convention of these parameters and must be adhered
to (See Section 4).

o These parameters must be enumerated in the environment file.

• VNF Orchestration Constants: The data associated with these parameters must be constant

across all VNF instances.

o While OpenECOMP does not enforce a naming convention, the parameter names should
include {vm-type} and {network-role} when appropriate. (See Section 4)

o These parameters must be enumerated in the environment file.

• OpenECOMP Base Template Output Parameters (also referred to as Base Template Output

Parameters): The output section of the base template allows for specifying output parameters
available to add-on modules once the base template has been instantiated. The parameter
defined in the output section of the base must be identical to the parameter defined in the add-on
module(s) where the parameter is used.

• OpenECOMP Volume Template Output Parameters (also referred to as Volume Template
Output Parameters): The output section of the volume template allows for specifying output
parameters available to the corresponding Heat template (base or add-on) once the volume
template has been instantiated. The parameter defined in the output section of the volume must
be identical to the parameter defined in the base or add-on module.

• OpenECOMP Predefined Output Parameters (also referred to as Predefined Output
Parameters): OpenECOMP will look for a small set of pre-defined Heat output parameters to
capture resource attributes for inventory in OpenECOMP. These parameters are specified in
Section 4.6.

The table below summarizes the Parameter Types. If the user is orchestrating a manual spin up of Heat
(e.g. OpenStack command line), the parameter values that OpenECOMP supplies must be enumerated
in the environment file. However, when the Heat is to be loaded into OpenECOMP for orchestration, the

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 5

parameters that OpenECOMP supplies must be deleted or marked with a comment (i.e., a “#” placed at
the beginning of a line).

Parameter Type Naming
Convention Parameter Value Source

OpenECOMP Metadata Explicit OpenECOMP
OpenECOMP Orchestration Parameters Explicit OpenECOMP
VNF Orchestration Parameters Recommended OpenECOMP
OpenECOMP Orchestration Constants Explicit Environment File
VNF Orchestration Constants Recommended Environment File

OpenECOMP Base Template Output
Parameters Recommended

Heat Output Statement for base,
OpenECOMP supplied to add-on
modules

OpenECOMP Volume Template Output
Parameters Recommended

Heat Output Statement for volume,
OpeneECOMP supplies to
corresponding module

OpenECOMP Predefined Output
Parameters

Explicit Heat Output Statement

Table 1 Parameter Types

2.3.2 Parameter Specifications

2.3.2.1 OpenECOMP METADATA Parameters
OpenECOMP defines four “metadata” parameters: vnf_id, vf_module_id, vnf_name, vf_module_name.
These parameters must not define any constraints in the Heat template, including length restrictions,
ranges, default value and/or allowed patterns.

2.3.2.2 OpenECOMP Base Template & Volume Template Output Parameters
The base template and volume template output parameters are defined as input parameters in
subsequent modules. When defined as input parameters, these parameters must not define any
constraints in the Heat template, including length restrictions, ranges, default value and/or allowed
patterns. The parameter name defined in the output statement of the Heat must be identical to the
parameter name defined in the Heat that is to receive the value.

2.3.2.3 OpenECOMP Predefined Output Parameters
These parameters must not define any constraints in the Heat template, including length restrictions,
ranges, default value and/or allowed patterns.

2.3.2.4 OpenECOMP Orchestration Parameters, VNF Orchestration Parameters, OpenECOMP
Orchestration Constants, VNF Orchestration Constants

OpenECOMP Orchestration Parameters, VNF Orchestration Parameters, OpenECOMP Orchestration
Constants, VNF Orchestration Constants must adhere to the following:

• All parameters should be clearly documented in the template, including expected values.

• All parameters should be clearly specified, including constraints and description.

• Numeric parameter constraints should include range and/or allowed values.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 6

• When the parameter type is a string and the parameter name contains an index, the index must
be zero based. That is, the index starts at zero.

• When the parameter type is a Comma Delimited List (CDL), the reference index must start at
zero.

• Default values must only be supplied in a Heat environment file to keep the template itself as
clean as possible.

• Special characters must not be used in parameter names, as currently only alphanumeric
characters and “_” underscores are allowed.

2.4 Use of Heat Environments
A YAML file must have a corresponding environment file (also referred to as ENV file), even if the
environment file defines no parameters. It is an OpenECOMP requirement.

The environment file must contain parameter values for the OpenECOMP Orchestration Constants and
VNF Orchestration Constants. These parameters are identical across all instances of a VNF type, and
expected to change infrequently. The OpenECOMP Orchestration Constants are associated with
OS::Nova::Server image and flavor properties (See Section 4.3). Examples of VNF Orchestration
Constants are the networking parameters associated with an internal network (e.g. private IP ranges) and
Cinder volume sizes.

The environment file must not contain parameter values for parameters that are instance specific
(OpenECOMP Orchestration Parameters, VNF Orchestration Parameters). These parameters are
supplied to the Heat by OpenECOMP at orchestration time. The parameters are generated and/or
assigned by OpenECOMP at orchestration time

2.5 Independent Volume Templates
OpenECOMP supports independent deployment of a Cinder volume via separate Heat templates. This
allows the volume to persist after VNF deletion so that they can be reused on another instance (e.g.
during a failover activity).

A VNF Incremental Module or Base Module may have an independent volume module. Use of separate
volume modules is optional. A Cinder volume may be embedded within the Incremental or Base Module
if persistence is not required.

If a VNF Incremental Module or Base Module has an independent volume module, the scope of volume
templates must be 1:1 with Incremental module or Base module. A single volume module must create
only the volumes required by a single Incremental module or Base module.

The following rules apply to independent volume Heat templates:

• Cinder volumes must be created in a separate Heat template from the Incremental and Base
Modules.

o A single volume module must include all Cinder volumes needed by the Incremental/Base
module.

o The volume template must define “outputs” for each Cinder volume resource universally
unique identifier (UUID) (i.e. OpenECOMP Volume Template Output Parameters).

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 7

• The VNF Incremental Module or Base Module must define input parameters that match each
Volume output parameter (i.e., OpenECOMP Volume Template Output Parameters).

o OpenECOMP will supply the volume template outputs automatically to the
bases/incremental template input parameters.

• Volume modules may utilize nested Heat templates.

Example (volume template):

In this example, the {vm-type} has been left as a variable. {vm-type} is described
in section 4.1. If the VM was a load balancer, the {vm-type} could be defined as
“lb”

parameters:
 vm-typevnf_name:
 type: string
 {vm-type}_volume_size_0:
 type: number
 ...

resources:
 {vm-type}_volume_0:
 type: OS::Cinder::Volume
 properties:
 name:
 str_replace:
 template: VNF_NAME_volume_0
 params:
 VNF_NAME: { get_param: vnf_name }
 size: {get_param: {vm-type}_volume_size_0}
 ...
 (+ additional volume definitions)

outputs:
 {vm-type}_volume_id_0:
 value: {get_resource: {vm-type}_volume_0}
 ...
 (+ additional volume outputs)

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 8

Example (VNF module template):

parameters:
 {vm-type}_name_0:
 type: string
 {vm-type}_volume_id_0:
 type: string
 ...

resources:
 {vm-type}_0:
 type: OS::Nova::Server
 properties:
 name: {get_param: {vm-type}_name_0}
 networks:
 ...
 {vm-type}_0_volume_attach:
 type: OS::Cinder::VolumeAttachment
 properties:
 instance_uuid: { get_resource: {vm-type}_0 }
 volume_id: { get_param: {vm-type}_volume_id_0 }

2.6 Nested Heat Templates
OpenECOMP supports nested Heat templates per the OpenStack specifications. Nested templates may
be suitable for larger VNFs that contain many repeated instances of the same VM type(s). A common
usage pattern is to create a nested template for each VM type along with its supporting resources. The
master VNF template (or VNF Module template) may then reference these component templates either
statically (by repeated definition) or dynamically (via OS::Heat::ResourceGroup).

