
  
Copyright © 2017 AT&T Intellectual Property. All rights reserved. 

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); 
you may not use this documentation except in compliance with the License. 

You may obtain a copy of the License at https://creativecommons.org/licenses/by/4.0/ 
 

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, 
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  See the License for the specific language 

governing permissions and limitations under the License. 
 

ECOMP and OpenECOMP are trademarks and service marks of AT&T Intellectual Property 

VNF 

Management Requirements 
for 

OpenECOMP 
 
 
 
 
 
 
 
 
 
 
 
 

 

Revision 1.0 
Revision Date 2/1/2017 

 

https://creativecommons.org/licenses/by/4.0/


 
 

 
Copyright © 2017 AT&T Intellectual Property. All rights reserved. 

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); 
you may not use this documentation except in compliance with the License. 

Page i 
 

 

Document Revision History 
 

Date Revision Description 

2/1/2017 1.0 Initial publication defining VNF Management Requirements for 
OpenECOMP 

 

  



 
 

 
Copyright © 2017 AT&T Intellectual Property. All rights reserved. 

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); 
you may not use this documentation except in compliance with the License. 

Page ii 
 

Table of Contents 
1 Introduction ...................................................................................................................................... 1 

2 Design Definition .............................................................................................................................. 2 

3 Configuration Management .............................................................................................................. 5 

3.1 NETCONF Standards and Capabilities ............................................................................................ 5 

3.2 VNF REST APIs ............................................................................................................................... 9 

3.3 OpenECOMP Controller APIs and Behavior ................................................................................. 11 

4 Monitoring & Management ............................................................................................................. 13 

4.1 Transports and Protocols Supporting Resource Interfaces ........................................................... 13 

4.2 Data Model for Event Records ....................................................................................................... 16 

4.3 Event Records - Data Structure Description .................................................................................. 17 

4.3.1 Common Event Header ................................................................................................... 17 

4.3.2 Event Data Structure – Fault Fields ................................................................................ 17 

4.3.3 Event Data Structure – Measurements for VNF Scaling Fields ...................................... 18 

4.3.4 Event Data Structure – Syslog Fields ............................................................................. 18 

4.3.5 Event Data Structure – State Change Fields .................................................................. 18 

4.3.6 Event Data Structure – Mobile Flow Fields ..................................................................... 18 

Appendix A – Data Record Format ................................................................................................ 19 

A.1 EVENT RECORDS – Common Event Header ........................................................................ 19 

A.2 EVENT RECORDS – Fault Fields ........................................................................................... 19 

A.3 EVENT RECORDS – Measurements for VF Scaling Fields ................................................... 21 

A.4 EVENT RECORDS – Syslog Fields ................................................................................................. 22 

A.5 EVENT RECORDS – State Change Fields ............................................................................. 24 

A.6 EVENT RECORDS – Mobile Flow Fields ................................................................................ 24 

 



 
 

 
Copyright © 2017 AT&T Intellectual Property. All rights reserved. 

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); 
you may not use this documentation except in compliance with the License. 

Page 1 
 

 

1. Introduction 

This document is part of a hierarchy of documents that describes the overall Requirements and 
Guidelines for OpenECOMP.  The diagram below identifies where this document fits in the hierarchy. 

OpenECOMP Requirements and Guidelines 
VNF Guidelines for Network Cloud and OpenECOMP Future OpenECOMP 

Subject Documents 

VNF Cloud 
Readiness 

Requirements 
for 

OpenECOMP 

VNF 
Management 
Requirements 

for 
OpenECOMP 

VNF Heat 
Template 

Requirements 
for 

OpenECOMP 

Future 
VNF 

Requirements 
Documents 

Future Requirements 
Documents 

Document summary: 

VNF Guidelines for Network Cloud and OpenECOMP 
• Describes VNF environment and overview of requirements 

VNF Cloud Readiness Requirements for OpenECOMP 
• Cloud readiness requirements for VNFs (Design, Resiliency, Security, and DevOps) 

VNF Management Requirements for OpenECOMP 
• Requirements for how VNFs interact and utilize OpenECOMP 

VNF Heat Template Requirements for OpenECOMP 
• Provides recommendations and standards for building Heat templates compatible with 

OpenECOMP– initial implementations of Network Cloud are assumed to be OpenStack 
based. 
 

The OpenECOMP (Enhanced Control, Orchestration, Management and Policy) platform is the part of the 
larger Network Function Virtualization/Software Defined Network (NFV/SDN) ecosystem that is 
responsible for the efficient control, operation and management of Virtual Network Function (VNF) 
capabilities and functions. It specifies standardized abstractions and interfaces that enable efficient 
interoperation of the NVF/SDN ecosystem components. It enables product/service independent 
capabilities for design, creation and runtime lifecycle management (includes all aspects of installation, 
change management, assurance, and retirement) of resources in NFV/SDN environment (see ECOMP 
white paper1). These capabilities are provided using two major architectural frameworks: (1) a Design 
Time Framework to design, define and program the platform (uniform onboarding), and (2) a Runtime 
Execution Framework to execute the logic programmed in the design environment (uniform delivery and 
runtime lifecycle management). The platform delivers an integrated information model based on the VNF 
package to express the characteristics and behavior of these resources in the Design Time Framework. 
The information model is utilized by Runtime Execution Framework to manage the runtime lifecycle of the 

                                                      
1 ECOMP (Enhanced Control Orchestration, Management & Policy) Architecture White Paper 
(http://about.att.com/content/dam/snrdocs/ecomp.pdf) 

http://att.com/ecomp
http://att.com/ecomp
http://about.att.com/content/dam/snrdocs/ecomp.pdf


 
 

 
Copyright © 2017 AT&T Intellectual Property. All rights reserved. 

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); 
you may not use this documentation except in compliance with the License. 

Page 2 
 

VNFs. The management processes are orchestrated across various modules of OpenECOMP to 
instantiate, configure, scale, monitor, and reconfigure the VNFs using a set of standard APIs provided by 
the VNF developers. 

2. Design Definition 
The OpenECOMP Design Time Framework provides the ability to design NFV resources including VNFs, 
Services, and products. The vendor must provide VNF packages that include a rich set of recipes, 
management and functional interfaces, policies, configuration parameters, and infrastructure 
requirements that can be utilized by the OpenECOMP Design module to onboard and catalog these 
resources. Initially this information may be provided in documents, but in the near future a method will be 
developed to automate as much of the transfer of data as possible to satisfy its long term requirements.  

The current VNF Package Requirement is based on a subset of the Requirements contained in the ETSI 
Document: ETSI GS NFV-MAN 001 v1.1.1 and GS NFV IFA011 V0.3.0 (2015-10) - Network Functions 
Virtualization (NFV), Management and Orchestration, VNF Packaging Specification. 

 

Table 1. VNF Package 

Principle Description  Type ID # 
 2.0.1 

Resource 
Description 

 
 
 
 

 

The VNF Vendor must provide a Manifest File that contains a list of 
all the components in the VNF package. 

Must 10010 

The package must include VNF Identification Data to uniquely 
identify the resource for a given Vendor. The identification data 
must include: an identifier for the VNF, the name of the VNF as 
was given by the VNF Vendor, VNF description, VNF Vendor, and 
version. 

Must 10020 

The VNF Vendor must provide documentation describing VNF 
Management APIs. The document must include information and 
tools for: 

• OpenECOMP to deploy and configure (initially and ongoing) 
the VNF application(s) (e.g., NETCONF APIs). Includes 
description of configurable parameters for the VNF and 
whether the parameters can be configured after VNF 
instantiation. 

• OpenECOMP to monitor the health of the VNF (conditions that 
require healing and/or scaling responses). Includes a 
description of: 
o Parameters that can be monitored for the VNF and event 

records (status, fault, flow, session, call, control plane, 
etc.) generated by the VNF after instantiation. 

o Runtime lifecycle events and related actions (e.g., control 
responses, tests) which can be performed for the VNF. 

Must 10030 

The VNF package must include documentation describing VNF 
Functional APIs that are utilized to build network and application 
services. Provides the externally exposed functional inputs and 
outputs for the VNF, including interface format and protocols 
supported. 

Must 10040 



 
 

 
Copyright © 2017 AT&T Intellectual Property. All rights reserved. 

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); 
you may not use this documentation except in compliance with the License. 

Page 3 
 

The VNF Vendor must provide documentation describing VNF 
Functional Capabilities that are utilized to operationalize the VNF 
and compose complex services. 

