

VNF Life Cycle Management using Macro flow

 2

Use cases

• Add VNF to an existing Service Instance (different cloud-region)
• Delete a VNF from an existing Service Instance
• Upgrade an existing Service Instance to newer model

 3

Add & Delete VNF

• Endpoints already exist:

POST
/onap/so/infra/serviceInstantiation/v7/serviceInstances/$SERVICE_INSTANCE_ID/vnfs
DELETE
/onap/so/infra/serviceInstantiation/v7/serviceInstances/$SERVICE_INSTANCE_ID/vnfs/$VNF_ID

• Today these endpoints will force alaCarte=true

 4

Add & Delete VNF - New Macros

• New macros including all BB’s from VNF level to VF-MODULE level

 5

Upgrade Service Instance

• Example: heat template requires change - new VNF version
• Existing VNF can not be deleted until new VNF is running

(rolling-upgrade, migration)
• Model needs to support both old VNF and new VNF versions at the

same time

 6

Upgrade Service Instance - new endpoint

• /onap/so/infra/serviceInstantiation/v7/serviceInstances/$SERVICE_INSTANCE_ID/upgrade

{
 "requestDetails": {
 “subscriberInfo": …,
 "requestInfo": …,
 "cloudConfiguration": …,
 "requestParameters": …,
 "project": …,
 "owningEntity": …,
 "modelInfo": {
 "modelVersion": "{{new_modelVersion}}",
 "modelVersionId": "{{new_modelVersionId}}",
 "modelInvariantId": "{{modelInvariantId}}",
 "modelName": "{{modelName}}",
 "modelType": "service"
 }
 }
}

 7

Upgrade Service Instance - new macro

• Service-Macro-Upgrade, action = upgradeInstance
• Reuse existing building block: ChangeModelServiceInstanceBB

 8

Upgrade Service Instance - Validation

• Only allow version change within the same model (invariant id)
• Existing VNF instances must be supported by new model

s

