
K8S Application Service Descriptor and
Packaging
ONAP CNF TF and Modeling Sub-Committee and ETSI NFV workshop (information
sharing)

Nokia: Thinh Nguyenphu, Timo Perala,
Ericsson: Marian Darula, Byung-Woo Jun, Zu Qiang
2022-02-22

Contents

• Part 1: Why ASD

• Part 2 : Overviews, status, and plans

• Part 3: Application Service Descriptor (ASD)

• Part 4: ASD Packaging

• Part 5: ONAP PoC ASD

s

Part 1: Why ASD

Difference in the modeling approaches (1)
ETSI NFV SOL001 vs ASD

Descriptor: VNFD
..
..
..

ETSI NFV SOL001 VNFD* ASD, an alternative**

CRD CRD

CRD

K8s native data

Descriptor:
ASD
......................
......................
.

CRD CRD

CRD

K8s native data

Design-time dataDesign-time data

*Requires ETSI NFV-MANO architecture (NFVO, VNFM) **ETSI NFV-MANO architecture not needed

s

Part 2: Overview and status

ASD & packaging summary

• ASD is a common, simplified deployment descriptor for containerized cloud native deployments aiming to:
- Quickly leverage enhancements in Kubernetes while minimizing development and integration efforts

- Avoid duplication of attributes/properties included in Helm Charts

- Descriptor format is not requiring a particular deployment tool (e.g., Helm)
- Support CNF Direct Path project

- Leverage established packaging standards (e.g., SOL004 with ASD as a top-level deployment artifact)

• ONAP: ASD requirement has been presented and has been approved by ONAP Requirement sub-committee

• ONAP: ASD information model and packaging format have been presented on several occasions and have
been endorsed by CNF Task Force
- ASD information model: https://wiki.onap.org/display/DW/Application+Service+Descriptor+%28ASD%29+onboarding+IM，
- ASD packaging

format: https://wiki.onap.org/display/DW/Application+Service+Descriptor+%28ASD%29+Onboarding+Packaging+Format

- Detail proposal with example:
https://wiki.onap.org/display/DW/Application+Service+Descriptor+%28ASD%29+and+packaging+Proposals+for+CNF

- Jakarta release - functional requirements

- REQ ticket in jira: https://jira.onap.org/browse/REQ-993

• Status:
- Jakarta release: ASD information model specification, ASD Orchestration PoC

https://wiki.onap.org/display/DW/Application+Service+Descriptor+%28ASD%29+onboarding+IM
https://wiki.onap.org/display/DW/Application+Service+Descriptor+%28ASD%29+Onboarding+Packaging+Format
https://wiki.onap.org/display/DW/Application+Service+Descriptor+%28ASD%29+and+packaging+Proposals+for+CNF
https://wiki.onap.org/display/DW/Jakarta+release+-+functional+requirements+proposed+list
https://jira.onap.org/browse/REQ-993

s

Part 3: ASD and Package:

ASD Model and Packaging Proposal

ASD Model proposal :

1. ASD is a common, simplified deployment descriptor

for CNFs, xApps and rApps aiming to:

• Quickly leverage enhancements in Kubernetes

while minimizing development and integration

efforts

• Avoid duplication of attributes/properties

included in Helm Charts

• Avoid vendor needs to maintain VNFD and

data in native templates in synch; avoid

error prone approach

• Build on cloud native tooling

• Descriptor format is not requiring a particular

cloud-native deployment tool (e.g. Helm)

• Leverage established packaging standards

(e.g., SOL004 with ASD as a deployment

template)

2. Use CSAR packaging for bundling metadata, ASD

and cloud-native artifacts in a single package.

Describe the application using a lightweight,

Application Service Descriptor.

3. As an example, Helm v3 is embedded as the initial

cloud-native deployment tool in the orchestrator.

Kubernetes

Cloud-native deployment tool
(e.g.Helm)

Artifact repository
(Images, Charts, etc.)

Orchestrator (NFVO, SMO, ONAP, ….)

