
Towards a Carrier Grade ONAP Platform
Performance and Isolation Architectural Evolution

Key Contributors: Bin Yang, Gil Hellmann

Agenda

➢ What is Performance Awareness and Why

➢ Scenarios

➢ Categories

➢ Hardware features

➢ Platform Resources and Services

What is Performance Awareness and Why

• Whenever Performance & Isolation Matters
- Increased or dedicated allocation of the resources

- Lower utilization

• Whenever Utilization Matters
- Consolidate workloads to share resources as much as possible

- lower performance

• Can we have both simultaneous?
- Make the best use of infrastructure’s enhanced features.

• Can we make this simple and portable between different infrastructure providers?
- Multi-Cloud project could help by modeling/discovering/managing the infrastructure’s capabilities and

resources

- Make ONAP be aware of infrastructure’s enhanced features through common data models

• Enhanced features includes advanced capabilities, resources and services that the infrastructure
platforms expose to ONAP

Scenario 1: NUMA awareness

• Think about NUMA awareness
- Improve performance by reducing memory access latency

- OpenStack Flavor extra-specs is the current approach to make use of it

- VNF vendors design and implement VNFs based on assumptions of NUMA
topologies

• But how to cope with various NUMA topologies which VNF vendors don’t know yet?

• VNF vendors could make wrong assumption because they have limited information about
NUMA topologies of target infrastructures.

• Orchestrators cannot help either since they lack insight into VNF design/implementation.

• To make best usage of NUMA awareness, VNF vendor/Orchestrator/Infrastructure
providers need to collaborate with more precise modeling

Scenario 1: NUMA awareness (Cont.)

• With this case, the model should enable:
- VNF vendor specifies which specific vCPUs are more sensitive to memory

access latency, and how much of memory are required

- Infrastructure providers discover and expose the available NUMA topologies to
orchestrator

- The orchestrator matches the requirement of VNF and the available NUMA
topologies, comes up with proper NUMA spec, then instantiate the VNFs with
these NUMA spec.

NUMA topologies – Exemplary model

NUMA_topologies:

NUMA_topology1:

pservers:

edge to pserver1,

edge to pserver2,

numa_nodes:

node0:

id: 0

vcpus: 24

mem_size: 65535 MB

node1:

id: 1

vcpus: 24

mem_size: 65535 MB

Exemplary model
for Infrastructure
NUMA topologies

pserver:

NUMA_used:

numa_nodes:

node0:

id: 0

vcpus: 6

mem_size: 35000 MB

node1:

id: 1

vcpus: 12

mem_size: 49152 MB

NUMA requirement – Exemplary TOSCA Models

VMD1:

capabilities:

compute:

properties:

mem_size: 4096 MB

num_cpus: 4

numa_nodes:

node0:

id: 0

vcpus: [0,1]

mem_size: 1024 MB

latency_sentitive: false

node1:

id: 1

vcpus: [2,3]

mem_size: 3072 MB

latency_sentitive: true

VM NUMA
requirement

Categories

• Memory Access Latency and Throughput

- NUMA affinity

- PCI NUMA affinity

- Huge Page

- RDT

• Computation Intensive Workloads Optimization

- CPU pinning

- CPU thread policy

- Shared VCPU ID

• Networking throughput and Latency

- SRIOV

- PCI pass-through for NIC

- DPDK based vSwitch

- vSwitch NUMA affinity

Categories (Cont.)

• Instruction Sets

- vCPU model

• Accelerators

- PCI pass-through for encryption/compression

- PCI pass-through for transcoding

• Security and Isolation

- vTPM

- TXT

• Platform Services/Resources

- Live migration

- Health monitoring/auto-healing

- Firewall

- DNS service

Q&A

Thank you

Backup

A way of Modeling Compute Profiles beyond Individual Properties

compute_profile_xyz:
description: >-
some compute profile.

compute_dependencies:
dpdk:
string: { get_input: dpdk.version }

mem_page_size:
string: large
optional: true

sr-iov:
boolean: true

cpu_allocation:
string_map:

cpu_affinity: dedicated

TOSCA modeling example for VDU with Compute profile

xyz_vdu:
description: >-
The “xyz" VDU provides feature xyz.

type: tosca.nodes.nfv.VDU
interfaces:
Standard:
configure: scripts/vdu/xyz_configure.sh # included in the CSAR

requirements:
- dependency:

node: xyz_host # our Compute node
relationship:
type: vnfsdk.DependsOn
properties:
For the “xyz" VDU we are choosing a profile that already includes
various compute dependencies:
compute_profile: compute_profile_xyz