Must 10050 

The VNF Vendor must provide information regarding any 
dependency with other VNFs and resources. 

Must 10060 

2.0.2 
Resource 

Configuration 
 

The VNF Vendor must provide a Resource/Device YANG model as 
a foundation for creating the YANG model for configuration. This 
will include VNF attributes/parameters and valid values/attributes 
configurable by policy. 

Must 10070 

The VNF Package must include configuration scripts for boot 
sequence and configuration. 

Must 10080 

The VNF Vendor must provide configurable parameters (if unable 
to conform to YANG model) including VNF attributes/parameters 
and valid values, dynamic attributes and cross parameter 
dependencies (e.g., customer provisioning data). 

Must 10090 

2.0.3 
Resource 

Control Loop 
 

The VNF Vendor must provide documentation for the VNF Policy 
Description to manage the VNF runtime lifecycle. The document 
must include a description of how the policies (conditions and 
actions) are implemented in the VNF.  

Must 10100 

The VNF Package must include documentation describing the 
fault, performance, capacity events/alarms and other event records 
that are made available by the VNF. The document must include:  
• A unique identification string for the specific VNF, a 

description of the problem that caused the error, and steps or 
procedures to perform Root Cause Analysis and resolve the 
issue. 

• All events, severity level (e.g., informational, warning, error) 
and descriptions including causes/fixes if applicable for the 
event.  

• All events (fault, measurement for VNF Scaling, Syslogs, State 
Change and Mobile Flow), that need to be collected at each 
VM, VNFC (defined in VNF Guidelines for Network Cloud and 
OpenECOMP) and for the overall VNF. 

Must 10110 

The VNF Vendor must provide an XML file that contains a list of 
VNF error codes, descriptions of the error, and possible 
causes/corrective action. 

Must 10120 

Provide documentation describing all parameters that are available 
to monitor the VNF after instantiation (includes all counters, OIDs, 
PM data, KPIs, etc., that must be collected for reporting purposes. 
The documentation must include a list of:  
• Monitoring parameters/counters exposed for virtual resource 

management and VNF application management. 
• KPIs and metrics that need to be collected at each VM for 

capacity planning purposes.  
• For each KPI, provide lower and upper limits.  
• When relevant, provide a threshold crossing alert point for 

each KPI at which time scaling rules will apply. 
• For each KPI, identify the suggested actions that need to be 

performed when a threshold crossing alert event is recorded. 

Must 10130 



 
 

 
Copyright © 2017 AT&T Intellectual Property. All rights reserved. 

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); 
you may not use this documentation except in compliance with the License. 

Page 4 
 

• Describe any requirements for the monitoring component of 
tools for Network Cloud automation and management to 
provide these records to components of the VNF. 

• When applicable, provide calculators needed to convert raw 
data into appropriate reporting artifacts. 

The VNF Package must include documentation describing 
supported VNF scaling capabilities and capacity limits (e.g., 
number of users, bandwidth, throughput, concurrent calls). 

Must 10140 

The VNF Package must include documentation describing the 
characteristics for the VNF reliability and high availability. 

Must 10150 

2.0.4 
Compute, 
Network, 
Storage 

Requirements 
 

The VNF Package must include VNF topology that describes basic 
network and application connectivity internal and external to the 
VNF including Link type, KPIs, Bandwidth, QoS (if applicable) for 
each interface. 

Must 10160 

The VNF Package must include VM requirements via a Heat 
template that provides the necessary data for: 
• VM specifications for all VNF components - for hypervisor, 

CPU, memory, storage. 
• Network connections, interface connections, internal and 

external to VNF.  
• High availability redundancy model.  
• Static scaling/growth VM specifications. 

 
Note1: Must comply with the Heat Template Requirements for 
Virtual Network Functions. 
Note2: Must comply with the Network Cloud Specifications defined 
in Example Implementation of Network Cloud. 

Must 10170 

The VNF Vendor must provide the binaries and images needed to 
instantiate the VNF (VNF and VNFC images). 

Must 10180 

The VNF Vendor must describe scaling capabilities to manage 
scaling characteristics of the VNF. 

Must 10190 

2.0.5 
Testing 

 

The VNF Package must include documentation describing the tests 
that were conducted by the Vendor and the test results. 

Must 10200 

The VNF Vendor must provide their testing scripts to support 
testing.  

Must 10210 

The VNF Vendor must provide software components that can be 
packaged with/near the VNF, if needed, to simulate any functions 
or systems that connect to the VNF system under test. This 
component is necessary only if the existing testing environment 
does not have the necessary simulators. 

Must 10220 

 2.0.6 
Licensing 
Guidelines 

 
 
 

 

VNFs must provide metrics (e.g., number of sessions, number of 
subscribers, number of seats, etc.) to OpenECOMP for tracking 
every license. 

Must 10230 

Contract shall define the reporting process and the available 
reporting tools. The vendor will have to agree to the process that 
can be met by Service Provider reporting infrastructure. 

Must 10240 

VNF vendors shall enumerate all of the open source licenses their 
VNF(s) incorporate. 

Must 10250 

Audits of Service Provider’s business must not be required. Must 10260 



 
 

 
Copyright © 2017 AT&T Intellectual Property. All rights reserved. 

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); 
you may not use this documentation except in compliance with the License. 

Page 5 
 

Vendor functions and metrics that require additional infrastructure 
such as a vendor license server for deployment shall not be 
supported. 

Must 10270 

Provide clear measurements for licensing purposes to allow 
automated scale up/down by the management system. 

Must 10280 

The vendor must provide the ability to scale up a vendor supplied 
product during growth and scale down a vendor supplied product 
during decline without “real-time” restrictions based upon vendor 
permissions. 

Must 10290 

A universal license key must be provided per VNF to be used as 
needed by services (i.e., not tied to a VM instance) as the 
recommended solution. The vendor may provide pools of Unique 
VNF License Keys, where there is a unique key for each VNF 
instance as an alternate solution. Licensing issues should be 
resolved without interrupting in-service VNFs. 

Must 10300 

3. Configuration Management 
OpenECOMP interacts directly with VNFs through its Network and Application Adapters to perform 
configuration activities within NFV environment. These activities include service and resource 
configuration/reconfiguration, automated scaling of resources, service and resource removal to support 
runtime lifecycle management of VNFs and services. The Adapters employ a model driven approach 
along with standardized APIs provided by the VNF developers to configure resources and manage their 
runtime lifecycle. 

3.1 NETCONF Standards and Capabilities 
OpenECOMP Controllers and their Adapters utilize device YANG model and NETCONF APIs to make the 
required changes in the VNF state and configuration. The VNF providers must provide the Device YANG 
model and NETCONF server supporting NETCONF APIs to comply with target OpenECOMP and 
industry standards. 

Table 2. VNF Configuration 

Principle Description Type ID # 
 3.1.1 
Configuration 
Management 
 

Virtual Network functions (VNFs) must include a NETCONF server 
enabling runtime configuration and lifecycle management 
capabilities. The NETCONF server embedded in VNFs shall 
provide a NETCONF interface fully defined by supplied YANG 
models. 

Must 11010 

3.1.2 
NETCONF 

Server 
Requirements 

 

NETCONF server connection parameters shall be configurable 
during virtual machine instantiation through Heat templates where 
SSH keys, usernames, passwords, SSH service and SSH port 
numbers are Heat template parameters. 

Must 11020 

Following protocol operations must be implemented: 
close-session()- Gracefully close the current session. 
commit(confirmed, confirm-timeout) - Commit candidate 
configuration datastore to the running configuration. 

Must 

 
 

11030 



 
 

 
Copyright © 2017 AT&T Intellectual Property. All rights reserved. 

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); 
you may not use this documentation except in compliance with the License. 

Page 6 
 

copy-config(target, source) - Copy the content of the 
configuration datastore source to the configuration datastore 
target. 
delete-config(target) - Delete the named configuration 
datastore target. 
discard-changes() - Revert the candidate configuration 
datastore to the running configuration  
edit-config(target, default-operation, test-option, error-
option, config) - Edit the target configuration datastore by 
merging, replacing, creating, or deleting new config elements. 
get(filter) - Retrieve (a filtered subset of a) the running 
configuration and device state information. This should include 
the list of VNF supported schemas. 
get-config(source, filter) - Retrieve a (filtered subset of a) 
configuration from the configuration datastore source. 
kill-session(session) - Force the termination of session. 
lock(target) - Lock the configuration datastore target. 
unlock(target) - Unlock the configuration datastore target. 