3

CSAR package

Artifacts

Application
Service Desc.

2

Application

1

<Document ID: change ID in footer or remove> <Change information classification in footer>

Example: Orchestration Capabilities

Non-Normative example of how SMO capabilities might be structured

• Functional block description:

- Deployment: this function is in charge of coordinating the deployment of an application through the DMS interface. It receives deployment
requests, interprets deployment package descriptors, delegates placement and interacts with cloud deployment tools.

- Deployment tool: one or more commonly used cloud packaging / deployment tools, like Helm, Terraform, Kustomize, Helmfile…

- Placement: this function is responsible for selecting an appropriate cluster in the available O-Cloud resource pools. The placement criteria
is up to each implementor but has to respect the restrictions indicated in the deployment descriptors.

Orchestrator (NFVO, SMO, ONAP, ….)

Deployment

Deployment tool (Helm / Terraform / Kustomize / …)

Placement

ASD

Parameters

Cloud artifacts

K8 resources

Data

Parameters

Cloud artifacts

Parameters

Cluster id

Cluster id

K8 resources

<Document ID: change ID in footer or remove> <Change information classification in footer>

Example flow of application deployment

Orchestrator (NFVO, SMO, ONAP, ….)

Deployment

Deployment tool (Helm / Terraform / Kustomize / …)

Placement

ASD

Parameters

O-Cloud

1

Cloud artifacts

K8 resources

Data

Parameters

Cloud artifacts

Parameters

2
6

5

3

4

Cluster id

Cluster id

7

K8 resources

1. A deployment order is received, along with
the required lifecycleParameters values

2. The cloud-native deployment tool is
invoked with the received parameters to
transform the cloud artifacts into K8S
resource descriptions.

3. The K8S resource descriptions, ASD and
any other relevant data is sent to the
placement function

4. Placement decision is done based on input
data

5. Inform deployment of placement

6. Request the cloud native deployment tool
to deploy on the identified target cluster

7. Cloud native deployment tool deploys
application in the chosen cluster using the
K8S API.

Application Service Descriptor
ASD, top level

Attribute Qualifier Cardinality Content Description

asdId M 1 Identifier
Identifier of this ASD information element. This attribute shall be globally

unique. The format will be defined in the data model specification phase.

asdVersion M 1 String Identifies the version of the ASD

asdSchemaVersion M 1 Version
Specifies the version of the ASD’s schema (if we modify an ASD field

definition, add/remove field definitions, etc.)

asdProvider M 1 String Provider of the Application Service (AS) and the ASD.

asdApplicationName M 1 String Name to identify the Application Service. Invariant for the AS lifetime.

asdApplicationVersion M 1 Version
Specifies the version of the Application (so, if software, deplolymentItems,

ASD values, … change, this changes)

asdApplicationInfoName M 0..1 String
Human readable name for the Application service. Can change during the

AS lifetime.

asdInfoDescription M 0..1 String Human readable description of the AS. Can change during the AS lifetime.

asdExtCpd M 0..N datatype.ExtCpd Describes the externally exposed connection points of the application.

enhancedClusterCapabilities M 0..1
datatype.

enhancedClusterCapabilities

A list of expected capabilities of the target Kubernetes cluster to aid

placement of the application service on a suitable cluster.

deploymentItems M 1..N DeploymentItem Deployment artifacts

<Document ID: change ID in footer or remove> <Change information classification in footer>

ASD: Deployment Item

As an alternative to “parent” or “umbrella” charts, we

propose a means to structure and sequence

multiple Helm charts that is easily expressed inside

the ASD, using the DeploymentItem construct

DeploymentItem
DeploymentArtifact

(Helm chart, YAML, ….)DeploymentItemDeploymentItem

DeploymentArtifact

(Helm chart, YAML, ….)
DeploymentArtifact

(Helm chart)

ASD

1

n

1 1

Attribute Qualifier Cardinality Content Description

deploymentItemId M 1 Identifier The identifier of this deployment item

artifactType M 1 String Specify artifact type. e.g. Helm chart, helmfile, CRD etc.

artifactId M 1 String Reference to a DeploymentArtifact. It can refer to URI or file path.

deploymentOrder M 0..1 Integer

Specifies the deployment stage that the DeploymentArtifact belongs to. A lower value

specifies that the DeploymentArtifact belongs to an earlier deployment stage, i.e.

needs to be installed prior to DeploymentArtifact with higher deploymentOrder values.

