
Version History

The version numbering is as follows:

The initial version is 1.0

VERSION
NUMBER

REVISION
DATE

AUTHOR SUMMARY OF CHANGE

1.0 09/07/2017 VG411H Initial Version

Message Router APIs

HTTP Service APIs:

DMaaP Message Router utilizes an HTTP REST API to service all Publish and Consume

transactions. HTTP and REST standards are followed so clients as varied as CURL, Java
applications and even Web Browsers will work to interact with Message Router. Message
Router uses AAF for user's authentication and authorization.

General HTTP Requirements:

A DMaaP Message Router transactions consists of 4 distinct segments, HTTP URL, HTTP Header,

HTTP Body (POST) and HTTP Response. The general considerations for each segment are as
follows and are required for each of the specific transactions described in this section.

HTTP URL

http[s]://Username:Password@serverBaseURL{/routing}{resourcePath}

• The Username:Password utilizes HTTP Basic Authentication and HTTPS/TLS to securely

transmit the authorization and authentication credentials that AAF needs to validate the client's
access to the requested resource.

• The serverBaseURL points to DMaaP Message Router host/port that will service the

request. Optionally DME2 service end points for Message Router can be used.

• The resourcePath specifies the specific service, or Topic, that the client is attempting to

reach

HTTP Header

Specifies HTTP Headers, such as Content-Type, that define the parameters of the HTTP
Transaction

HTTP Body

The HTTP Body contains the topic content when Publishing or Consuming. The Body may

contain topic messages in several formats (like below) but it must be noted, that, except in very
specific circumstances, messages are not inspected for content.

https://wiki.web.att.com/display/MessageRouter/Message+Router+APIs

Content-Type Description

text/plain Each line in the POST body is treated as a separate message. No
partition key is specified, and therefore no order is guaranteed. This

format is mainly for test, as messages are highly likely to be re-ordered
when delivered through the Kafka cluster.

application/json The payload maybe a single JSON object or a JSON array of JSON
objects. Each object is handled as an individual message. .
Note that use of this format may result in equivalent but altered JSON
objects sent to consumers. That's because MR uses a standard JSON

parser to read each object into memory before pushing the object to the
Kafka system. At that point, the JSON object is re-written from the in-
memory object. This can result in re-ordered fields or changes in
whitespace. If you want to preseve JSON objects exactly, use
application/cambria.

Recommended to follow the JSON format after validating the message in

https://jsonformatter.curiousconcept.com/

application/cambria @deprecated: The application/json payload requires Cambria to parse
every inbound message for a partition name. The application/cambria
format speeds things up a bit by having the client write a quick-to-parse
version of the same information. In this format, messages start with two
length values that designate the length of the key string and the length of
the message. Length values are positive base-10 integers and are
terminated with a period (aka dot, "."). The key and message body follow
the second length without delimiters (their size is known). Whitespace
leading the first length value is ignored.
For example:

1.11.AMessageBody

3.3.123Foo3.3.123Bar

0.16.You can do that..8.Or that.

This post contains 5 messages:

Partition Key
Length

Message
Length

Partition
Key

Message

1 11 A MessageBody

3 3 123 Foo

3 3 123 Bar

https://jsonformatter.curiousconcept.com/

Content-Type Description

0 16 You can do
that.

0 8 Or that.

Things to note about the example:

 New lines are whitespace. Because whitespace before the first length
value is ignored, we can optionally put messages on separate lines for

(human) readability.
 Key length can be 0 or even empty, which is treated as 0. A zero-length

key is equivalent to not specifying a key in the other POST body formats:
there's no order guarantee.

 Message length can be 0 as well, but this isn't very useful.
 The examples use plain text but JSON objects are normal.

Finally, this Content-Type may be chunked.

application/cambria-
zip

@deprecated: Identical to application/cambria except that the POST
body is GZip compressed. This POST body can also be chunked.

Other valid http
Content-Types

 Message Router assumes them as raw content type and will not validate
the formats. This needs to be supported by Java streaming standards.
Binary messages needs to be base64 encoded before publishing on to
the MR endpoints

DME2 Service endpoints:

Message Router supports DME2 clients. That is , Client application may use DME2Client and
DME2 service address to call the MessageRouter service.

 Example DME2 service address:

TEST: http://hostname/events?version=XXX&envContext=XXX&partner=XX

 PROD: https://hostname/events?version=XXX &envContext=XXX&partner=XX

 The values of version/envContext/routerOffer may change based upon the environment.

The specific details for each API are described as below

Publishers

Description: .