Nested template support in OpenECOMP is subject to the following limitations:

• Heat templates for OpenECOMP must only have one level of nesting. OpenECOMP only
supports one level of nesting.

• Nested templates must be referenced by file name in the master template

o i.e. use of resource_registry in the .env file is not currently supported

• Nested templates must have unique file names within the scope of the VNF

• OpenECOMP does not support a directory hierarchy for nested templates. All templates must be
in a single, flat directory (per VNF)

• A nested template may be shared by all Modules (i.e., Heat templates) within a given VNF

3. Networking
3.1 External Networks
VNF templates must not include any resources for external networks connected to the VNF. In this
context, “external” is in relation to the VNF itself (not with regard to the Network Cloud site). External
networks may also be referred to as “inter-VNF” networks.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 9

• External networks must be orchestrated separately, so they can be shared by multiple VNFs and
managed independently. When the external network is created, it must be assigned a unique
{network-role} (See section 4.2).

• External networks must be passed into the VNF template as parameters, including the network-id
(i.e. the neutron network UUID) and optional subnet ID.

• VNF templates must pass the appropriate external network IDs into nested VM templates when
nested Heat is used.

• VNFs may use DHCP assigned IP addresses or assign fixed IPs when attaching VMs to an
external network.

• OpenECOMP enforces a naming convention for parameters associated with external networks.

• Parameter values associated with an external network will be generated and/or assigned by
OpenECOMP at orchestration time.

• Parameter values associated with an external network must not be enumerated in the
environment file.

3.2 Internal Networks
Orchestration activities related to internal networks must be included in VNF templates. In this context,
“internal” is in relation to the VNF itself (not in relation to the Network Cloud site). Internal networks may
also be referred to as “intra-VNF” networks or “private” networks.

• Internal networks must not attach to any external gateways and/or routers. Internal networks are
for intra-VM communication only.

• In the modular approach, internal networks must be created in the Base Module template, with
their resource IDs exposed as outputs (i.e., OpenECOMP Base Template Output Parameters) for
use by all add-on module templates. When the external network is created, it must be assigned a
unique {network-role} (See section 4.2).

• VNFs may use DHCP assigned IP addresses or assign fixed IPs when attaching VMs to an
internal network.

• OpenECOMP does not enforce a naming convention for parameters for internal network,
however, a naming convention is provided that should be followed.

• Parameter values associated with an internal network must either be passed as output parameter
from the base template (i.e., OpenECOMP Base Template Output Parameters) into the add-on
modules or be enumerated in the environment file.

3.3 IP Address Assignment
• VMs connect to external networks using either fixed (e.g. statically assigned) IP addresses or

DHCP assigned IP addresses.

• VMs connect to internal networks using either fixed (e.g. statically assigned) IP addresses or
DHCP assigned IP addresses.

• Neutron Floating IPs must not be used. OpenECOMP does not support Neutron Floating IPs.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 10

• OpenECOMP supports the OS::Neutron::Port property “allowed_address_pairs.” See Section
4.4.3.

4. Parameter Naming Convention
4.1 {vm-type}
A common {vm-type} identifier must be used throughout the Heat template in naming parameters, for
each VM type in the VNF with the following exceptions:

• The four OpenECOMP Metadata parameters must not be prefixed with a common {vm-type}
identifier. They are vnf_name, vnf_id, vf_module_id, vf_module_name.

• Parameters only referring to a network or subnetwork must not be prefixed with a common {vm-
type} identifier.

• The parameter referring to the OS::Nova::Server property availability_zone must not be prefixed
with a common {vm-type} identifier.

• {vm-type} must be unique to the VNF. It does not have to be globally unique across all VNFs that
OpenECOMP supports.

4.2 {network-role}
VNF templates must not include any resources for external networks connected to the VNF. In this
context, “external” is in relation to the VNF itself (not with regard to the Network Cloud site). External
networks may also be referred to as “inter-VNF” networks.

External networks must be orchestrated separately, so they can be shared by multiple VNFs and
managed independently. When the external network is created, it must be assigned a unique {network-
role}.

“External” networks must be passed into the VNF template as parameters. Examples include the
network-id (i.e. the neutron network UUID) and optional subnet ID. See section 4.4.3.

Any parameter that is associated with an external network must include the {network-role} as part of the
parameter name.

Internal network parameters must also define a {network-role}. Any parameter that is associated with an
internal network must include int_{network-role} as part of the parameter name.

4.3 Resource: OS::Nova::Server - Parameters
The following OS::Nova::Server Resource Property Parameter Names must follow the OpenECOMP
parameter Naming Convention. All the parameters associated with OS::Nova::Server are classified as
OpenECOMP Orchestration Parameters.

OS::Nova::Server

Property
OpenECOMP

Parameter Naming
Convention

Parameter
Type

image {vm-type}_image_name string

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 11

flavor {vm-type}_flavor_name string

name
{vm-type}_name_{index} string
{vm-type}_names CDL

availability_zone availability_zone_{index} string

Table 2 Resource Property Parameter Names

4.3.1 Property: image
Image is an OpenECOMP Orchestration Constant parameter. The image must be referenced by the
Network Cloud Service Provider (NCSP) image name, with the parameter enumerated in the Heat
environment file.

The parameters must be named “{vm-type}_image_name” in the VNF.

Each VM type (e.g., {vm-type}) should have a separate parameter for images, even if several share the
same image. This provides maximum clarity and flexibility.

4.3.2 Property: flavor
Flavor is an OpenECOMP Orchestration Constant parameter. The flavors must be referenced by the
Network Cloud Service Provider (NCSP) flavor name, with the parameter enumerated in the Heat
environment file.

The parameters must be named “{vm-type}_flavor_name” for each {vm-type} in the VNF.

Each VM type should have separate parameters for flavors, even if more than one VM shares the same
flavor. This provides maximum clarity and flexibility.

4.3.3 Property: Name
Name is an OpenEOMP Orchestration parameter; the value is provided to the Heat template by
OpenECOMP.

VM names (hostnames) for assignment to VM instances must be passed to Heat templates either as

• an array (comma delimited list) for each VM type

• a set of fixed-index parameters for each VM type instance.

Each element in the VM Name list should be assigned to successive instances of that VM type.

