# **ONAP IM discussion**

Ericsson

3

# Two CNF onboarding and orchestration options



- ETSI started assuming infrastructure capability based upon VM capabilities.
- The VNFD was created to allow the VNFM to support the necessary lifecycle capabilities.
- Support for CNF was added on top but inheriting the structure from VM based deployments



### Application Service Descriptor

### ASD

An alternative proposed by the CNF taskforce in ONAP

- Since then, the infrastructure has become more capable and taken significant SW LCM functionality and it is captured in the Helm chart.
- The VNFD is not required.
- ASD builds upon cloud native approach and tooling.

# ASD based modeling and deployment of CNFs



# ETSI MANO NFV VNFD Sol001 IFA 11 approach

Information model governed by

Descriptors content



# **Comparing LCM handling**

ETSI MANO NFV VNFD Sol001 IFA 11 approach



ASD based approach



### ONAP xNF modelling with ASD



### **Response to comments**

- CNF resource IM is specified by particular cloud native specifications, e.g., K8s.
- For instance, this <u>K8s document</u> contains all the information listed in the right side. All the info is managed by K8s, not SO.
- Proposal: adding a reference under
   *Deployment Item Information Element,* that "all cloud native CNF resource IM is specified by particular cloud native specifications. <u>K8s</u> <u>document</u> is an example."

| _ |                                                                  |
|---|------------------------------------------------------------------|
|   | Fred's comments                                                  |
|   | Missing resource (CPU, Memory, Storage,) requirement information |
|   | Missing L2/L3 Protocol and Address information                   |
|   | Missing Software Image information                               |
|   | Missing Security Rules information                               |
|   | Missing Affinity/Anti-Affinity information                       |
|   | Missing Scaling Information                                      |
|   | Missing Healing information                                      |
|   | Missing Service/VIP mapping information                          |
|   | Missing configuration information                                |
|   | Missing monitoring information                                   |
|   | Missing upgrade/downgrade information                            |

# Kubernetes: Resource requirement (CPU, Memory, Storage, ...) requirement information <u>LINK</u>

| 🛞 kubernetes                                                                                                                                                                  | Documentation Kubernetes Blog Training Par                                                                                                                                                                                                                                                                                                                                                                                                            | rtners Community Case Studies Versions 🔻 English 🔻                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q Search<br>Home<br>Getting started<br>Concepts<br>Tasks<br>Configure Pods and<br>Containers<br>Assign Memory<br>Resources to<br>Containers and Pods                          | Specify a CPU request for a container, include the resources:requests field in the Container resource manifest. To specify a CPU limit, include resources:limits.         In this exercise, you create a Pod that has one container. The container has a request of 0.5 CPU and a limit of 1 CPU. Here is the configuration file for the Pod:         pods/resource         apiVersion: v1         kind: Pod         metadata:         name: cnu-demo | apiVersion: v1<br>kind: Pod<br>metadata:<br>name: cpu-demo<br>namespace: cpu-example<br>spec:<br>containers:<br>- name: cpu-demo-ctr<br>image: vish/stress<br>resources:<br>limits:<br>cpu: "1"<br>requests:<br>cpu: "0.5" |
| Assign CPU<br>Resources to<br>Containers and Pods<br>Configure GMSA for<br>Windows Pods and<br>containers<br>Configure<br>RunAsUserName for<br>Windows pods and<br>containers | <pre>namespace: cpu-example spec: containers:     name: cpu-demo-ctr     image: vish/stress     resources:     limits:         cpu: "1"         requests:         cpu: "0.5"     args:        cpus </pre>                                                                                                                                                                                                                                             |                                                                                                                                                                                                                            |
| Create a Windows<br>HostProcess Pod<br>Configure Quality of<br>Service for Pods<br>Assign Extended<br>Resources to a<br>Container                                             | - "2"<br>The args section of the configuration file provides arguments for the container when it starts. The -cpus "2"<br>argument tells the Container to attempt to use 2 CPUs.                                                                                                                                                                                                                                                                      | args:<br>cpus<br>- "2"                                                                                                                                                                                                     |