Publishes data to Kafka server on the topic mentioned in the URL. Messages will be in the request
body

The MessageRouter service has no requirements on what publishers can put onto a topic. The

messages are opaque to the service and are treated as raw bytes. In general, passing JSON
messages is preferred, but this is due to higher-level features and related systems, not the
MessageRouter broker itself. The only constraint placed on messages is their on their size –
messages must be under the maximum size, which is currently configured at 1 MB.

Request URL:

POST http(s)://{HOST:PORT}/events/{topicname}

Request Parameters

Name Descriptio

n

Param

Type

Data Max Req’d Format Valid/Exampl

e Values

type Len

Topicna
me

topic name
to be
posted

Path Strin
g

40 Y <app
namespace>.
<topicname>

Org.onap.crm.
empdetails

content-
type To specify

type of
message

content(jso
n,text or
cambria)

Header Strin
g

20 N application/jso
n text/plain
application/ca

mbria

Userna
me

userid Header Strin
g

 N Basic
Authenticatio
n Header

Passwo
rd

 Header Strin
g

 N Basic
Authenticatio
n Header

partition
Key

 QueryP
aram

Strin
g

 N String value ?partitionKey
=123

Note:

Publishers/user should have access on the topics. The user (id) and permissions details needs to be
in AAF.

Response Parameters:

Name Description Type Format Valid/Example Values

httpStatusCode 200, 201 etc.

mrErrorCode Numeric error code 200, 201 etc.

errorMessage SUCCESS, or error message.

helpURL helpurl

transactionid transaction-id value

Response /Error Codes:

Response statusCode Response statusMessage

200-299 Success

400-499 the client request has a problem

500-599 the DMaaP service has a problem

Error code HTTPCode Description Issue Reason

DMaaP_MR_ERR_3001 413 Request Entity
too large

Message size exceeds the batch
limit <limit>.Reduce the batch size

and try again

DMaaP_MR_ERR_3002 500 Internal Server
Error

Unable to publish messages.
Please contact administrator

DMaaP_MR_ERR_3003 400 Bad Request Incorrect Batching format. Please

correct the batching format and try
again

DMaaP_MR_ERR_3004 413 Request Entity

too large

Message size exceeds the

message size limit <limit>.Reduce
the message size and try again

DMaaP_MR_ERR_3005 400 Bad Request Incorrect JSON object. Please
correct the JSON format and try
again

DMaaP_MR_ERR_3006 504 Network
Connect
Timeout Error

Connection to the DMaaP MR was
timed out.Please try again

DMaaP_MR_ERR_3007 500 Internal Server

Error

Failed to publish messages to

topic <topicName>. Successfully
published <count > number of
messages.

 503 Service

Unavailable

 Service Unavailable

Sample Request:

POST http://<hostname>/events/org.onap.dmaap.mr.sprint

Payload- {"message":"message description"} Content-Type: application/json

Example:

curl -u XXXX@abc.com:X -H 'Content-Type:text/plain' -X POST -d

@sampleMsg.txt http://hostname /events/org.onap.ecomp_test.crm.preDemo

{ "count": 1,

 "serverTimeMs": 19"

mailto:XXXX@abc.com:X

}

Sample Response:

HTTP/1.1 200 OK

 Server: Apache-Coyote/1.1

 transactionId: 28-12-2015::08:18:50:682::<IP>::28122015552391

 Content-Type: application/json

 Content-Length: 42

 Date: Mon, 28 Dec 2015 13:18:50 GMT

Subscribers:

Description: To subscribe to a MessageRouter topic, a subscriber issues a GET to the RESTful
HTTP endpoint for events.

Request URL:

GET http(s)://{HOST:PORT}}/events/{topicname}/{consumegroup}/{consumerid}?{timeout=x}

 Request Parameters:

Name Description Para

m
Type

Data

type

MaxLen Req’d Format Valid/E

xample
Values

Topicna
me

topic name to be posted Path Strin
g

40 Y namespac
e.string

Consu

mergro
up

A name that uniquely

identifies your subscriber's
group

Path Strin

g

 Y CG1

consum

erId

Within your subscriber's

group, a name that
uniquely identifies your
subscriber's process

Path Strin

g

 Y C1

content
-type

To specify type of message
content(json,text or
cambria)

Head
er

Strin
g

20 N applicati
on/json
text/plai
n
applicati
on/camb
ria

Userna
me

userid Head
er

Strin
g

1 N Basic
Authentica
tion
Header

Passwo

rd

 Head

er

Strin

g

1 N Basic

Authentica
tion
Header

Timeou

t

The number of milliseconds

to wait for messages if
none are immediately
available. This should
normally be used, and set
at 15000 or higher. This is
referred to as long-polling
timeout

Because

MR API is built over HTTP,
subscribers collect
messages by polling the
API servers. Having a

subscriber poll the API
server repeatedly is fine
when a topic is busy, but
doesn't work well on either
end of the transaction when
the topic's content is
sparse.