The parameter names must reflect the VM Type (i.e., include the {vm-type} in the parameter name.) The
parameter name format must be one of the following:

• If the parameter type is a comma delimited list: {vm-type}_names

• If the parameter type is a string with a fixed index: {vm-type}_name_{index}

If a VNF contains more than three instances of a given {vm-type}, the CDL form of the parameter name
(i.e., {vm-type}_names} should be used to minimize the number of unique parameters defined in the Heat.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 12

Examples:

parameters:
 {vm-type}_names:
 type: comma_delimited_list
 description: VM Names for {vm-type} VMs

 {vm-type}_name_{index}:
 type: string
 description: VM Name for {vm-type} VM {index}

Example (CDL):

In this example, the {vm-type} has been defined as “lb” for load balancer.

parameters:
 lb_names:
 type: comma_delimited_list
 description: VM Names for lb VMs

resources:
 lb_0:
 type: OS::Nova::Server
 properties:
 name: { get_param: [lb_names, 0] }
 ...

 lb_1:
 type: OS::Nova::Server
 properties:
 name: { get_param: [lb_names, 1] }
 ...

Example (fixed-index):

In this example, the {vm-type} has been defined as “lb” for load balancer.

parameters:
 lb_name_0:
 type: string
 description: VM Name for lb VM 0

 lb_name_1:
 type: string
 description: VM Name for lb VM 1

resources:
 lb_0:
 type: OS::Nova::Server
 properties:
 name: { get_param: lb_name_0 }
 ...

 lb_1:
 type: OS::Nova::Server
 properties:
 name: { get_param: lb_name_1 }
 ...

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 13

4.3.4 Property: availability_zone
Availability_zone is an OpenECOMP Orchestration parameter; the value is provided to the Heat template
by OpenECOMP.

Availability zones must be passed as individual numbered parameters (not as arrays) so that VNFs with
multi-availability zone requirements can clearly specify that in its parameter definitions.

The availability zone parameter must be defined as “availability_zone_{index}”, with the {index} starting at
zero.

Example:

In this example, the {vm-type} has been defined as “lb” for load balancer.

parameters:
 lb_names:
 type: comma_delimited_list
 description: VM Names for lb VMs

 availability_zone_0:
 type: string
 description: First availability zone ID or Name

resources:
 lb_0:
 type: OS::Nova::Server
 properties:
 name: { get_param: [lb_names, 0] }
 availability_zone: { get_param: availability_zone_0 }
 ...

4.4 Resource: OS::Nova::Server - Metadata
This section describes the OpenECOMP Metadata parameters.

OpenECOMP Heat templates must include the following three parameters that are used as metadata
under the resource OS::Nova:Server: vnf_id, vf_module_id, vnf_name

OpenECOMP Heat templates may include the following parameter that is used as metadata under the
resource OS::Nova:Server: vf_module_name.

These parameters are all classified as OpenECOMP Metadata.

Metadata Parameter
Name

Parameter
Type Mandatory/Optional

vnf_id string mandatory
vf_module_id string mandatory
vnf_name string mandatory
vf_module_name string optional

Table 3 OpenECOMP Metadata

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 14

4.4.1 Required Metadata Elements
The vnf_id, vf_module_id, and vnf_name metadata elements are required (must) for OS::Nova::Server
resources. The metadata parameters will be used by OpenECOMP to associate the servers with the VNF
instance.

• vnf_id

 “vnf_id” parameter value will be supplied by OpenECOMP. OpenECOMP generates the
UUID that is the vnf_id and supplies it to the Heat at orchestration time.

• vf_module_id

 “vf_module_id” parameter value will be supplied by OpenECOMP. OpenECOMP generates
the UUID that is the vf_module_id and supplies it to the Heat at orchestration time.

• vnf_name

 “vnf_name” parameter value will be generated and/or assigned by OpenECOMP and
supplied to the Heat by OpenECOMP at orchestration time.

4.4.2 Optional Metadata Elements
The following metadata element is optional for OS::Nova::Server resources:

• vf_module_name

 The vf_module_name is the name of the name of the Heat stack (e.g., <STACK_NAME>) in
the command “Heat stack-create” (e.g. Heat stack-create [-f <FILE>] [-e
<FILE>] <STACK_NAME>). The <STACK_NAME> needs to be specified as part of the
orchestration process.

 “vf_module_name” parameter value, when used, will be supplied by OpenECOMP to the
Heat at orchestration time. The parameter will be generated and/or assigned by
OpenECOMP and supplied to the Heat by OpenECOMP at orchestration time.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 15

Example

In this example, the {vm-type} has been defined as “lb” for load balancer.

parameters:
 vnf_name:
 type: string
 description: Unique name for this VNF instance
 vnf_id:
 type: string
 description: Unique ID for this VNF instance
 vf_module_name:
 type: string
 description: Unique name for this VNF Module instance
 vf_module_id:
 type: string
 description: Unique ID for this VNF Module instance

resources:
 lb_server_group:
 type: OS::Nova::ServerGroup
 properties:
 name:
 str_replace:
 template: VNF_NAME_lb_ServerGroup
 params:
 VNF_NAME: { get_param: VNF_name }
 policies: [‘anti-affinity’]

 lb_vm_0:
 type: OS::Nova::Server
 properties:

name: { get_param: lb_name_0 }
scheduler_hints:

 group: { get_resource: lb_server_group }
 metadata:

 vnf_name: { get_param: vnf_name }
 vnf_id: { get_param: vnf_id }
 vf_module_name: { get_param: vf_module_name }
 vf_module_id: { get_param: vf_module_id }

 ...

4.5 Resource: OS::Neutron::Port - Parameters
The following four OS::Neutron::Port Resource Property Parameters must adhere to the OpenECOMP
parameter naming convention.

• network

• subnet

• fixed_ips

• allowed_address_pairs

These four parameters reference a network, which maybe an external network or an internal network.
Thus the parameter will include {network-role} in its name.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 16

When the parameter references an external network, the parameter is an OpenECOMP Orchestration
Parameter. The parameter value must be supplied by OpenECOMP. The parameters must adhere to
the OpenECOMP parameter naming convention.

OS::Neutron::Port
Property Parameter Name for External Networks Parameter Type

Network
{network-role}_net_id string
{network-role}_net_name string

Subnet
{network-role}_subnet_id string
{network-role}_v6_subnet_id string

fixed_ips

{vm-type}_{network-role}_ip_{index} string
{vm-type}_{network-role}_ips CDL
{vm-type}_{network-role}_v6_ip_{index} string
{vm-type}_{network-role}_v6_ips CDL

allowed_address_pairs

{vm-type}_{network-role}_floating_ip string
{vm-type}_{network-role}_floating_v6_ip string
{vm-type}_{network-role}_ip_{index} string
{vm-type}_{network-role}_ips CDL
{vm-type}_{network-role}_v6_ip_{index} string
{vm-type}_{network-role}_v6_ips CDL

Table 4 Port Resource Property Parameters (External Networks)

When the parameter references an internal network, the parameter is a VNF Orchestration Parameters.
The parameter value(s) must be supplied either via an output statement(s) in the base module (i.e.,
OpenECOMP Base Template Output Parameters) or be enumerated in the environment file. The
parameters must adhere to the following parameter naming convention.