## Kubernetes: Scaling Information LINK

| Q Search       Kubernetes Documentation         Home       Home         Getting started       In Kubernetes, a Horizontal of automatically scaling the function of automatically scaling the function of automatically scaling means to Kubernetes would mean an of automatically scaling means to Kubernetes would mean an of automatically scaling means to Kubernetes would mean an of automatically scaling means to Kubernetes would mean an of automatically scaling means to Kubernetes would mean an of automatically scaling means to Kubernetes would mean an of automatically scaling means to Kubernetes would mean an of automatically scaling means to Kubernetes would mean an of automatically scaling means to Kubernetes would mean an of automatically scaling means to Kubernetes would mean an of automatically scaling means to Kubernetes would mean an of automatically scaling means to Kubernetes would mean an of automatically scaling means to Kubernetes would mean an of automatically scaling means to Kubernetes would mean an of automatically scaling means to Kubernetes would mean an of the load decreases, and if the load decreases, and if resource (the Deployment, Horizontal Pod Autoscaling, The Horizontal Pod Autoscaling, Horizontal Pod Autoscaling, Horizontal Pod Autoscaler, Walkthrough, Specifying a Disruption Budget for your Application, Accessing the Kubernetes API from a Pod     How doess a Horizon and any other custom metric your Application, Accessing the Kubernetes API from a Pod         Tutorials       Reference | n / Tasks / Run Applications / Horizontal Pod Autoscaling<br>Pod Autoscaler automatically updates a workload resource (such as a Deployment or StatefulSet), with the aim<br>is workload to match demand.<br>that the response to increased load is to deploy more Pods. This is different from <i>vertical</i> scaling, which for<br>issigning more resources (for example: memory or CPU) to the Pods that are already running for the workload.<br>the number of Pods is above the configured minimum, the HorizontalPodAutoscaler instructs the workload,<br>the number of Pods is above the configured minimum, the HorizontalPodAutoscaler instructs the workload<br>the statefulSet, or other similar resource) to scale back down.<br>g does not apply to objects that can't be scaled (for example: a DaemonSet.)<br>aller is implemented as a Kubernetes API resource and a controller. The resource determines the behavior of<br>tal pod autoscaling controller, running within the Kubernetes control plane, periodically adjusts the desired<br>mple, a Deployment) to match observed metrics such as average CPU utilization, average memory utilization, or<br>su specify.<br>mple of using horizontal pod autoscaling.<br><b>CorizontalPodAutoscaler work!</b><br><b>Upt upt upt upt upt upt upt upt upt upt u</b> | behavior:<br>scaleDown:<br>stabilizationWindowSeconds: 30<br>policies:<br>- type: Percent<br>value: 100<br>periodSeconds: 15<br>scaleUp:<br>stabilizationWindowSeconds: 0<br>policies:<br>- type: Percent<br>value: 100<br>periodSeconds: 15<br>- type: Pods<br>value: 4<br>periodSeconds: 15 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## Kubernetes: Healing information LINK

#### D Specifying a Disruption Budget 1 x +

🔞 kubernetes

Documentation Kubernetes Blog Training Partners Community Case Studies Versions \* English

Q Search

Home

Getting started Concepts

Tasks

#### Run Applications

Run a Stateless Application Using a Deployment Run a Single-Instance Stateful Application

Run a Replicated Stateful

Application

Scale a StatefulSet

Delete a StatefulSet

Force Delete StatefulSet Pods

Horizontal Pod Autoscaling

HorizontalPodAutoscaler Walkthrough

#### Specifying a Disruption Budget for your Application

Accessing the Kubernetes API from a Pod

Tutorials Reference

Contribute

Kubernetes Documentation / Tasks / Run Applications / Specifying a Disruption Budget for your Application

### Specifying a Disruption Budget for your Application

#### FEATURE STATE: Kubernetes v1.21 [stable]

This page shows how to limit the number of concurrent disruptions that your application experiences, allowing for higher availability while permitting the cluster administrator to manage the clusters nodes.

### Before you begin

Your Kubernetes server must be at or later than version v1.21. To check the version, enter kubect1 version.

- · You are the owner of an application running on a Kubernetes cluster that requires high availability.
- · You should know how to deploy Replicated Stateless Applications and/or Replicated Stateful Applications.
- · You should have read about Pod Disruptions.
- · You should confirm with your cluster owner or service provider that they respect Pod Disruption Budgets.

### Protecting an Application with a PodDisruptionBudget

1. Identify what application you want to protect with a PodDisruptionBudget (PDB).

- 2. Think about how your application reacts to disruptions.
- 3. Create a PDB definition as a YAML file.
- 4. Create the PDB object from the YAML file.

### Identify an Application to Protect

The most common use case when you want to protect an application specified by one of the built-in Kubernetes controllers:

- Deployment
- ReplicationController
- ReplicaSet
- StatefulSet

### apiVersion: policy/v1 kind: PodDisruptionBudget metadata: name: zk-pdb spec: minAvailable: 2 selector: matchLabels: app: zookeeper

### 

Besides fundamental Kubernetes

capability to restore crashed Pods

automatically, there is an advanced

handling for keeping critical replicas

when executing e.g. rolling upgrade.

always running. This is very useful



### Did we answer your all questions?