 
Following protocol operations should be implemented: 

copy-config(target, source) - Copy the content of the 
configuration datastore source to the configuration datastore 
target. 
delete-config(target) - Delete the named configuration 
datastore target. 
get-schema(identifier, version, format) - Retrieve the Yang 
schema. 

Should 11040 

All configuration data shall be editable through a NETCONF <edit-
config> operation. Proprietary NETCONF RPCs that make 
configuration changes are not sufficient. 

Must 

 

11050 

By default, the entire configuration of the VNF must be retrievable 
via NETCONF's <get-config> and <edit-config>, independently of 
whether it was configured via NETCONF or other mechanisms. 

Must 11060 

The :partial-lock and :partial-unlock capabilities, defined in RFC 
5717 must be supported. This allows multiple independent clients 
to each write to a different part of the <running> configuration at 
the same time. 

Must 11070 

The :rollback-on-error value for the <error-option> parameter to 
the <edit-config> operation must be supported. If any error occurs 
during the requested edit operation, then the target database 
(usually the running configuration) will be left affected. This 
provides an 'all-or-nothing' edit mode for a single <edit-config> 
request.  

Must 11080 

The server must support the :startup capability. It will allow 
the running configuration to be copied to this special 
database. It can also be locked, and unlocked. 

Must 11090 

The :url value must be supported to specify protocol operation 
source and target parameters. The capability URI for this feature 
will indicate which schemes (e.g., file, https, sftp) that the server 
supports within a particular URL value. The 'file' scheme allows for 

Must 11100 



 
 

 
Copyright © 2017 AT&T Intellectual Property. All rights reserved. 

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); 
you may not use this documentation except in compliance with the License. 

Page 7 
 

editable local configuration databases. The other schemes allow 
for remote storage of configuration databases. 

At least one of the capabilities :candidate or :writable-running 
must be implemented. If both :candidate and :writable-running 
are provided then two locks should be supported. 

Must 11110 

The server must fully support the XPath 1.0 specification for filtered 
retrieval of configuration and other database contents. The 'type' 
attribute within the <filter> parameter for <get> and <get-config> 
operations may be set to 'xpath'. The 'select' attribute (which 
contains the XPath expression) will also be supported by the 
server. A server may support partial XPath retrieval filtering, but it 
cannot advertise the :xpath capability unless the entire XPath 1.0 
specification is supported. 

Must 11120 

The :validate capability must be implemented. Must 11130 

If :candidate is supported, :confirmed-commit must be 
implemented. 

Must 11140 

The :with-defaults capability [RFC6243] shall be implemented. Must 11150 

Data model discovery and download as defined in [RFC6022] shall 
be implemented.  

Must 11160 

NETCONF Event Notifications [RFC5277] should be implemented. Should 11170 

All data models shall be defined in YANG [RFC6020], and the 
mapping to NETCONF shall follow the rules defined in this RFC. 

Must 11180 

The data model upgrade rules defined in [RFC6020] section 10 
should be followed. All deviations from section 10 rules shall be 
handled by a built-in automatic upgrade mechanism. 

Must 11190 

The VNF must support parallel and simultaneous configuration of 
separate objects within itself. 

Must 11200 

Locking is required if a common object is being manipulated by two 
simultaneous NETCONF configuration operations on the same 
VNF within the context of the same writable running data store 
(e.g., if an interface parameter is being configured then it should be 
locked out for configuration by a simultaneous configuration 
operation on that same interface parameter). 

Must 11210 

Locking must be applied based on the sequence of NETCONF 
operations, with the first configuration operation locking out all 
others until completed. 

Must 11220 

If a VNF needs to lock an object for configuration, the lock must be 
permitted at the finest granularity to avoid blocking simultaneous 
configuration operations on unrelated objects (e.g., BGP 
configuration should not be locked out if an interface is being 
configured, Entire Interface configuration should not be locked out 
if a non-overlapping parameter on the interface is being 
configured). The granularity of the lock must be able to be specified 
via a restricted or full XPath expression. 

Must 
 
 

11230 

All simultaneous configuration operations should guarantee the 
VNF configuration integrity (for example: if a change is attempted 
to the BUM filter rate from multiple interfaces on the same EVC, 

Must 11240 



 
 

 
Copyright © 2017 AT&T Intellectual Property. All rights reserved. 

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); 
you may not use this documentation except in compliance with the License. 

Page 8 
 

then they need to be sequenced in the VNF without locking either 
configuration method out) 

To prevent permanent lock-outs, locks must be released: 
a. when/if a session applying the lock is terminated (e.g., SSH 

session is terminated) 
b. the corresponding <partial-unlock> operation succeeds 
c. a user configured timer has expired forcing the NETCONF 

SSH Session termination (i.e., product must expose a 
configuration knob for a user setting of a lock expiration timer) 

 
Additionally, to guard against hung NETCONF sessions, another 
NETCONF session should be able to initiate the release of the lock 
by killing the session owning the lock, using the <kill-session> 
operation. 

Must 
 
 
 
 

11250 

The VNF should support simultaneous <commit> operations within 
the context of this locking requirements framework. 

Must 11260 

The supplied YANG code and associated NETCONF servers shall 
support all operations, administration and management (OAM) 
functions available from the supplier for VNFs. 

Must 11270 

Sub tree filtering must be supported. Must 11280 

Heartbeat via a <get> with null filter shall be supported. Must 11290 

Get-schema (ietf-netconf-monitoring) must be supported to pull 
YANG model over session. 

Must 11300 

The supplied YANG code shall be validated using the open source 
pyang2 program using the following commands: 
$ pyang --verbose --strict <YANG-file-name(s)> 
$ echo $! 

Must 11310 

The echo command must return a zero value otherwise the 
validation has failed. 

Must 11320 

The supplier shall demonstrate mounting the NETCONF server on 
OpenDaylight (client) and: 
• Modify, update, change, rollback configurations using each 

configuration data element. 
• Query each state (non-configuration) data element.  
• Execute each YANG RPC. 
• Receive data through each notification statement. 

Must 11330 

 

The following table provides the Yang models that suppliers must conform, and those where applicable, 
that suppliers need to use. 

Table 3. YANG Models 

RFC Description Type ID # 
RFC 
6020 

YANG - A Data Modeling Language for the Network 
Configuration Protocol (NETCONF) 

Must 12010 

                                                      
2 https://github.com/mbj4668/pyang  

https://github.com/mbj4668/pyang


 
 

 
Copyright © 2017 AT&T Intellectual Property. All rights reserved. 

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); 
you may not use this documentation except in compliance with the License. 

Page 9 
 

RFC 
6022 

YANG module for NETCONF monitoring Must 12020 

RFC 
6470 

NETCONF Base Notifications Must 12030 

RFC 
6244 

An Architecture for Network Management Using NETCONF and 
YANG 

Must 12040 

RFC 
6087 

Guidelines for Authors and Reviewers of YANG Data Model 
Documents 

Must 12050 

RFC 
6991 

Common YANG Data Types Should 12060 

RFC 
6536 

NETCONF Access Control Model Should 12070 

RFC 
7223 

A YANG Data Model for Interface Management Should 12080 

RFC 
7224 

IANA Interface Type YANG Module Should 12090 

RFC 
7277 

A YANG Data Model for IP Management Should 12100 

RFC 
7317 

A YANG Data Model for System Management Should 12110 

RFC 
7407 

A YANG Data Model for SNMP Configuration Should 12120 

 

The NETCONF server interface shall fully conform to the following NETCONF RFCs. 

Table 4. NETCONF RFCs 

RFC Description Type ID # 
RFC 
4741 

NETCONF Configuration Protocol Must 12130 

RFC 
4742 

Using the NETCONF Configuration Protocol over Secure Shell 
(SSH) 

Must 12140 

RFC 
5277 

NETCONF Event Notification Must 12150 

RFC 
5717 

Partial Lock Remote Procedure Call Must 12160 

RFC 
6241 

NETCONF Configuration Protocol Must 12170 

RFC 
6242 

Using the Network Configuration Protocol over Secure Shell Must 12180 

 

3.2 VNF REST APIs  
Healthcheck is a command for which no NETCONF support exists. Therefore, this must be supported 
using a RESTful interface which we have defined. 

The VNF must provide two REST formatted RPCs to support Healthcheck queries via the GET method 
over HTTP(s). 