If not specified, the deployment of the DeploymentArtifact can be done in arbitrary

order and decided by the orchestrator.

lifecycleParameters M 0..N String
List of parameters that can be overridden at deployment time (e.g. values for

values.yaml in the chart this item references)

<Document ID: change ID in footer or remove> <Change information classification in footer>

ASD: deploymentOrder

DeploymentItem

DeploymentItem

DeploymentItem

DeploymentItem

DeploymentItem

ASD

DeploymentItem DeploymentItem

1

2

3

4

In order to support complex applications that require multiple

artifacts (like Helm charts) to be installed in a particular order,

the orchestrator must support an easy method of chaining

these artifacts – including dependency relationships.

As shown, items are given a deployment order. Items with the

same order are deployed in parallel; items with different

orders are deployed in sequence.

<Document ID: change ID in footer or remove> <Change information classification in footer>

ASD: asdExtCpd

Attribute Qualifier Cardinality Content Description

Id M 1 String The identifier of this extCpdData

description M 1 String Describes the service exposed.

virtualLinkRequireme

nt

M 1..N String Refers in an abstract way to the network or multiple networks that the ExtCpd

shall be exposed on (ex: OAM, EndUser, backhaul, LI, etc). The intent is to

enable a network operator to take decision on to which actual VPN to connect

the extCpd to. NOTE 1.

networkInterfaceReal

izationRequirements

M 0..1 datatype.networkInterfa

ceRealizationRequirem

ents

Details container implementation specific requirements on the

NetworkAttachmentDefinition to . See Note 2 & 3.

inputParamMappings M 0..1 datatype.extCpd.Param

Mappings

Information on what parameters that are required to be provided to the

deployment tools for the asdExtCpd instance.

resourceMapping M 0..1 String Kubernetes API resource name for the resource manifest for the service, ingress

or pod resource declaring the network interface. Enables, together with

knowledge on namespace, the orchestrator to lookup the runtime data related to

the extCpd.

NOTE 1: Corresponds more or less to a virtual_link requirement in ETSI NFV SOL001.

NOTE 2: Applies only for ExtCpds representing secondary network interfaces in a pod.

NOTE 3: Several ExtCpd may refer to same additional network interface requirements.

<Document ID: change ID in footer or remove> <Change information classification in footer>

ASD: asdExtCpd, networkInterfaceRealizationRequirements IE

Attribute Qualifier Cardinality Content Description

trunkMode M 0..1

”false” | ”true”

If not present or set to”false”, means that this interface shall connect to single network. If set to

”true” then the network interface shall be a trunk interface (connects to multiple VLANS).

ipam M 0..1 "infraProvided", "orchestrated",

"userManaged"

The default value ("infraProvided") means that the CNI specifies how IPAM is done and assigns

the IP address to the pod interface.

nicOptions M 0..N "examples": ["i710", "mlx-cx5v"] nics a direct user space driver the application is verified to work with. Allowed values from ETSI

registry.

interfaceType M 0..1 "kernel.netdev", "direct.userdriver",

"direct.kerneldriver", "direct.bond",

"userspace

This attribute is applicable for passthrough and memif interfaces. Value default value is

”kernel.netdev”.

interfaceOptions M 0..N "virtio",

"memif"

Alternative vNIC configurations the network interface is verified to work with.

interfaceRedundancy M 0..1 "infraProvided",

"activePassiveBond",

"activeActiveBond",

"activePassiveL3", "activeActiveL3",

”bondCni”,

"Left", "Right"

”infraProvided” means that the application sees one vNIC but that the infrastruture provides

redundant access to the network via both switch planes. ”Left” and ”right” indicates a vNIC

connected non-redundantly to the network via one specific (left or right) switchplane. All other

attributes indicates a mated vNIC pair in the Pod, one connecting to the network via left

switchplane and the other connecting to the network via the right switchplane, and with

application using them together as a redundant network interface using a particular redundancy

method that need to be accomodated in the node infrastructure.