OS::Neutron::Port
Property Parameter Name for Internal Networks Parameter Type

Network int_{network-role}_net_id string
int_{network-role}_net_name string

Subnet int_{network-role}_subnet_id string
Int_{network-role}_v6_subnet_id string

fixed_ips

{vm-type}_int_{network-role}_ip_{index} string
{vm-type}_int_{network-role}_ips CDL
{vm-type}_int_{network-role}_v6_ip_{index} string
{vm-type}_int_{network-role}_v6_ips CDL

allowed_address_pairs

{vm-type}_int_{network-role}_floating_ip string
{vm-type}_int_{network-role}_floating_v6_ip string
{vm-type}_int_{network-role}_ip_{index} string
{vm-type}_int_{network-role}_ips CDL
{vm-type}_int_{network-role}_v6_ip_{index} string
{vm-type}_int_{network-role}_v6_ips CDL

Table 5 Port Resource Property Parameters (Internal Networks)

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 17

4.5.1 Property: network & subnet
The property “networks” in the resource OS::Neutron::Port must be referenced by Neutron Network ID, a
UUID value, or by the network name defined in OpenStack.

When the parameter is referencing an “external” network, the parameter must adhere to the following
naming convention

• “{network-role}_net_id”, for the Neutron network ID

• “{network-role}_net_name”, for the network name in OpenStack

When the parameter is referencing an “internal” network, the parameter must adhere to the following
naming convention.

• “int_{network-role}_net_id”, for the Neutron network ID

• “int_{network-role}_net_name”, for the network name in OpenStack

The property “subnet_id” must be used if a DHCP IP address assignment is being requested and the
DHCP IP address assignment is targeted at a specific subnet.

The property “subnet_id” should not be used if all IP assignments are fixed, or if the DHCP assignment
does not target a specific subnet

When the parameter is referencing an “external” network subnet, the “subnet_id” parameter must adhere
to the following naming convention.

 “{network-role}_subnet_id” if the subnet is an IPv4 subnet

 “{network-role}_v6_subnet_id” if the subnet is an IPv6 subnet

When the parameter is referencing an “internal” network subnet, the “subnet_id” parameter must adhere
to the following naming convention.

• “int_{network-role}_subnet_id” if the subnet is an IPv4 subnet

• “int_{network-role}_v6_subnet_id” if the subnet is an IPv6 subnet

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 18

Example:

parameters:
 {network-role}_net_id:
 type: string
 description: Neutron UUID for the {network-role} network

 {network-role}_net_name:
 type: string
 description: Neutron name for the {network-role} network

 {network-role}_subnet_id:
 type: string
 description: Neutron subnet UUID for the {network-role} network

 {network-role}_v6_subnet_id:
 type: string
 description: Neutron subnet UUID for the {network-role} network

Example:

In this example, the {network-role} has been defined as “oam” to represent an oam
network and the {vm-type} has been defined as “lb” for load balancer.

parameters:
 oam_net_id:
 type: string
 description: Neutron UUID for the oam network

resources:
 lb_port_1:
 type: OS::Neutron::Port
 network: { get_param: oam_net_id }

4.5.2 Property: fixed_ips
The property “fixed_ips” in the resource OS::Neutron::Port must be used when statically assigning IP
addresses.

An IP address is assigned to a port on a type of VM (i.e., {vm-type}) that is connected to a type of network
(i.e., {network-role}). These two tags are components of the parameter name.

When the “fixed_ips” parameter is referencing an “external” network, the parameter must adhere to the
naming convention below. The parameter may be a comma delimited list or a string.

There must be a different parameter name for IPv4 IP addresses and IPv6 addresses

• Comma-delimited list: Each element in the IP list should be assigned to successive instances
of that VM type on that network.

o Format for IPv4 addresses: {vm-type}_{network-role}_ips

o Format for IPv6 addresses: {vm-type}_{network-role}_v6_ips

• A set of fixed-index parameters: In this case, the parameter should have “type: string” and
must be repeated for every IP expected for each {vm-type} + {network-role} pair.

o Format for IPv4 addresses: {vm-type}_{network-role}_ip_{index}

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 19

o Format for IPv6 addresses: {vm-type}_{network-role}_v6_ip_{index}

When the “fixed_ips” parameter is referencing an “internal” network, the parameter must adhere to the
naming convention below. The parameter may be a comma delimited list or a string.

There must be a different parameter name for IPv4 IP addresses and IPv6 addresses

• Comma-delimited list: Each element in the IP list should be assigned to successive instances
of that VM type on that network.

o Format for IPv4 addresses: {vm-type}_int_{network-role}_ips

o Format for IPv6 addresses: {vm-type}_int_{network-role}_v6_ips

• A set of fixed-index parameters: In this case, the parameter should have “type: string” and
must be repeated for every IP expected for each {vm-type} and {network-role}pair.

o Format for IPv4 addresses: {vm-type}_int_{network-role}_ip_{index}

o Format for IPv6 addresses: {vm-type}_int_{network-role}_v6_ip_{index}

If a VNF contains more than three IP addresses for a given {vm-type} and {network-role} combination, the
CDL form of the parameter name should be used to minimize the number of unique parameters defined in
the Heat.

Example (external network)

parameters:

{vm-type}_{network-role}_ips:
 type: comma_delimited_list
 description: Fixed IPv4 assignments for {vm-type} VMs on the {network-
role} network

{vm-type}_{network-role}_v6_ips:
 type: comma_delimited_list
 description: Fixed IPv6 assignments for {vm-type} VMs on the {network-
role} network

{vm-type}_{network-role}_ip_{index}:
 type: string
 description: Fixed IPv4 assignment for {vm-type} VM {index} on the

{network-role} network

{vm-type}_{network-role}_v6_ip_{index}:
 type: string
 description: Fixed IPv6 assignment for {vm-type} VM {index} on the

{network-role} network

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 20

Example (CDL parameter for IPv4 Address Assignments to an external network):

In this example, the {network-role} has been defined as “oam” to represent an oam
network and the {vm-type} has been defined as “db” for database.

parameters:
 oam_net_id:
 type: string
 description: Neutron UUID for a oam network

 db_oam_ips:
 type: comma_delimited_list
 description: Fixed IP assignments for db VMs on the oam network

resources:
 db_0_port_1:
 type: OS::Neutron::Port
 network: { get_param: oam_net_id }
 fixed_ips: [{ “ip_address”: {get_param: [db_oam_ips, 0]

}}]

 db_1_port_1:
 type: OS::Neutron::Port
 network: { get_param: oam_net_id }
 fixed_ips: [{ “ip_address”: {get_param: [db_oam_ips, 1]

}}]

Example (string parameters for IPv4 Address Assignments to an external network):

In this example, the {network-role} has been defined as “oam” to represent an oam
network and the {vm-type} has been defined as “db” for database.

parameters:
 oam_net_id:
 type: string
 description: Neutron UUID for an OAM network

 db_oam_ip_0:
 type: string
 description: First fixed IP assignment for db VMs on the OAM network

 db_oam_ip_1:
 type: string
 description: Second fixed IP assignment for db VMs on the OAM network

resources:
 db_0_port_1:
 type: OS::Neutron::Port
 network: { get_param: oam_net_id }
 fixed_ips: [{ “ip_address”: {get_param: db_oam_ip_0}}]

 db_1_port_1:
 type: OS::Neutron::Port
 network: { get_param: oam_net_id }
 fixed_ips: [{ “ip_address”: {get_param: db_oam_ip_1}}]

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 21

4.5.3 Property: allowed_address_pairs
The property “allowed_address_pairs” in the resource OS::Neutron::Port allows the user to specify
mac_address/ip_address (CIDR) pairs that pass through a port regardless of subnet. This enables the
use of protocols such as VRRP, which floats an IP address between two instances to enable fast data
plane failover. An “allowed_address_pairs” is unique to a {vm-type} and {network-role} combination. The
management of these IP addresses (i.e. transferring ownership between active and standby VMs) is the
responsibility of the application itself.