 
 

 
Copyright © 2017 AT&T Intellectual Property. All rights reserved. 

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); 
you may not use this documentation except in compliance with the License. 

Page 10 
 

Table 5. VNF REST APIs 

Principal Description Type ID # 
 3.2.1 
REST APIs 

 

GET /check - The /check RPC, executes a vendor-defined VNF 
Healthcheck over the scope of the entire VNF (e.g if there are 
multiple VMs, then run a health check, as appropriate, for all VMs). 
/check returns a 200 OK if the test passes and a 50x response if 
the test fails. The precise failure code may depend upon type of 
failure (process error, overload etc.). A JSON object is returned 
indicating state, scope identifier, time-stamp and info field as well 
as an optional fault field. 
For example:     

503 Threshold Exceeded 

{ 

  "identifier": "scope represented", 

  "info": "System threshold exceeded 
details",  

  "fault": 

    {  

      "cpuOverall": 0.80, 

      "cpuThreshold": 0.45     

    },      

  "time": "01-01-1000:0000" 
              } 

Must 12190 

GET /status - The /status RPC returns a 200 OK code and state 
of the VNF (resources utilized) in the form of a nested JSON 
response (multiple resources for each VM within the VNF). 
For example: 

 { 

  "identifier": "scope represented", 

  "stats": 

    { 

           "vm_123": 

        { 

          "cpuOverall": 0.32 

          "usedMemory": 1000 

          "totalMemory": 2000   

        } 

    }, 

  "time": "01-01-1000:0000" 

} 

Must 12200 

 



 
 

 
Copyright © 2017 AT&T Intellectual Property. All rights reserved. 

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); 
you may not use this documentation except in compliance with the License. 

Page 11 
 

 

3.3 OpenECOMP Controller APIs and Behavior 
OpenECOMP Controllers support the following operations which act directly upon the VNF. Most of these 
utilize the NETCONF interface. There are additional commands in use but these either act internally on 
Controller itself or depend upon network cloud components for implementation. Those actions do not put 
any special requirement on the VNF provider. 

The following table summarizes how the VNF must act in response to commands from OpenECOMP. 

Table 6. OpenECOMP Controller APIs 

Action Description VNF Action NETCONF COMMANDs 

Action 
Status 

Queries OpenECOMP Controller for 
the current state of a previously 
submitted runtime LCM (Lifecycle 
Management) action. 

Checks if VNF is busy. Current 
operation depends on a completion 
code from any previous operation. In 
the future a positive 
acknowledgement of busy status 
may be useful to handle ambiguous 
conditions. However, at this time 
none is being used. 

<none> 

Audit 
 

Compare active configuration against 
a configuration stored in 
OpenECOMP’s configuration store. 

Retrieve running configuration and 
device state information. Get-config 
updates the config tree which can 
then be compared to the stored 
current config in the OpenECOMP 
database. 

get-config 

Check 
Lock 

 

Returns true when the given VNF has 
been locked. 

VnfLock may have been used to 
lock the VNF. There is currently no 
way to query lock state in 
NETCONF so locked state is 
managed internally by 
OpenECOMP. 

<none> 

Configure 
 

Configures the target VNF or VNFC. The <edit-config> operation loads all 
or part of a specified configuration 
data set to the specified target VNF. 
 

edit-config, commit 

Health 
Check 

 

Executes a VNF health check and 
returns the result. A health check is 
VNF-specific. 

The OpenECOMP health check 
interface is defined over REST and 
requires the target VNF to expose a 
standardized HTTP(S) interface for 
that purpose. Return the health 
status of the VNF by performing (via 
any vendor-specific means) internal 
checks of needed resources, 
process states, etc. The specific 
errors returned can be used to 
indicate the source of the problem. 
OpenECOMP will generate error 
events for all reported health 
problems. 

REST API 
GET /check 
GET /status 

Live 
Upgrade 

 

Upgrades the target VNF to a new 
version without interrupting VNF 
operation. 

Supported today on some VNFs via 
CLI only (the CLI use is an interim 
solution) 

load, restart 

<mount> 
This is an internal Controller 
operation used to create config-tree 
and operations tree in the controller. 

OpenECOMP must retrieve a 
schema definition from the VNF. 
The NETCONF server returns the 

get, get-schema 



 
 

 
Copyright © 2017 AT&T Intellectual Property. All rights reserved. 

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); 
you may not use this documentation except in compliance with the License. 

Page 12 
 

 requested schema. During session 
establishment OpenECOMP issues 
a NETCONF <get> command which 
will retrieve all running configuration 
parameters, all running operational 
parameters and a list of NETCONF 
schemas. OpenECOMP retrieves 
the schemas to create a Yang 
model describing the parameters 
used by the VNF and legal values 
for each parameter (patterns or 
ranges). The schemas tell 
OpenECOMP what parameters can 
be set and what constitute legal 
values for those parameters. 

Config 
Modify 

 

The ConfigModify LCM action affects 
only a subset of the total 
configuration data of a VNF. It can be 
used to change specific parameters 
across a number of separate 
instances for the same VnfcType 
without changing instance specific 
values of each. It can also be used to 
make successive changes to a 
number of parameters where those 
changes are considered cumulative. 
Thus each ConfigModify invocation 
leaves previous values untouched 
and only edits the parameters which 
are sent to OpenECOMP. 

The <edit-config> operation loads 
only a part of the full set of 
configuration parameters to the 
specified target configuration without 
changing any existing parameters. 

edit-config, commit 
 

 

Config 
Save 

 

Saves a VNF’s running configuration 
into the configuration store in 
OpenECOMP, for later retrieval. 

(optional) If copy-config to a local file 
is supported by the VNFC this 
command is used to store the 
running config locally in order to 
save time on any subsequent 
Reconfigure. To support this action, 
the VNF must allow <copy-config> 
to save to a local file and must 
support subsequent retrieval of the 
copied configuration back to the 
running configuration. If this 
capability is not supported, 
OpenECOMP will still function, but 
updates will take longer. 

copy-config, delete-config 

Reconfigure 
 

Reconfigure a VNF to some 
previously stored baseline 
configuration stored by a previous 
ConfigSetBaseline. 

If a previous config has been saved 
locally, and designated as the 
baseline configuration, use quick 
restore (<copy-config> from file). If 
the restore fails, fallback to a 
process of changing the 
configuration value by value using 
<edit-config> and referencing the 
SQL values stored by APP-C. 

edit-config or copy-config 
 

Config 
Restore 

 

Reconfigure a VNF to some 
previously stored baseline 
configuration stored by a previous 
ConfigSetBaseline. 

If a previous config has been saved 
locally use quick restore (<copy-
config> from file). If the restore fails, 
fallback to a process of changing the 
configuration value by value using 
<edit-config>. 

edit-config or copy-config 
 



 
 

 
Copyright © 2017 AT&T Intellectual Property. All rights reserved. 

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); 
you may not use this documentation except in compliance with the License. 

Page 13 
 

 

4. Monitoring & Management 
This section addresses data collection and event processing functionality that is directly dependent on the 
interfaces provided by the VNFs’ APIs. These can be in the form of Asynchronous interfaces for event, 
fault notifications, and autonomous data streams. They can also be Synchronous interfaces for on-
demand requests to retrieve various performance, usage, and other event information. 

The target direction for VNF interfaces is to employ APIs that are implemented utilizing standardized 
messaging and modeling protocols over standardized transports. Migrating to a virtualized environment 
presents a tremendous opportunity to eliminate the need for proprietary interfaces for vendor equipment 
while removing the traditional boundaries between Network Management Systems and Element 
Management Systems. Additionally, VNFs provide the ability to instrument the networking applications by 
creating event records to test and monitor end-to-end data flow through the network, similar to what 
physical or virtual probes provide without the need to insert probes at various points in the network. The 
VNF vendors must be able to provide the aforementioned set of required data directly to the 
OpenECOMP collection layer using standardized interfaces. 

4.1 Transports and Protocols Supporting Resource Interfaces 
Delivery of data from VNFs to OpenECOMP must use the same common transport mechanisms and 
protocols for all VNFs. Transport mechanisms and protocols have been selected to enable both high 
volume and moderate volume datasets, as well as asynchronous and synchronous communications over 
secure connections. The specified encoding provides self-documenting content, so data fields can be 
changed as needs evolve, while minimizing changes to data delivery. 