"activeActiveBond": The bonded left/right links must be part of a multi-chassis LAG in active-

active mode

"activePassiveBond": Interfaces bonded in active-passive mode in the application with move of

bond MAC address. No specific requirements on DC fabric.

"activePassiveL3": Move of application IP address

"activeActiveL3": Anycast/ECMP

”bondCni” ; the mated pair network interfaces are used via a 3rd bond cni based network

interface.

<Document ID: change ID in footer or remove> <Change information classification in footer>

ASD: asdExtCpd, datatype.ExtCpd.ParamMappings 1/2

Attribute Qualifier Cardinality Content Description

loadbalancerIP M 0..1 String

When present, this attribute specifies the name of the deployment artifact input parameter through which the

orchestrator can configure the loadbalancerIP parameter of the K8s service or ingress controller that the ExtCpd

represents.

Note 2

externalIPs M 0..N String

When present, this attribute specifies the name of the deployment artifact input parameter through which the

orchestrator can configure the extermalIPs parameter of the K8s service or ingress controller, or the pod network

interface annotation, that the ExtCpd represents. The param name and provided IP address(es) value will be

passed to the deployment tool when deploying the DeploymentArtifacts.

Note 2

ipAddressParameter M 0..1 String

When present, this attribute specifies the name of the deployment artifact input parameter through which the

orchestrator can configure the IP address(es), ipv4 and/or IPv6, for this asdExtCpd. The param name and

provided IP address value will be passed to the deployment tool when deploying the DeploymentArtifacts. Note 1

nadNames M 0..N String

These attributes specifies, for an ExtCpd respesenting a secondary network interface, the name(s) of the

deployment artifact input parameter(s) through which the orchestrator can provide the names of the network

attachment definitions (NADs) the orchestrator has created as base for the network interface the ExtCpd

represents.

It is expected that the NADs themselves have been created prior to the deployment of the deployment artifacts.

Note 1,2,3

nadNamespace M 0..1 String

Specifies, for an ExtCpd respesenting a secondary network interface, the name of the deployment artifact input

parameter through which the orchestrator can provide the namespace where the NADs are located.

Attribute may be omitted if the namespace is same as the application namespace.

Note 2

<Document ID: change ID in footer or remove> <Change information classification in footer>

ASD: asdExtCpd, datatype.ExtCpd.ParamMappings 2/2

Note 1: When the ExtCpd represent a networkRedundant/mated-pair of sriov interfaces, there are references to 2 or 3 related NADs

needed to be passed, while for other interface types only one NAD reference is needed to be passed.

Note 2: The format of the Content strings is specific for each different orchestration templating technology used (Helm, Teraform, etc.).

Currently only a format for use with Helm charts is suggested:

"<helmchartname>:[<subchartname>.]0..N[<parentparamname>.]0..N<paramname>”. Whether the optional parts of the format are present

depends on how the parameter is declared in the helm chart. An example is:

"chartName:subChart1.subChart2.subChart3.Parent1.Parent2.Parent3.parameter".

Note 3: A direct attached (passthrough) network interface, such as an sriov interface, attaches to a network via only one of the two

switch planes in the infrastructure.

When using a direct attached network interface one therefore commonly in a pod uses a mated pair of sriov network attachments,

where each interface attaches same network but via different switchplane.

The application uses the mated pair of network interfaces as a single logical “swith-path-redundant” network interface – and this is

represented by a single ExtCpd.