Note that these parameters are not intended to represent Neutron “Floating IP” resources, for which
OpenStack manages a pool of public IP addresses that are mapped to specific VM ports. In that case,
the individual VMs are not even aware of the public IPs, and all assignment of public IPs to VMs is via
OpenStack commands. OpenECOMP does not support Neutron-style Floating IPs.

Both IPv4 and IPv6 “allowed_address_pairs” addresses are supported.

If property “allowed_address_pairs” is used with an external network, the parameter name must adhere to
the following convention:

• Format for IPv4 addresses: {vm-type}_{network-role}_floating_ip

• Format for IPv6 addresses: {vm-type}_{network-role}_floating_v6_ip

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 22

Example:

parameters:

 {vm-type}_{network-role}_floating_ip:
 type: string
 description: VIP for {vm-type} VMs on the {network-role} network

 {vm-type}_{network-role}_floating_v6_ip:
 type: string
 description: VIP for {vm-type} VMs on the {network-role} network

Example:

In this example, the {network-role} has been defined as “oam” to represent an oam
network and the {vm-type} has been defined as “db” for database.

parameters:
 db_oam_ips:
 type: comma_delimited_list
 description: Fixed IPs for db VMs on the oam network

 db_oam_floating_ip:
 type: string
 description: Floating IP for db VMs on the oam network

resources:
 db_0_port_0:
 type: OS::Neutron::Port
 network: { get_param: oam_net_id }
 fixed_ips: [{ “ip_address”: {get_param: [db_oam_ips,0] }}]
 allowed_address_pairs: [

{ “ip_address”: {get_param: db_oam_floating_ip}}]

db_1_port_0:
 type: OS::Neutron::Port
 network: { get_param: oam_net_id }
 fixed_ips: [{ “ip_address”: {get_param: [db_oam_ips,1] }}]
 allowed_address_pairs: [

{ “ip_address”: {get_param: db_oam_floating_ip}}]

If property “allowed_address_pairs” is used with an internal network, the parameter name should adhere
to the following convention:

• Format for IPv4 addresses: {vm-type}_int_{network-role}_floating_ip

• Format for IPv6 addresses: {vm-type}_int_{network-role}_floating_v6_ip

Using the parameter {vm-type}_{network-role}_floating_ip or {vm-type}_{network-role}_floating_v6_ip
provides only one floating IP per Vm-type{vm-type} and {network-role} pair. If there is a need for multiple
floating IPs (e.g., Virtual IPs (VIPs)) for a given {vm-type} and {network-role} combination within a VNF,
then the parameter names defined for the “fixed_ips” should be used with the “allowed_address_pairs”
property. The examples below illustrate this.

Below example reflects two load balancer pairs in a single VNF. Each pair has one VIP.

Example: A VNF has four load balancers. Each pair has a unique VIP.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 23

Pair 1: lb_0 and lb_1 share a unique VIP
Pair 2: lb_2 and lb_3 share a unique VIP

In this example, the {network-role} has been defined as “oam” to represent an oam
network and the {vm-type} has been defined as “lb” for load balancer.

resources:
 lb_0_port_0:
 type: OS::Neutron::Port
 network: { get_param: oam_net_id }
 fixed_ips: [{ “ip_address”: {get_param: [lb_oam_ips,0] }}]
 allowed_address_pairs: [{ “ip_address”: {get_param: [lb_oam_ips,2] }}]

 lb_1_port_0:
 type: OS::Neutron::Port
 network: { get_param: oam_net_id }
 fixed_ips: [{ “ip_address”: {get_param: [lb_oam_ips,1] }}]
 allowed_address_pairs: [{ “ip_address”: {get_param: [lb_oam_ips,2] }}]

 lb_2_port_0:
 type: OS::Neutron::Port
 network: { get_param: oam_net_id }
 fixed_ips: [{ “ip_address”: {get_param: [lb_oam_ips,3] }}]
 allowed_address_pairs: [{ “ip_address”: {get_param: [lb_oam_ips,5] }}]

 lb_3_port_0:
 type: OS::Neutron::Port
 network: { get_param: oam_net_id }
 fixed_ips: [{ “ip_address”: {get_param: [lb_oam_ips,4] }}]
 allowed_address_pairs: [{ “ip_address”: {get_param: [lb_oam_ips,5] }}]

Below example reflects a single app VM pair within a VNF with two VIPs:

Example: A VNF has two load balancers. The pair of load balancers share two VIPs.

In this example, the {network-role} has been defined as “oam” to represent an oam
network and the {vm-type} has been defined as “lb” for load balancer.

resources:
 lb_0_port_0:
 type: OS::Neutron::Port
 network: { get_param: oam_net_id }
 fixed_ips: [{ “ip_address”: {get_param: [lb_oam_ips,0] }}]
 allowed_address_pairs: [{ "ip_address": {get_param: [lb_oam_ips,2] },
{get_param: [lb_oam_ips,3] }}]

 lb_1_port_0:
 type: OS::Neutron::Port
 network: { get_param: oam_net_id }
 fixed_ips: [{ “ip_address”: {get_param: [lb_oam_ips,1] }}]
 allowed_address_pairs: [{ "ip_address": {get_param: [lb_oam_ips,2] },
{get_param: [lb_oam_ips,3] }}]

As a general rule, provide the fixed IPs for the VMs indexed first in the CDL and then the VIPs as shown
in the examples above.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 24

4.6 Resource Property: name
The parameter naming standard for the resource OS::Nova::Server has been defined in Section 4.3.3.
This section describes how the name property of all other resources must be defined.

Heat templates must use the Heat “str_replace” function in conjunction with the OpenECOMP supplied
metadata parameter vnf_name or vnf_module_id to generate a unique name for each VNF instance. This
prevents the use of unique parameters values for resource “name” properties to be enumerated in a per
instance environment file.

Note that

• In most cases, only the use of the vnf_name is necessary to create a unique name

• the Heat pseudo parameter 'OS::stack_name’ can also be used in the ‘str_replace’ construct to
generate a unique name when the vnf_name does not provide uniqueness

 type: OS::Cinder::Volume
 properities:
 name:
 str_replace:
 template: VF_NAME_STACK_NAME_oam_volume
 params:
 VF_NAME: { get_param: vnf_name }
 STACK_NAME: { get_param: 'OS::stack_name' }

 type: OS::Neutron::SecurityGroup
 properties:
 description: Security Group of Firewall
 name:
 str_replace:
 template: VNF_NAME_Firewall_SecurityGroup
 params:
 VNF_NAME: { get_param: vnf_name }

4.7 Output Parameters
OpenECOMP defines three type of Output Parameters.

4.7.1 Base Template Output Parameters:
The base template output parameters are available for use as input parameters in all add-on modules.
The add-on modules may (or may not) use these parameters.

4.7.2 Volume Template Output Parameters:
The volume template output parameters are only available only for the module (base or add on) that the
volume is associated with.