The term ‘Event Record’ is used throughout this document to represent various forms 
instrumentation/telemetry made available by the VNF including, faults, status events and various other 
types of VNF measurements and logs. Headers received by themselves must be used as heartbeat 
indicators. The common structure and delivery protocols for other types of data will be given in future 
versions of this document as we get more insight into data volumes and required processing.  

In the following guidelines we provide options for encoding, serialization and data delivery. Agreements 
between Service Providers and VNF vendors shall determine which encoding, serialization and delivery 
method to use for particular data sets. The selected methods must be agreed to prior to the on-boarding 
of the VNF into OpenECOMP design studio. 

Sync 
 

Updates the current configuration of a 
VNF in OpenECOMP’s SQL 
configuration storage repository by 
uploading the running config. Useful if 
the current and running 
configurations do not match as 
determined by a previous Audit call. 

Retrieve running config from VNF 
 

 

get, get-config 
 

VNFLock 
 

Lock or Unlock a VNF to ensure 
exclusive access during a series of 
critical steps. 

The lock operation allows the client 
to lock the configuration system of a 
device. 

lock, unlock 



 
 

 
Copyright © 2017 AT&T Intellectual Property. All rights reserved. 

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); 
you may not use this documentation except in compliance with the License. 

Page 14 
 

Table 7. Monitoring & Management 

Principle Description Type ID # 
 4.1.1 
Encoding and 
Serialization 

 
 
 

 

Content delivered from VNFs to OpenECOMP is to be encoded 
and serialized using JSON (option 1). High-volume data is to be 
encoded and serialized using Avro, where Avro data format are 
described using JSON (option 2)3. 
• JSON plain text format is preferred for moderate volume data 

sets (option 1), as JSON has the advantage of having well-
understood simple processing and being human-readable 
without additional decoding. Examples of moderate volume 
data sets include the fault alarms and performance alerts, 
heartbeat messages, measurements used for VNF scaling 
and syslogs. 

• Binary format using Avro is preferred for high volume data 
sets (option 2) such as mobility flow measurements and other 
high-volume streaming events (such as mobility signaling 
events or SIP signaling) or bulk data, as this will significantly 
reduce the volume of data to be transmitted. As of the date of 
this document, all events are reported using plain text JSON 
and REST. 

• Avro content is self-documented, using a JSON schema. The 
JSON schema is delivered along with the data content 
(http://avro.apache.org/docs/current/ ). This means the 
presence and position of data fields can be recognized 
automatically, as well as the data format, definition and other 
attributes. Avro content can be serialized as JSON tagged 
text or as binary. In binary format, the JSON schema is 
included as a separate data block, so the content is not 
tagged, further compressing the volume. For streaming data, 
Avro will read the schema when the stream is established 
and apply the schema to the received content. 

• In the future, we may consider support for other types of 
encoding & serialization (e.g., gRPC) based on industry 
demand. 

Must 13010 

4.1.2 
Reporting 
Frequency  

The frequency that asynchronous data is delivered will vary based 
on the content and how data may be aggregated or grouped 
together. For example, alarms and alerts are expected to be 
delivered as soon as they appear. In contrast, other content, such 
as performance measurements, KPIs or reported network signaling 
may have various ways of packaging and delivering content. Some 
content should be streamed immediately; or content may be 
monitored over a time interval, then packaged as collection of 
records and delivered as block; or data may be collected until a 
package of a certain size has been collected; or content may be 
summarized statistically over a time interval, or computed as a KPI, 
with the summary or KPI being delivered.  
• We expect the reporting frequency to be configurable 

depending on the virtual network function’s needs for 
management. For example, Service Provider may choose to 
vary the frequency of collection between normal and trouble-
shooting scenarios. 

Must 13020 

                                                      
3 This option is not currently supported in OpenECOMP and it is currently under consideration. 

http://avro.apache.org/docs/current/


 
 

 
Copyright © 2017 AT&T Intellectual Property. All rights reserved. 

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); 
you may not use this documentation except in compliance with the License. 

Page 15 
 

• Decisions about the frequency of data reporting will affect the 
size of delivered data sets, recommended delivery method, 
and how the data will be interpreted by OpenECOMP. 
However, this should not affect deserialization and decoding 
of the data, which will be guided by the accompanying JSON 
schema. 

4.1.3 
Addressing 
and Delivery 

Protocol  

OpenECOMP destinations can be addressed by URLs for RESTful 
data PUT. Future data sets may also be addressed by host name 
and port number for TCP streaming, or by host name and landing 
zone directory for SFTP transfer of bulk files.  
• REST using HTTPS delivery of plain text JSON is preferred 

for moderate sized asynchronous data sets, and for high 
volume data sets when feasible.  

•  VNFs must have the capability of maintaining a primary and 
backup DNS name (URL) for connecting to OpenECOMP 
collectors, with the ability to switch between addresses based 
on conditions defined by policy such as time-outs, and 
buffering to store messages until they can be delivered. At its 
discretion, the service provider may choose to populate only 
one collector address for a VNF. In this case, the network will 
promptly resolve connectivity problems caused by a collector 
or network failure transparently to the VNF. 

• VNFs will be configured with initial address(es) to use at 
deployment time. After that the address(es) may be changed 
through OpenECOMP-defined policies delivered from 
OpenECOMP to the VNF using PUTs to a RESTful API, in 
the same way that other controls over data reporting will be 
controlled by policy. 

• Other options are expected to include: 
o REST delivery of binary encoded data sets. 
o TCP for high volume streaming asynchronous data sets 

and for other high volume data sets. TCP delivery can be 
used for either JSON or binary encoded data sets. 

o SFTP for asynchronous bulk files, such as bulk files that 
contain large volumes of data collected over a long time 
interval or data collected across many VNFs. This is not 
preferred. Preferred is to reorganize the data into more 
frequent or more focused data sets, and deliver these by 
REST or TCP as appropriate. 

o REST for synchronous data, using RESTCONF (e.g., for 
VNF state polling). 

• The OpenECOMP addresses as data destinations for each 
VNF must be provided by OpenECOMP Policy, and may be 
changed by Policy while the VNF is in operation. We expect 
the VNF to be capable of redirecting traffic to changed 
destinations with no loss of data, for example from one 
REST URL to another, or from one TCP host and port to 
another. 

Must 13030 

4.1.4 
Asynchronous 

and 

VNFs are to deliver asynchronous data as data becomes available, 
or according to the configured frequency. The delivered data must 
be encoded using JSON or Avro, addressed and delivered as 
described in the previous paragraphs. 

Must 13040 



 
 

 
Copyright © 2017 AT&T Intellectual Property. All rights reserved. 

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); 
you may not use this documentation except in compliance with the License. 

Page 16 
 

Synchronous 
Data Delivery  

VNFs are to respond to data requests from OpenECOMP as soon 
as those requests are received, as a synchronous response. 

Must 13050 

Synchronous communication must leverage the 
RESTCONF/NETCONF framework used by the OpenECOMP 
configuration subsystem. This shall include using YANG 
configuration models and RESTCONF 
(https://tools.ietf.org/html/draft-ietf-netconf-restconf-09#page-46). 

Must 13060 

The VNF must respond with content encoded in JSON, as 
described in the RESTCONF specification. This way the encoding 
of a synchronous communication will be consistent with Avro. 

Must 13070 

OpenECOMP may request the VNF to deliver the current data for 
any of the record types defined in Section 4.2 below. The VNF 
must respond by returning the requested record, populated with the 
current field values. (Currently the defined record types include 
fault fields, mobile flow fields, measurements for VNF scaling 
fields, and syslog fields. Other record types will be added in the 
future as they become standardized and are available). 

Must 13080 

OpenECOMP may request the VNF to deliver granular data on 
device or subsystem status or performance, referencing the YANG 
configuration model for the VNF. The VNF must respond by 
returning the requested data elements. 

Must 13090 

YANG models can be translated to and from JSON 
(https://trac.tools.ietf.org/id/draft-lhotka-netmod-yang-json-00.html), 
meaning YANG configuration and content can be represented via 
JSON, consistent with Avro, as described in “Encoding and 
Serialization” section. 

Must 13100 

4.1.5 
Security  

VNFs must support secure connections and transports. Must 13110 

Access to OpenECOMP and to VNFs, and creation of connections, 
must be controlled through secure credentials, log-on and 
exchange mechanisms. 

Must 13120 

Data in motion must be carried only over secure connections. Must 13130 

Service Providers require that any content containing Sensitive 
Personal Information (SPI) or certain proprietary data must be 
encrypted, in addition to applying the regular procedures for 
securing access and delivery. 