Also there is a case where a third “bond” attachment interface is used in the pod, bonding the two direct interfaces so that the

application do not need to handle the redundancy issues – application just uses the bond interface.

In this case all three attachments are together making up a logical “switch-path-redundant” network interface represented by a single

ExtCpd. When three NADs are used in the ExtCpd the NAD implementing the bond attachment interface is provided through the

parameter indicated in the third place in the nadNames attribute.

<Document ID: change ID in footer or remove> <Change information classification in footer>

ASD: enhancedClusterCapabilities

Attribute Qualifier Cardinality Content Description

minKernelVersion M 1 String Describes the minimal required Kernel version, e.g. 4.15.0. Coded as displayed by linux command uname –r

requiredKernelModules M 0..N Strings Required kernel modules are coded as listed by linux lsmod command, e.g. ip6_tables, cryptd, nf_nat etc.

conflictingKernelModules M 0..N String Kernel modules, which must not be present in the target environment. The kernel modules are coded as listed by linux lsmod command, e.g.

ip6_tables, cryptd, nf_nat etc. Example: Linux kernel SCTP module, which would conflict with use of proprietary user space SCTP stack provided by

the application.

requiredCustomResources M 0..N Structure

(inlined)

List the required custom resources types in the target environment, identifying each by the "kind" and "apiVersion" field in the K8S resource manifests

and in the application. The list shall include those custom resource types which are not delivered with the application.

Example:

requiredCustomResources:

-{kind: "Redis", apiVersion: "kubedb.com/v1alpha1"}

>kind M 0..1 String Kind of the custom resource

>apiVersion M 0..1 String apiVersion of the custom resource

clusterLabels M 0..N String This attribute allows to associate arbitrary labels to clusters.

These can indicate special infrastructure capabilities (e.g., NW acceleration, GPU compute, etc.). The intent of these labels is to serve as a set of

values that can help in application placement decisions.

clusterLabels follow the Kubernetes label key-value-nomenclature (https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/). It is

recommended that labels follow a standardised meaning e.g. for node features (https://kubernetes-sigs.github.io/node-feature-discovery/v0.9/get-

started/features.html#table-of-contents).

Example:

ClusterLabels

- feature.node.kubernetes.io/cpu-cpuid.AESNI: true

requiredPlugin M 0..N Structure

(inlined)

A list of the names and versions of the required K8s plugin (e.g. multus v3.8)

>requiredPluginName M 0..1 String The names of the required K8s plugin (e.g. multus)

>requiredPluginVersion M 0..1 String The version of the required plugin (e.g. 3.8)

s

<Document ID: change ID in footer or remove> <Change information classification in footer>

Part 4: ONAP ASD Package

Leveraging ETSI-compliant packaging

The proposal for packaging is to continue to rely on CSAR.

Recommend to standardize:

a) The Packaging of containerized applications, the ASD itself, and the

usage of ASD as a deployment artifact in a CSAR.

b) The use of Helm as the cloud-native artifact for describing (pieces of)

the application

c) Adopt SOL004, adding the possibility to include an ASD instead of a

VNFD as a top-level artifact

CSAR (App package)

Artifacts

ASD App Desc ML model
Desc

<Document ID: change ID in footer or remove> <Change information classification in footer>

ASD Onboarding Packaging Format

In order to facilitate compatibility with ETSI, ONAP and other telco standards,
the CSAR (NFV SOL 004ed421) packaging format is used with following details:

- The structure and format of an ASD package shall conform to the TOSCA Simple Profile YAML v1.1
Specification of the CSAR format. The zip file format shall conform to Document Container Format
File

- CSAR format with TOSCA-Metadata directory, specified in ETSI NFV SOL004ed431 section 4.1.2,
with the differences that the following TOSCA.meta file keynames extensions are optional:

• ETSI-Entry-Change-Log

• ETSI-Entry-Tests

• ETSI-Entry-Licenses

- Non-MANO artifact sets, specified in ETSI NFV SOL004ed431 section 4.3.7

- Registered non-MANO artifact keywords can be reused, to avoid duplication

- Package and artifacts security, specified in ETSI NFV SOL004 ed431 section 5 and 4.3.6

- Package manifest file, specified in ETSI NFV SOL004ed431 section 4.3.2, with new manifest
metadata proposed in the wiki page

- Additional non-mano-artifact keywords for 5G use cases.