4.7.3 Predefined Output Parameters
OpenECOMP currently defines one predefined output parameter.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 25

4.7.3.1 OAM Management IP Addresses
Many VNFs will have a management interface for application controllers to interact with and configure the
VNF. Typically, this will be via a specific VM that performs a VNF administration function. The IP
address of this interface must be captured and inventoried by OpenECOMP. This might be a VIP if the
VNF contains an HA pair of management VMs, or may be a single IP address assigned to one VM.

The Heat template may define either (or both) of the following Output parameters to identify the
management IP address.

• oam_management_v4_address

• oam_management_v6_address

Notes:

• The Management IP Address should be defined only once per VNF, so it would only appear in
one Module template

• If a fixed IP for the admin VM is passed as an input parameter, it may be echoed in the output
parameters

• If the IP for the admin VM is obtained via DHCP, it may be obtained from the resource attributes

Example:

resources:
 admin_server:

type: OS::Nova::Server
properties:

networks:
 - network: {get_param: oam_net_id }

...

Outputs:
 oam_management_v4_address:
 value: {get_attr: [admin_server, networks, {get_param: oam_net_id}, 0] }

5. Heat Template Constructs
5.1 External References
Heat templates should not reference any HTTP-based resource definitions, any HTTP-based nested
configurations, or any HTTP-based environment files.

• During orchestration, OpenECOMP should not retrieve any such resources from
external/untrusted/unknown sources.

• VNF images should not contain such references in user-data or other configuration/operational
scripts that are specified via Heat or encoded into the VNF image itself.

Note: HTTP-based references are acceptable if the HTTP-based reference is accessing information with
the VM private/internal network.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 26

5.2 Heat Files Support (get_file)
Heat Templates may contain the inclusion of text files into Heat templates via the Heat “get_file” directive.
This may be used, for example, to define a common “user-data” script, or to inject files into a VM on
startup via the “personality” property.

Support for Heat Files is subject to the following limitations:

• The ‘get_files’ targets must be referenced in Heat templates by file name, and the corresponding
files should be delivered to OpenECOMP along with the Heat templates.

o URL-based file retrieval must not be used; it is not supported.

• The included files must have unique file names within the scope of the VNF.

• OpenECOMP does not support a directory hierarchy for included files.

o All files must be in a single, flat directory per VNF.

• Included files may be used by all Modules within a given VNF.

• get_file directives may be used in both non-nested and nested templates

5.3 Use of Heat ResourceGroup
The OS::Heat::ResourceGroup is a useful Heat element for creating multiple instances of a given
resource or collection of resources. Typically it is used with a nested Heat template, to create, for
example, a set of identical OS::Nova::Server resources plus their related OS::Neutron::Port resources via
a single resource in a master template.

ResourceGroup may be used in OpenECOMP to simplify the structure of a Heat template that creates
multiple instances of the same VM type. However, there are important caveats to be aware of.

ResourceGroup does not deal with structured parameters (comma-delimited-list and json) as one might
typically expect. In particular, when using a list-based parameter, where each list element corresponds to
one instance of the ResourceGroup, it is not possible to use the intrinsic “loop variable” %index% in the
ResourceGroup definition.

For instance, the following is not valid Heat for a ResourceGroup:

type: OS::Heat::ResourceGroup
resource:
 type: my_nested_vm_template.yaml
 properties:
 name: {get_param: [vm_name_list, %index%]}

Although this appears to use the nth entry of the vm_name_list list for the nth element of the
ResourceGroup, it will in fact result in a Heat exception. When parameters are provided as a list (one for
each element of a ResourceGroup), you must pass the complete parameter to the nested template along
with the current index as separate parameters.

Below is an example of an acceptable Heat Syntax for a ResourceGroup:

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 27

type: OS::Heat::ResourceGroup
resource:
 type: my_nested_vm_template.yaml
 properties:
 names: {get_param: vm_name_list}
 index: %index%

You can then reference within the nested template as:

{ get_param: [names, {get_param: index}] }

Note that this is workaround has very important limitations. Since the entire list parameter is passed to
the nested template, any change to that list (e.g., adding an additional element) will cause Heat to treat
the entire parameter as updated within the context of the nested template (i.e., for each ResourceGroup
element). As a result, if ResourceGroup is ever used for scaling (e.g., increment the count and include an
additional element to each list parameter), Heat will often rebuild every existing element in addition to
adding the “deltas”. For this reason, use of ResourceGroup for scaling in this manner is not supported.

5.4 Key Pairs
When Nova Servers are created via Heat templates, they may be passed a “keypair” which provides an
ssh key to the ‘root’ login on the newly created VM. This is often done so that an initial root key/password
does not need to be hard-coded into the image.

Key pairs are unusual in OpenStack, because they are the one resource that is owned by an OpenStack
User as opposed to being owned by an OpenStack Tenant. As a result, they are usable only by the User
that created the keypair. This causes a problem when a Heat template attempts to reference a keypair by
name, because it assumes that the keypair was previously created by a specific OpenECOMP user ID.

When a keypair is assigned to a server, the SSH public-key is provisioned on the VMs at instantiation
time. They keypair itself is not referenced further by the VM (i.e. if the keypair is updated with a new
public key, it would only apply to subsequent VMs created with that keypair).

Due to this behavior, the recommended usage of keypairs is in a more generic manner which does not
require the pre-requisite creation of a keypair. The Heat should be structured in such a way as to:

• Pass a public key as a parameter value instead of a keypair name

• Create a new keypair within the VNF Heat templates (in the base module) for use within that VNF

By following this approach, the end result is the same as pre-creating the keypair using the public key –
i.e., that public key will be provisioned in the new VM. However, this recommended approach also makes
sure that a known public key is supplied (instead of having OpenStack generate a public/private pair to be
saved and tracked outside of OpenECOMP). It also removes any access/ownership issues over the
created keypair.

The public keys may be enumerated as a VNF Orchestration Constant in the environment file (since it is
public, it is not a secret key), or passed at run-time as an instance-specific parameters. OpenECOMP will
never automatically assign a public/private key pair.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 28

Example (create keypair with an existing ssh public-key for {vm-type} of lb (for load balancer)):

parameters:
 vnf_name:
 type: string
 ssh_public_key:
 type: string

resources:
 my_keypair:
 type: OS::Nova::Keypair
 properties:
 name:
 str_replace:
 template: VNF_NAME_key_pair
 params:
 VNF_NAME: { get_param: vnf_name }
 public_key: {get_param: lb_ssh_public_key}
 save_private_key: false

5.5 Security Groups
OpenStack allows a tenant to create Security groups and define rules within the security groups.

Security groups, with their rules, may either be created in the Heat template or they can be pre-created in
OpenStack and referenced within the Heat template via parameter(s). There can be a different approach
for security groups assigned to ports on internal (intra-VNF) networks or external networks (inter-VNF).
Furthermore, there can be a common security group across all VMs for a specific network or it can vary
by VM (i.e., {vm-type}) and network type (i.e., {network-role}).