Must 13140 

 

4.2 Data Model for Event Records  
This section describes the data model for the collection of telemetry data from VNFs by Service Providers 
(SPs) to manage VNF health and runtime lifecycle. This data model is referred to as the VNF Event 
Streaming (VES) specifications. OPNFV has a VES project4 that provides a holistic solution for 
OpenStack’s internal telemetry to manage Application (VNFs), Physical and virtual infrastructure 
(compute, storage, network devices), and virtual infrastructure managers (cloud controllers, SDN 
controllers). Note that any configurable parameters for these data records (e.g., frequency, granularity, 
policy-based configuration) will be managed using the “Configuration” framework described in the prior 
sections. 

The Data Model consists of:   

                                                      
4 https://wiki.opnfv.org/display/PROJ/VNF+Event+Stream 

https://tools.ietf.org/html/draft-ietf-netconf-restconf-09#page-46
https://trac.tools.ietf.org/id/draft-lhotka-netmod-yang-json-00.html
https://wiki.opnfv.org/display/PROJ/VNF+Event+Stream


 
 

 
Copyright © 2017 AT&T Intellectual Property. All rights reserved. 

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); 
you may not use this documentation except in compliance with the License. 

Page 17 
 

• Common Header Record: This precedes each of the domain-specific records. 
• Domain Specific Event Records. This version of the document specifies the model for Fault, 

Performance, Syslog, State Change, and Mobile Flow records. In the future, these will be 
extended to support other types of records (e.g., Signaling or control plane messages, probe-less 
monitoring records, Status Records, Security records, etc.). Each of these records allows 
additional fields (name value pairs) for extensibility. The VNF vendors can use these VNF-specific 
additional fields to provide additional information that may be relevant to the managing systems. 

 

Header

Domain
VNF Attribute
Timing

Name/Value

Fault

Severity
Source
SpecProb

Measurements 
for VF Scaling
KPI
KCI
VNF Scaling

SysLogs

Facility
Data
Proc…..

MobileFlow

RptEndPt
OthEndPt
Flow…...

Name/Value

Name/Value Name/Value Name/Value Name/Value

Potential 
Future 

Domains
CLF
Usage
Configuration
Signaling

…..

StateChange

OldState
NewState
StateInterface

Acronyms:
CLF – Control Loop Functions
KCI – Key Capacity Indicators
KPI – Key Performance Indicators
VNF – Virtual Network Function  

Figure 1. Data Model for Event Records 

4.3 Event Records - Data Structure Description 
The data structure for event records consists of a Header Block and zero (heartbeat would only have 
header) or more event domain blocks (e.g., Common Fault Event domain, Common Performance Event 
domain, Common Syslog Event domain, Specialized Mobile Flow Event Domain, etc.). The tables in 
Appendix A present the details for the Common Header and other specific record types. 

4.3.1 Common Event Header 
The common header that precedes any of the domain-specific records contains information identifying the 
type of record to follow, information about the sender and other identifying characteristics related to 
timestamp, sequence number, etc. The table A.1 in Appendix A describes the structure for the common 
header. 

4.3.2 Event Data Structure – Fault Fields 
The Fault Record, describing a condition in the Fault domain, contains information about the fault such as 
the entity under fault, the severity, resulting status, etc. The table A.2 in Appendix A describes the 
structure for the fault record. 



 
 

 
Copyright © 2017 AT&T Intellectual Property. All rights reserved. 

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); 
you may not use this documentation except in compliance with the License. 

Page 18 
 

4.3.3 Event Data Structure – Measurements for VNF Scaling Fields 
The VNF Scaling Record contains information about VNF resource structure and its condition to help in 
the management of the resources for purposes of elastic scaling. The table A.3 in Appendix A describes 
the structure for the VNF Scaling record. 

4.3.4 Event Data Structure – Syslog Fields 
The Syslog Record provides a structure for communicating any type of information that may be logged by 
the VNF. It can contain information about system internal events, status, errors, etc. The table A.4 in 
Appendix A describes the structure for the Syslog record. 

4.3.5 Event Data Structure – State Change Fields 
The State change domain provides a structure for communicating information about data flow through the 
VNF. It can contain information about state change related to Physical device that is reported by VNF. As 
an example when cards or port name of the entity that has changed state. The table A.5 in Appendix A 
describes the structure of the State Change record. 

4.3.6 Event Data Structure – Mobile Flow Fields 
The Mobile Flow Record provides a structure for communicating information about data flow through the 
VNF. It can contain information about connectivity and data flows between serving elements for mobile 
service, such as between LTE reference points, etc. The table A.6 in Appendix A describes the structure 
for the Mobile Flow record. 

 



 
 

 
Copyright © 2017 AT&T Intellectual Property. All rights reserved. 

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); 
you may not use this documentation except in compliance with the License. 

Page 19 
 

Appendix A – Data Record Format 
The following provides additional information on the event record formats for the following data structures (for complete information, please refer to 
AT&T Service Specification; Service: VES Event Listener, revision 4.0, dated Jan 5th, 2017): 

• Common Event Header 
• Fault Fields 
• Measurements for VF Scaling Fields 
• Syslog Fields 
• State Change Fields 
• Mobile Flow Fields 

A.1 EVENT RECORDS – Common Event Header 
Field Type Required? Description 

version number No Version of the event header (currently: 2.0) 
eventType string No Unique event topic name 
domain string Yes Event domain enumeration: ‘fault’, ‘heartbeat’, ‘measurementsForVfScaling’, 

‘mobileFlow’, ‘other’, ‘stateChange’, ‘syslog’, ‘thresholdCrossingAlert’ 
eventId string Yes Event key that is unique to the event source 
sourceId string No UUID identifying the entity experiencing the event issue (note: the AT&T internal 

enrichment process shall ensure that this field is populated) 
sourceName string Yes Name of the entity experiencing the event issue  
functionalRole string Yes Function of the event source e.g., eNodeB, MME, PCRF 
reportingEntityId string No UUID identifying the entity reporting the event, for example an OAM VM (note: the 

AT&T internal enrichment process shall ensure that this field is populated) 
reportingEntityName string Yes Name of the entity reporting the event, for example, an OAM VM 
priority string Yes Processing priority enumeration: ‘High’, ‘Medium’, ‘Normal’, ‘Low’ 
startEpochMicrosec number Yes the earliest unix time aka epoch time associated with the event from any 

component--as microseconds elapsed since 1 Jan 1970 not including leap seconds 
lastEpochMicrosec number Yes the latest unix time aka epoch time associated with the event from any component--

as microseconds elapsed since 1 Jan 1970 not including leap seconds 
sequence integer Yes Ordering of events communicated by an event source instance (or 0 if not needed) 
internalHeader Fields object No Fields (not supplied by event sources) that the VES Event Listener service can use 

to enrich the event if needed for efficient internal processing.  This is an empty 
object which is intended to be defined separately by each provider implementing 
the VES Event Listener.  

 

A.2 EVENT RECORDS – Fault Fields 
Field Type Required? Description 



 
 

 
Copyright © 2017 AT&T Intellectual Property. All rights reserved. 

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); 
you may not use this documentation except in compliance with the License. 

Page 20 
 

faultFieldsVersion number No Version of the faultFields block (currently: 1.1) 
eventSeverity string Yes Event severity or priority enumeration: ‘CRITICAL’, ‘MAJOR’, ‘MINOR’, ‘WARNING’, 

‘NORMAL’ 
eventSourceType string Yes Examples: ‘other’, ‘router’, ‘switch’, ‘host’, ‘card’, ‘port’, ‘slotThreshold’, 

‘portThreshold’, ‘virtualMachine’, ‘virtualNetworkFunction’ 
alarmCondition string Yes Alarm condition reported by the device 
specificProblem string Yes Short description of the alarm or problem 
vfStatus string Yes Virtual function status enumeration: ‘Active’, ‘Idle’, ‘Preparing to terminate’, ‘Ready 

to terminate’, ‘Requesting Termination’ 
alarmtInterfaceA string No Card, port, channel or interface name of the device generating the alarm 
alarmAdditional Information Name-value 

pair object 
array 

No Expressed as an array of name-value pairs which can be used to describe 
additional Information related to Alarm, such as Repair Action, Remedy code….May 
by serialized alarm payload: varbind list, original syslog message, notification 
parameters, etc. when event is generated via other means, should provide raw 
detail out of element.  

 

  



 
 

 
Copyright © 2017 AT&T Intellectual Property. All rights reserved. 