<Document ID: change ID in footer or remove> <Change information classification in footer>

An example of an ASD onboarding package

This is one of the

possibilities to

introduce ASD type,

since ASD metadata

keywords are not

defined in any SDO

yet.

s

<Document ID: change ID in footer or remove> <Change information classification in footer>

Part 5: ONAP ASD PoC

ASD Onboarding, Distribution and Orchestration PoC
- Target: Jakarta Release # Actor Action

1 Designer •Design ASD and/or CBA

2 Designer / SDC •Onboard SOL004-based ASD package (could include CBA)
•Design Resource & Compose Resources into Service
•Enhance ASD (ASD’)

3 SDC •Distribute Service CSAR to ONAP runtime components (SO, AAI, SDNC, etc.)
•Distribute ASD (ASD’) to Catalog Manager
•Distribute Helm Charts to Helm Repository (centralized)
•Distribute Images to Image Repository (centralized)

4 SO Client •Start CNF service creation

5 SO •S1: create instance to AAI
•S2: resolve parameters
•S3: CDS returns assignment
•Process model & decide flows (in this case, Helm Orchestrator)
•Delegate Resource-level orchestration to Helm Orchestrator
•Pass ASD’ or its reference with input (resolved) parameters

6 CNF Manager •Retrieve ASD (ASD’) from Catalog Manager

7 CNF Manager •Retrieve Helm Charts from Helm Repository

CNF Manager -
internal

•Transform ASD cloud artifacts with parameters to K8S resource description (e.g.,
helm template or helm install --dry-run)
•Get additional data as needed

8 CNF Manager •Get placement information by passing K8 resources + ASD' + additional data to
the Placement

9 Placement •make a placement decision based on input data & return it

10 CNF Manager • Set the target K8S cluster and Send CNF creation request (with cluster id,
parameter, cloud artifacts) to K8S (e.g., helm install ...)

11 k8S •Retrieve images from Image Repository and process for CNF

12 SO •Update instance to AAI

Focus
areas

1

2

3

s

<Document ID: change ID in footer or remove> <Change information classification in footer>

Summary

Application Service Descriptor - Summary

• Application Service Descriptor (ASD) provides simplified way of
modelling and packaging of NFs
- It’s an alternative to ETSI MANO based approach.

- Relies on cloud native modeling tools (e.g. helm),complemented by slim
descriptor layer providing information which cannot be conveyed via native
modeling tools (e.g. networking related information)

- Not repeating information from the native tools.

- Utilizing established standards where applicable.

• PoC ongoing to proof the concept in ONAP environment LINK

https://wiki.lfnetworking.org/display/LN/2022-01-12+-+ONAP%3A+ASD+and+Application+Onboarding+and+LCM+Orchestration

s

<Document ID: change ID in footer or remove> <Change information classification in footer>

Back-up

Difference in the modeling approaches (2)
ETSI NFV SOL001 vs ASD

Modeling approach A) Data Overlap
with cloud native
templates

B) Data conflicts risks =>
out-of-synch templates

C) Building on
Cloud native
tools

Findings

ETSI NFV
SOL001 VNFD

YES YES NO A) Vendor needs to maintain the VNFD and data in
native templates in Synch; an error prone approach
B) Conceptual and functional differences between
VM-based and container-based native technologies
C) Incompatible with K8s extension mechanisms
(e.g., CRDs not supported)
D) VNFD needs to play catch-up with ever-growing
data from CNCF ecosystem, otherwise it limits
orchestration to its data subset, stripping the
benefits of CNCF ecosystem’s open extensibility

ASD NO (Complements) NO YES

Others (CRD based) NO (Complements) NO YES

s