5.6 Anti-Affinity and Affinity Rules
Anti-affinity or affinity rules are supported using normal OpenStack “OS::Nova::ServerGroup” resources.
Separate ServerGroups are typically created for each VM type to prevent them from residing on the same
host, but they can be applied to multiple VM types to extend the affinity/anti-affinity across related VM
types as well.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 29

Example:

In this example, the {network-role} has been defined as “oam” to represent an oam
network and the {vm-type} have been defined as “lb” for load balancer and “db” for
database.

resources:

db_server_group:
 type: OS::Nova::ServerGroup
 properties:
 name:
 str_replace:
 params:
 $vnf_name: {get_param: vnf_name}
 template: $vnf_name-server_group1
 policies:
 - anti-affinity

lb_server_group:
 type: OS::Nova::ServerGroup
 properties:
 name:
 str_replace:
 params:
 $vnf_name: {get_param: vnf_name}
 template: $vnf_name-server_group2
 policies:
 - affinity

db_0:
 type: OS::Nova::Server
 properties:
 ...
 scheduler_hints:
 group: {get_param: db_server_group}

db_1:
 type: OS::Nova::Server
 properties:
 ...
 scheduler_hints:
 group: {get_param: db_server_group}

lb_0:
 type: OS::Nova::Server
 properties:
 ...
 scheduler_hints:

 group: {get_param: lb_server_group}

6. Design Pattern: VNF Modularity
OpenECOMP supports the concept of VNF Modularity. With this approach, a single VNF may be
composed from one or more Heat templates, each of which represents some subset of the overall VNF.
These component parts are referred to as “VNF Modules”. During orchestration, these modules may be
deployed incrementally to build up the complete VNF.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 30

A Heat template can be either one for the following types of modules

1. Base Module

2. Incremental Modules

3. Independent Cinder Volume Modules

The OpenECOMP Heat template naming convention must be followed (Section 2.1). The naming
convention identifies the module type.

A VNF must be composed of one “base” VNF module (also called a base module) and zero to many
“incremental” or “add on” VNF modules. The base module must be deployed first prior to the add-on
modules.

A module can be thought of as equivalent to a Heat template, where a Heat template is composed of a
YAML file and an environment file. A given YAML file must have a corresponding environment file;
OpenECOMP requires it. A Heat template is used to create or deploy a Heat stack. Therefore, a module
is also equivalent to a Heat Stack.

However, there are cases where a module maybe composed of more than one Heat stack and/or more
than one YAML file.

As discussed in Section 2.5, Independent Volume Templates, each VNF Module may have an associated
Volume template.

• When a volume template is utilized, it must correspond 1:1 with add-on module template or base
template it is associated with

• A Cinder volume may be embedded within the add-on module template and/or base template if
persistence is not required, thus not requiring the optional Volume template.

A VNF module may support nested templates. In this case, there will be one or more additional YAML
files.

 Any shared resource defined in the base module template and used across the entire VNF (e.g., private
networks, server groups), must be exposed to the incremental or add-on modules by declaring their
resource UUIDs as Heat outputs (i.e., OpenECOMP Base Template Output Parameter in the output
section of the Heat template). Those outputs will be provided by OpenECOMP as input parameter values
to all add-on module Heat templates in the VNF that have declared the parameter in the template.

Note: A Cinder volume is not considered a shared resource. A volume template must correspond 1:1
with a base template or add-on module template.

There are two suggested usage patterns for modular VNFs, though any variation is supported.

A Modules per VNFC type
a. Group all VMs (VNFCs) of a given type into its own module
b. Build up the VNF one VNFC type at a time
c. Base module contains only the shared resources (and possibly initial Admin VMs)
d. Suggest one or two modules per VNFC type

i. one for initial count
ii. one for scaling increment (if different from initial count)

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 31

B Base VNF + Growth Units
a. Base module (template) contains a complete initial VNF instance
b. Growth modules for incremental scaling units

i. May contain VMs of multiple types in logical scaling combinations
ii. May be separated by VM type for multi-dimensional scaling

c. With no growth units, this is equivalent to the “One Heat Template per VNF” model

Note that modularization of VNFs is not required. A single Heat template (a base template) may still
define a complete VNF, which might be appropriate for smaller VNFs without a lot of scaling options.

There are some rules to follow when building modular VNF templates:

1. All VNFs must have one Base VNF Module (template) that must be the first one deployed. The
base template:

a. Must include all shared resources (e.g., private networks, server groups, security groups)
b. Must expose all shared resources (by UUID) as “outputs” in its associated Heat template

(i.e., OpenECOMP Base Template Output Parameters)
c. May include initial set of VMs
d. May be operational as a stand-alone “minimum” configuration of the VNF

2. VNFs may have one or more Add-On VNF Modules (templates) which:
a. Defines additional resources that can be added to an existing VNF
b. Must be complete Heat templates

i. i.e. not snippets to be incorporated into some larger template
c. Should define logical growth-units or sub-components of an overall VNF
d. On creation, receives all Base VNF Module outputs as parameters

i. Provides access to all shared resources (by UUID)
ii. must not be dependent on other Add-On VNF Modules

e. Multiple instances of an Add-On VNF Module type may be added to the same VNF (e.g.
incrementally grow a VNF by a fixed “add-on” growth units)

3. Each VNF Module (base or add-on) may have (optional) an associated Volume template (see
Section 2.5)

a. Volume templates should correspond 1:1 with Module (base or add-on) templates
b. A Cinder volume may be embedded within the Module template (base or add-on) if

persistence is not required
4. Shared resource UUIDs are passed between the base template and add-on template via Heat

Outputs Parameters (i.e., Base Template Output Parameters)
a. The output parameter name in the base must match the parameter name in the add-on

module

Examples:

In this example, the {vm-type} have been defined as “lb” for load balancer and “admin”
for admin server.

1. Base VNF Module Heat Template (partial)

Heat_template_version: 2013-05-23

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 32

parameters:
admin_name_0:

 type: string

resources:

int_oam_network:
type: OS::Neutron::Network
properties:

name: {… }
admin_server:

type: OS::Nova::Server
properties:

name: {get_param: admin_name_0}
image: ...

outputs:

int_oam_net_id:
value: {get_resource: int_oam_network }

2. Add-on VNF Module Heat Template (partial)

Heat_template_version: 2013-05-23

Parameters:

int_oam_net_id:
type: string
description: ID of shared private network from Base template

lb_name_0:
type: string
description: name for the add-on VM instance

Resources:

lb_server:
type: OS::Nova::Server
properties:

name: {get_param: lb_name_0}
networks:

- port: { get_resource: lb_port }
 ...
lb_port:

type: OS::Neutron::Port
properties:

network_id: { get_param: int_oam_net_id }
...

7. Scaling Considerations
Scaling of a VNF may be manually driven to add new capacity (static scaling) or it may be driven in near
real-time by the OpenECOMP controllers based on a real-time need (dynamic scaling).

With VNF Modularity, the recommended approach for scaling is to provide additional “growth unit”
templates that can be used to create additional resources in logical scaling increments. This approach is
very straightforward, and has minimal impact on the currently running VNFCs and must comply with the
following:

• Combine resources into reasonable-sized scaling increments; do not just scale by one VM at a
time in potentially large VNFs.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 33

• Combine related resources into the same growth template where appropriate, e.g. if VMs of
different types are always deployed in pairs, include them in a single growth template.

• Growth templates can use the private networks and other shared resources exposed by the Base
Module template.

VNF Modules may also be updated “in-place” using the OpenStack Heat Update capability, by deploying
an updated Heat template with different VM counts to an existing stack. This method requires another
VNF module template that includes the new resources in addition to all resources contained in the original
module template. Note that this also requires re-specification of all existing parameters as well as new
ones.