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); 
you may not use this documentation except in compliance with the License. 

Page 21 
 

A.3 EVENT RECORDS – Measurements for VF Scaling Fields  
Field Type Required

? 
Description 

measurementsForVfScaling
FieldsVersion 

number No Version of the measurementsForVfScalingFields block (currently: 1.1) 

additionalMeasurements object 
array 

No Expressed as an array of measurementGroup objects, each of which contains a 
measurement group along with an array of name-value pair fields. Can be used to 
provide additional measurement fields 

aggregateCpuUsage number No Aggregate CPU usage of the VM on which the VNFC reporting the event is running 
codecUsageArray Array No Expressed as an array of codecsInUse objects, each of which contains a string 

identifying the codec, along with a number indicating the number of such codecs in 
use.  

concurrentSessions number No Peak concurrent sessions for the VM or VNF (depending on the context) over the 
measurementInterval 

configuredEntities number No Depending on the context over the measurementInterval: peak total number of users, 
subscribers, devices, adjacencies, etc., for the VM, or peak total number of 
subscribers, devices, etc., for the VNF  

cpuUsageArray object 
array 

No Expressed as an array of cpuUsage objects, each of which contains a string identifying 
the cpu, along with a number indicating the cpu usage percentage. 

errors object No Provides receive and transmit errors and discards  
featureUsageArray object 

array 
No Expressed as an array of featuresInUse objects, each of which contains a string 

identifying the feature, along with a number indicating the number of times the feature 
was used. 

filesystemUsageArray object 
array 

No Expressed as an array of filesystemUsage objects, each of which contains a string 
identifying the filesystem, along with numbers indicating the configured and used block 
and ephemeral capacity in GB, along with the input-output operations per second for 
block and ephemeral storage. 

latencyDistribution object 
array 

No Expressed as an array of latencyBucketMeasure objects, defined by two numbers 
indicating the low end and high end of the latency bucket (in ms), plus a number 
indicating the number of counts in that bucket. 

meanRequestLatency number No Mean seconds required to respond to each request for the VM on which the VNFC 
reporting the event is running 

measurementInterval number Yes Interval over which measurements are being reported in seconds 
memoryConfigured number No Memory in MB configured in the VM on which the VNFC reporting the event is running 
memoryUsed number No Memory usage in MB of the VM on which the VNFC reporting the event is running 
numberOfMediaPortsInUse Number No Number of media ports in use 
requestRate number No Peak rate of service requests per second to the VNF over the measurementInterval 
vnfcScalingMetric number No Represents busy-ness of the VNF from 0 to 100 as reported by the VNFC 



 
 

 
Copyright © 2017 AT&T Intellectual Property. All rights reserved. 

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); 
you may not use this documentation except in compliance with the License. 

Page 22 
 

vNicUsageArray object 
array 

No Expressed as an array of vNicUsage objects, each of which contains a string 
identifying the vNic, along with numbers indicating the unicast, multicast, broadcast 
and total number of packets received and sent, plus the total number of bytes in and 
out of the vNic (in MB).  

A.4 EVENT RECORDS – Syslog Fields 
Field Type Required? Description 

syslogFieldsVersion number No Version of the syslogFields block (currently: 2.0) 
additionalFields Name-value 

pair object 
array 

No Expressed as an array of name-value pairs which can be used to describe 
additional syslog fields if needed 

eventSourceHost string No Hostname of the device 
eventSourceType string Yes Examples: ‘other’, ‘router’, ‘switch’, ‘host’, ‘card’, ‘port’, ‘slotThreshold’, 

‘portThreshold’, ‘virtualMachine’, ‘virtualNetworkFunction’ 
syslogFacility number No Numeric code from 0 to 23 for facility:  

         0             kernel messages 
         1             user-level messages 
         2             mail system 
         3             system daemons 
         4             security/authorization messages 
         5             messages generated internally by syslogd 
         6             line printer subsystem 
         7             network news subsystem 
         8             UUCP subsystem 
         9             clock daemon 
        10             security/authorization messages 
        11             FTP daemon 
        12             NTP subsystem 
        13             log audit 
        14             log alert 
        15             clock daemon (note 2) 
        16             local use 0  (local0) 
        17             local use 1  (local1) 
        18             local use 2  (local2) 
        19             local use 3  (local3) 
        20             local use 4  (local4) 
        21             local use 5  (local5) 
        22             local use 6  (local6) 
        23             local use 7  (local7 ) 

syslogMsg string Yes Syslog message 



 
 

 
Copyright © 2017 AT&T Intellectual Property. All rights reserved. 

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); 
you may not use this documentation except in compliance with the License. 

Page 23 
 

syslogPri number No 0-192 
Combined Severity and Facility 

syslogProc string No Identifies the application that originated the message 
syslogProcId number No A change in the value of this field indicates a discontinuity in syslog reporting 
syslogSData string No Syslog structured data consisting of a structured data Id followed by a set of key 

value pairs (see below for an example) 
**Note: SD-ID may not be present if syslogSdId is populated 

syslogSdId string No 0-32 char in format name@number,  
ie ourSDID@32473 

syslogSev string No Numerical Code for  Severity 
(derived from syslogPri: remaider of syslogPri / 8) 
       0       Emergency: system is unusable 
       1       Alert: action must be taken immediately 
       2       Critical: critical conditions 
       3       Error: error conditions 
       4       Warning: warning conditions 
       5       Notice: normal but significant condition 
       6       Informational: informational messages 
       7       Debug: debug-level messages 

syslogTag string Yes MsgId indicating the type of message such as ‘TCPOUT’ or ‘TCPIN’; ‘NILVALUE’ 
should be used when no other value can be provided 

syslogVer number No IANA assigned version of the syslog protocol specification (typically ‘1’) 
 

  



 
 

 
Copyright © 2017 AT&T Intellectual Property. All rights reserved. 

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); 
you may not use this documentation except in compliance with the License. 

Page 24 
 

A.5 EVENT RECORDS – State Change Fields 
Field Type Required? Description 
stateChangeFieldsVersion number No Version of the stateChangeFields block (currently: 1.1) 
additionalFields Name-value 

pair object 
array 

No Expressed as an array of name-value pairs which can be used to describe 
additional state change fields if needed 

newState string Yes New state of the entity: ‘inService’, ‘maintenance’, ‘outOfService’ 
oldState string Yes Previous state of the entity: ‘inService’, ‘maintenance’, ‘outOfService’ 
stateInterface string Yes Card or port name of the entity that changed state 

A.6 EVENT RECORDS – Mobile Flow Fields 
Field Type Required? Description 
mobileFlowFieldsVersion number No Version of the mobileFlowFields block (currently: 1.2) 
additionalFields field  No Additional mobileFlow fields if needed Similar to adddiotnalFileds in fault 

domain 
applicationType string No Application type inferred 
appProtocolType string No Application protocol 
appProtocolVersion string No Application version 
cid string No Cell Id 
connectionType string No Abbreviation referencing a 3GPP reference point e.g., S1-U, S11, etc 
ecgi string No Evolved Cell Global Id 
flowDirection string Yes Flow direction, indicating if the reporting node is the source of the flow or 

destination for the flow 
gtpPerFlowMetrics object Yes Mobility GTP Protocol per flow metrics (see below) 
gtpProtocolType string No GTP protocol 
gtpVersion string No GTP protocol version 
httpHeader string No HTTP request header, if the flow connects to a node referenced by HTTP 
Imei string No IMEI for the subscriber UE used in this flow, if the flow connects to a mobile 

device 
Imsi string No IMSI for the subscriber UE used in this flow, if the flow connects to a mobile 

device 
ipProtocolType string Yes IP protocol type e.g., TCP, UDP, RTP... 
ipVersion string Yes IP protocol version e.g., IPv4, IPv6 
Lac string No Location area code 
Mcc string No Mobile country code 
Mnc string No Mobile network code 
msisdn string No MSISDN for the subscriber UE used in this flow, as an integer, if the flow 

connects to a mobile device 



 
 

 
Copyright © 2017 AT&T Intellectual Property. All rights reserved. 

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); 
you may not use this documentation except in compliance with the License. 

Page 25 
 

otherEndpointIpAddress string Yes IP address for the other endpoint, as used for the flow being reported on 
otherEndpointPort string Yes IP Port for the reporting entity, as used for the flow being reported on 
otherFunctionalRole string No Functional role of the other endpoint for the flow being reported on e.g., 

MME, S-GW, P-GW, PCRF... 
Rac string No Routing area code 
radioAccessTechnology string No Radio Access Technology e.g., 2G, 3G, LTE 
reportingEndpointIpAddr string Yes IP address for the reporting entity, as used for the flow being reported on 
reportingEndpointPort string Yes IP port for the reporting entity, as used for the flow being reported on 
Sac string No Service area code 
samplingAlgorithm string No Integer identifier for the sampling algorithm or rule being applied in 

calculating the flow metrics if metrics are calculated based on a sample of 
packets, or 0 if no sampling is applied 

Tac string No Transport area code 
tunnelId string No Tunnel identifier 
vlanId string No VLAN identifier used by this flow 
gtpPerFlowMetrics Object (referenced above) 
avgBitErrorRate number Yes Average bit error rate 
avgPacketDelayVariation number Yes Average packet delay variation or jitter in milliseconds for received packets: 

Average difference between the packet timestamp and time received for all 
pairs of consecutive packets 

avgPacketLatency number Yes Average delivery latency 
avgReceiveThroughput number Yes Average receive throughput 
avgTransmitThroughput number Yes Average transmit throughput 
durConnectionFailedStatus number No Duration of failed state in milliseconds, computed as the cumulative time 

between a failed echo request and the next following successful error 
request, over this reporting interval 

durTunnelFailedStatus number No Duration of errored state, computed as the cumulative time between a 
tunnel error indicator and the next following non-errored indicator, over this 
reporting interval 

flowActivatedBy string No Endpoint activating the flow 
flowActivationEpoch number Yes Time the connection is activated in the flow (connection) being reported on, 

or transmission time of the first packet if activation time is not available 
flowActivationMicrosec number Yes Integer microseconds for the start of the flow connection 
flowActivationTime datetime No Time the connection is activated in the flow being reported on, or 

transmission time of the first packet if activation time is not available; with 
RFC 2822 compliant format: ‘Sat, 13 Mar 2010 11:29:05 -0800’ 

flowDeactivatedBy string No Endpoint deactivating the flow 
flowDeactivationEpoch number Yes Time for the start of the flow connection, in integer UTC epoch time aka 

UNIX time 



 
 

 
Copyright © 2017 AT&T Intellectual Property. All rights reserved. 

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); 
you may not use this documentation except in compliance with the License. 

Page 26 
 

flowDeactivationMicrosec number Yes Integer microseconds for the start of the flow connection 
flowDeactivationTime datetime Yes Transmission time of the first packet in the flow connection being reported 

on; with RFC 2822 compliant format: ‘Sat, 13 Mar 2010 11:29:05 -0800’ 
flowStatus string Yes Connection status at reporting time as a working / inactive / failed indicator 

value 
gtpConnectionStatus string No Current connection state at reporting time 
gtpTunnelStatus string No Current tunnel state  at reporting time 
ipTosCountList associative 

array 
No Array of key: value pairs where the keys are drawn from the IP Type-of-

Service identifiers which range from '0' to '255', and the values are the 
count of packets that had those ToS identifiers in the flow 

ipTosList string No Array of unique IP Type-of-Service values observed in the flow where 
values range from '0' to '255' 

largePacketRtt number No large packet round trip time 
largePacketThreshold number No large packet threshold being applied 
maxPacketDelayVariation number Yes Maximum packet delay variation or jitter in milliseconds for received 

packets: Maximum of the difference between the packet timestamp and 
time received for all pairs of consecutive packets 

maxReceiveBitRate number No maximum receive bit rate" 
maxTransmitBitRate number No maximum transmit bit rate 
mobileQciCosCountList associative 

array 
No array of key: value pairs where the keys are drawn from LTE QCI or UMTS 

class of service strings, and the values are the count of packets that had 
those strings in the flow 

mobileQciCosList string No Array of unique LTE QCI or UMTS class-of-service values observed in the 
flow 

numActivationFailures number Yes Number of failed activation requests, as observed by the reporting node 
numBitErrors number Yes number of errored bits 
numBytesReceived number Yes number of bytes received, including retransmissions 
numBytesTransmitted number Yes number of bytes transmitted, including retransmissions 
numDroppedPackets number Yes number of received packets dropped due to errors per virtual interface 
numGtpEchoFailures number No Number of Echo request path failures where failed paths are defined in 

3GPP TS 29.281 sec 7.2.1 and 3GPP TS 29.060 sec. 11.2 
numGtpTunnelErrors number No Number of tunnel error indications where errors are defined in 3GPP TS 

29.281 sec 7.3.1 and 3GPP TS 29.060 sec. 11.1 
numHttpErrors number No Http error count 
numL7BytesReceived number Yes number of tunneled layer 7 bytes received, including retransmissions 
numL7BytesTransmitted number Yes number of tunneled layer 7 bytes transmitted, excluding retransmissions 
numLostPackets number Yes number of lost packets 
numOutOfOrderPackets number Yes number of out-of-order packets 
numPacketErrors number Yes number of errored packets 



 
 

 
Copyright © 2017 AT&T Intellectual Property. All rights reserved. 

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); 
you may not use this documentation except in compliance with the License. 

Page 27 
 

numPacketsReceivedExclRetrans number Yes number of packets received, excluding retransmission 
numPacketsReceivedInclRetrans number Yes number of packets received, including retransmission 
numPacketsTransmittedInclRetrans number Yes number of packets transmitted, including retransmissions 
numRetries number Yes number of packet retries 
numTimeouts number Yes number of packet timeouts 
numTunneledL7BytesReceived number Yes number of tunneled layer 7 bytes received, excluding retransmissions 
roundTripTime number Yes Round Trip time 
tcpFlagCountList associative 

array 
No Array of key: value pairs where the keys are drawn from TCP Flags and the 

values are the count of packets that had that TCP Flag in the flow 
tcpFlagList string No Array of unique TCP Flags observed in the flow 
timeToFirstByte number Yes Time in milliseconds between the connection activation and first byte 

received 
 
  



 
 

 
Copyright © 2017 AT&T Intellectual Property. All rights reserved. 

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); 
you may not use this documentation except in compliance with the License. 

Page 28 
 

Copyright 2017 AT&T Intellectual Property.  All Rights Reserved. 

This paper is licensed to you under the Creative Commons License: 

Creative Commons Attribution-ShareAlike 4.0 International Public License 

You may obtain a copy of the License at:  

https://creativecommons.org/licenses/by-sa/4.0/legalcode 

 

You are free to: 

• Share — copy and redistribute the material in any medium or format 
• Adapt — remix, transform, and build upon the material for any purpose, even commercially. 
• The licensor cannot revoke these freedoms as long as you follow the license terms. 

Under the following terms: 

• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes 
were made. You may do so in any reasonable manner, but not in any way that suggests the licensor 
endorses you or your use. 

• ShareAlike — If you remix, transform, or build upon the material, you must distribute your 
contributions under the same license as the original. 

• No additional restrictions — You may not apply legal terms or technological measures that legally 
restrict others from doing anything the license permits. 

Notices: 

• You do not have to comply with the license for elements of the material in the public domain or where 
your use is permitted by an applicable exception or limitation. 

• No warranties are given. The license may not give you all of the permissions necessary for your 
intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you 
use the material. 

 

https://creativecommons.org/licenses/by-sa/4.0/legalcode

	1. Introduction
	2. Design Definition
	3. Configuration Management
	3.1 NETCONF Standards and Capabilities
	3.2 VNF REST APIs
	3.3 OpenECOMP Controller APIs and Behavior

	4. Monitoring & Management
	4.1 Transports and Protocols Supporting Resource Interfaces
	4.2 Data Model for Event Records
	4.3 Event Records - Data Structure Description
	4.3.1 Common Event Header
	4.3.2 Event Data Structure – Fault Fields
	4.3.3 Event Data Structure – Measurements for VNF Scaling Fields
	4.3.4 Event Data Structure – Syslog Fields
	4.3.5 Event Data Structure – State Change Fields
	4.3.6 Event Data Structure – Mobile Flow Fields
	Appendix A – Data Record Format
	A.1 EVENT RECORDS – Common Event Header
	A.2 EVENT RECORDS – Fault Fields
	A.3 EVENT RECORDS – Measurements for VF Scaling Fields

	A.4 EVENT RECORDS – Syslog Fields
	A.5 EVENT RECORDS – State Change Fields
	A.6 EVENT RECORDS – Mobile Flow Fields