For this approach:
• Use a fixed number of pre-defined VNF module configurations

• Successively larger templates must be identical to the next smaller one, plus add the additional
VMs of the scalable type(s)

• VNF is scalable by sending a stack-update with a different template

Please do note that:

• If properties do not change for existing VMs, those VMs should remain unchanged

• If the update is performed with a smaller template, the Heat engine recognizes and deletes no-
longer-needed VMs (and associated resources)

• Nested templates for the various server types will simplify reuse across multiple configurations

• Per the section on Use of Heat ResourceGroup, if ResourceGroup is ever used for scaling (e.g.
increment the count and include an additional element to each list parameter), Heat will often
rebuild every existing element in addition to adding the “deltas”. For this reason, use of
ResourceGroup for scaling in this manner is not supported.

8. High Availability
VNF/VM parameters may include availability zone IDs for VNFs that require high availability.

The Heat must comply with the following requirements to specific availability zone IDs:

• The Heat template should spread Nova and Cinder resources across the availability zones as
desired

9. Resource Data Synchronization
For cases where synchronization is required in the orchestration of Heat resources, two approaches are
recommended:

• Standard Heat “depends_on” property for resources

o Assures that one resource completes before the dependent resource is orchestrated.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 34

o Definition of completeness to OpenStack may not be sufficient (e.g., a VM is considered
complete by OpenStack when it is ready to be booted, not when the application is up and
running).

• Use of Heat Notifications

o Create OS::Heat::WaitCondition and OS::Heat::WaitConditionHandle resources.

o Pre-requisite resources issue wc_notify commands in user_data.

o Dependent resource define “depends_on” in the OS::Heat::WaitCondition resource.

Example: “depends_on” case

In this example, the {network-role} has been defined as “oam” to represent an oam
network and the {vm-type} has been defined as “oam” to represent an oam server.

oam_server_01:
 type: OS::Nova::Server
 properties:
 name: {get_param: [oam_ names, 0]}
 image: {get_param: oam_image_name}
 flavor: {get_param: oam_flavor_name}
 availability_zone: {get_param: availability_zone_0}
 networks:
 - port: {get_resource: oam01_port_0}
 - port: {get_resource: oam01_port_1}
 user_data:
 scheduler_hints: {group: {get_resource: oam_servergroup}}
 user_data_format: RAW

 oam_01_port_0:
 type: OS::Neutron::Port
 properties:
 network: {get_resource: oam_net_name}
 fixed_ips: [{"ip_address": {get_param: [oam_oam_net_ips, 1]}}]
 security_groups: [{get_resource: oam_security_group}]

 oam_01_port_1:
 type: OS::Neutron::Port
 properties:
 network: {get_param: oam_net_name}
 fixed_ips: [{"ip_address": {get_param: [oam_oam_net_ips, 2]}}]
 security_groups: [{get_resource: oam_security_group}]

 oam_01_vol_attachment:
 type: OS::Cinder::VolumeAttachment
 depends_on: oam_server_01
 properties:
 volume_id: {get_param: oam_vol_1}
 mountpoint: /dev/vdb
 instance_uuid: {get_resource: oam_server_01}

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 35

Appendix A - Glossary

VM Virtual Machine (VM) is a virtualized computation environment that behaves very much like a
physical computer/server. A VM has all its ingredients (processor, memory/storage, interfaces/ports) of a
physical computer/server and is generated by a hypervisor, which partitions the underlying physical
resources and allocates them to VMs. Virtual Machines are capable of hosting a virtual network function
component (VNFC).

VNF Virtual Network Function (VNF) is the software implementation of a function that can be deployed
on a Network Cloud. It includes network functions that provide transport and forwarding. It also includes
other functions when used to support network services, such as network-supporting web servers and
database.

VNFC Virtual Network Function Component (VNFC) are the sub-components of a VNF providing a VNF
Provider a defined sub-set of that VNF's functionality, with the main characteristic that a single instance of
this component maps 1:1 against a single Virtualization Container. See Figure 1 for the relationship
between VNFC and VNFs.

Figure 1. Virtual Function Entity Relationship

Service 1

VNF1

VNFC2

VNFC1

VNF2

Service 2

VNF3

VNF2

Service 3

Virtual Network Function
Component (VNFC) Virtual Network Function Service

VNFC3

VNFC4

VNFC5

VNFC3

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
Page 36

Copyright 2017 AT&T Intellectual Property. All Rights Reserved.

This paper is licensed to you under the Creative Commons License:

Creative Commons Attribution-ShareAlike 4.0 International Public License

You may obtain a copy of the License at:

https://creativecommons.org/licenses/by-sa/4.0/legalcode

You are free to:

• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material for any purpose, even commercially.
• The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes
were made. You may do so in any reasonable manner, but not in any way that suggests the licensor
endorses you or your use.

• ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

• No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

Notices:

• You do not have to comply with the license for elements of the material in the public domain or where
your use is permitted by an applicable exception or limitation.

• No warranties are given. The license may not give you all of the permissions necessary for your
intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you
use the material.

https://creativecommons.org/licenses/by-sa/4.0/legalcode

	1. Introduction
	1.1 Program and Document Structure
	1.2 Intended Audience
	1.3 Scope
	1.4 VNF Modularity Overview

	2. General Guidelines
	2.1 Filenames
	2.2 Valid YAML Format
	2.3 Parameter Categories & Specification
	2.3.1 Parameter Categories
	2.3.2 Parameter Specifications
	2.3.2.1 OpenECOMP METADATA Parameters
	2.3.2.2 OpenECOMP Base Template & Volume Template Output Parameters
	2.3.2.3 OpenECOMP Predefined Output Parameters
	2.3.2.4 OpenECOMP Orchestration Parameters, VNF Orchestration Parameters, OpenECOMP Orchestration Constants, VNF Orchestration Constants

	2.4 Use of Heat Environments
	2.5 Independent Volume Templates
	2.6 Nested Heat Templates

	3. Networking
	3.1 External Networks
	3.2 Internal Networks
	3.3 IP Address Assignment

	4. Parameter Naming Convention
	4.1 {vm-type}
	4.2 {network-role}
	4.3 Resource: OS::Nova::Server - Parameters
	4.3.1 Property: image
	4.3.2 Property: flavor
	4.3.3 Property: Name
	4.3.4 Property: availability_zone

	4.4 Resource: OS::Nova::Server - Metadata
	4.4.1 Required Metadata Elements
	4.4.2 Optional Metadata Elements

	4.5 Resource: OS::Neutron::Port - Parameters
	4.5.1 Property: network & subnet
	4.5.2 Property: fixed_ips
	4.5.3 Property: allowed_address_pairs

	4.6 Resource Property: name
	4.7 Output Parameters
	4.7.1 Base Template Output Parameters:
	4.7.2 Volume Template Output Parameters:
	4.7.3 Predefined Output Parameters
	4.7.3.1 OAM Management IP Addresses

	5. Heat Template Constructs
	5.1 External References
	5.2 Heat Files Support (get_file)
	5.3 Use of Heat ResourceGroup
	5.4 Key Pairs
	5.5 Security Groups
	5.6 Anti-Affinity and Affinity Rules

	6. Design Pattern: VNF Modularity
	7. Scaling Considerations
	8. High Availability
	9. Resource Data Synchronization
	Appendix A - Glossary