To help with this, DMaaP

API supports a "long poll"
mechanism. A subscriber
can (and should) add a
timeout argument to the
GET path and provide a
value in milliseconds. If
there are no messages
waiting for the consumer
when the GET call is

Query
Para
m

Strin
g

NA N ?timeout=t
value

<apiurl>
?timeout
=15000

received, the server will
keep the response open for
up to the timeout value
before closing it as empty.
If traffic arrives during the
long poll wait period, it is
immediately sent to the
subscriber and the
response is closed. As a
result, the subscriber gets
messages promptly without

swamping the API server
with frequent requests.

To prevent subscribers
from overwhelming an API
server, the server will rate
limit empty replies. A

subscriber who polls
frequently on a busy topic
and receives messages on
most transactions will not
be rate-limited. On the
other hand, a subscriber
that receives empty replies
too frequently may receive
429 responses some of the
time. These responses are
delayed in order to slow the

subscriber down.

To prevent 429 replies,
subscribers should set the
GET timeout to 15000 ms
or higher.

It does not impact latency

Limit The maximum number of
messages to return.

Query
Para
m

Strin
g

NA N ?limit=valu
e

<apiurl>
?limit=1
0

Filter A server-side filter built
from the standard Highland
Park filter library. Refer to
Filter section below

Query
Para
m

Strin
g

NA N ?filter=msg <apiurl>
?timeout
=15000
&filter=
%7B%2
2foo%2
2%3D%
22bar%
22%7D

Note1:

Subscribers /user should have access on the topics. The user () and permissions details needs to be
in AAF.

 Note 2:

A few consumer client app team who does continuous polling (by multiple rest calls)
complained that they receive "503 consumer lock exception". The messages will not be lost
from the topic when this exception occurs and it will be still in the topic. This happens when
the concurrent rest call requests are made between several nodes in a cluster. Consumer
lock is done at zookeeper level to ensure the offset for each consumer group is maintained to
avoid losing the message in multiple concurrent calls of same consumer Group. We are

looking otherways to resolve this issue. But for these continuous polling scenario, the
suggested workaround is to ensure the request is made to only one node of the cluster.
Session stickiness in DME2 is example of handling this. If this exception occurs , waiting for
few minutes with out making api calls will release the lock in zookeeper.

Response Parameters:

Name Description Type Format Valid/Example Values

httpStatusCode 200, 201 etc.

mrErrorCode Numeric
error code

 200, 201 etc.

errorMessage SUCCESS, or error message.

helpURL helpurl

tranactionid transaction-
id value

 28-12-
2015::08:18:50:682::135.25.227.66::281
22015552391

ResponseBody Messages

consumed
from topic

Json Json

Response statusCode Response statusMessage

200-299 Success

400-499 the client request has a problem

500-599 the DMaaP service has a problem

Error code HTTP

Code

Description Issue Reason

DMaaP_MR_ERR_3008 413 Request Entity

too large

Message size exceeds the batch limit

<limit>.Reduce the batch size and try
again

DMaaP_MR_ERR_3009 500 Internal
Server Error

Unable to publish messages. Please
contact administrator

DMaaP_MR_ERR_3010 400 Bad Request Incorrect Batching format. Please

correct the batching format and try
again

DMaaP_MR_ERR_3011 413 Request Entity

too large

Message size exceeds the message

size limit <limit>.Reduce the message
size and try again

 DMaaP_MR_ERR_5012 429 Too many
requests

 This client is making too many
requests. Please use a long poll setting
to decrease the number of requests that

result in empty responses.

 503 Service
Unavailable

 Service Unavailable

Sample Request:

GET http://<hostname>/events/org.onap.dmaap.mr.sprint/mygroup/mycus

 Content-Type: application/json

Example:

 curl -u XXXx@abc.com:map2016$ -X GET -d

'MyfirstMessage' http://hostname/events/org.onap.ecomp_test.crm.preDeo/myG/C1

[I am xxx sending first msg,I am XXX sending first msg]

mailto:XXXx@abc.com:map2016$
http://hostname/events/org.onap.ecomp_test.crm.preDeo/myG/C1

Provisioning:

Description: To create , modify or delete the MessageRouter topics. Generally Invenio application

will use these below apis to create , assign topics to the users. These APIs can also be used by
other applications to provision topics in MessageRouter

Create Topic

Request URL:

POST http(s)://{HOST:PORT}/topics/create

Name Descriptio

n

Para

m
Type

Data

type

Ma

x
Le
n

Req

’d

Form

at

Valid/Example

Values

topicName topicname

to be
created in
MR

Body String 20 Y Json Org.onap.dmaap.mr.

metrics

topicDescriptio

n

description

for topic

Body String 15 Y

partitionCount Kafka topic
partition

Body String 1 Y

replicationCou

nt

Kafkatopic

replication

Body String 1 Y 3 (Default - for 3

node Kafka broker
cluster)

transactionEn
abled

to create
transaction

id for each

Body Boole
an

1 N true

message
transaction

Content-Type application/j
son

Head
er

String Y application/json

Response/Error codes

Response statusCode Response statusMessage

200-299 Success

400-499 the client request has a problem

500-599 the DMaaP service has a problem

Error code HTTP Code Description

DMaaP_MR_ERR_5001 500 Failed to retrieve list of all topics

DMaaP_MR_ERR_5002 500 Failed to retrieve details of
topic:<topicName>

DMaaP_MR_ERR_5003 500 Failed to create topic:<topicName>

DMaaP_MR_ERR_5004 500 Failed to delete topic:<topicName>

Response Parameters

Name Description Type Format Valid/Example Values

httpStatusCode 200, 201 etc.

mrErrorCode Numeric error code 5005

errorMessage SUCCESS, or error
message.

helpURL helpurl

ResponseBody Topic details
(owner,trxEnabled=true)

Json Json

Sample Request:

POST http://<hostname>/topic/create

Request Body

{"topicName":"org.onap.dmaap.mr.topicname","topicDescription":"This is a SAPTopic
","partitionCount":"1","replicationCount":"3","transactionEnabled":"true"}

 Content-Type: application/json

Example:

curl -u XXXx@abc.com:xxxxx$ -H 'Content-Type:application/json' -X POST -d

@topicname.txt http://hostname/topics/create

{

 "writerAcl": {

 "enabled": false,

 "users": []

 },

 "description": "This is a TestTopic",

 "name": "org.onap.ecomp_test.crm.Load9",

 "readerAcl": {

 "enabled": false,

 "users": []

GetTopic Details

Request URL:

GET http(s)://{HOST:PORT}/topics : To list the details of all the topics in Message Router. (UEB /

Cambria format)

GET http(s)://{HOST:PORT}/topics/{topicname} : To list the details of specified topic .

GET http(s)://{HOST:PORT}/topics/listAll : To list the details of all the topics (name and owner of

each topic)

mailto:XXXx@abc.com:xxxxx$
http://hostname/topics/create

Request Parameters

Name Descriptio
n

Para
m
Type

Data
Type

Ma
x
Le
n

Req’
d

Forma
t

Valid/Example Values

topicNam

e

topicname

details

Body Strin

g

20 Y Json Org.onap.dmaap.mr.metr

ics

Response Parameters:

Name Description Param

Type

Data

type

Format Valid/Example Values

topicName topicname
details

Body String Json Org.onap.dmaap.mr.metrics

description String

Owner user id who

created the topic

txenabled true or false Boolean

Response/Error Code

Response statusCode Response statusMessage

200-299 Success

400-499 the client request has a problem

500-599 the DMaaP service has a problem

Error code Description HTTPCode

DMaaP_MR_ERR_5001 Failed to retrieve list of all topics 500

DMaaP_MR_ERR_5002 Failed to retrieve details of topic:<topicName> 500

Sample Request:

GET http://<hostname>/topic/org.onap.dmaap.mr.testtopic

Example

curl -u XXXX@abc.com:x$ -X GET http://localhost/topics

{"topics": [

 {

 "txenabled": true,

 "description": "This is a TestTopic",

 "owner": "XXXX@abc.com",

 "topicName": "org.onap.ecomp_test.crm.Load9"

 },

 {

 "txenabled": false,

 "description": "",

 "owner": "",

 "topicName": "org.onap.ecomp_test.crm.Load1"

 },

 {

Service Specifications

maximum message size 1 MB

durability: time up to 7 days

durability: storage up to 70 GB

default topic replica count 3

mailto:XXXX@abc.com:x$
http://localhost/topics

default topic partition count 8

expected ingest rate in cluster at least 100,000 1K msgs/sec

concurrent transactions in cluster thousands (configurable at API server; can scale-out)

API Inventory

 API Name API Method REST API Path Com
ment
s

Topi

cs

Get All

Topics List

getTopics() /topics GE

T

Get All
Topics List

with details

getAllTopics() /topics/listAll GE
T

Get
individual
Topic
Details

getTopic(String topicName) /topics/{topicName} GE
T

Create Topic createTopic(TopicBean
topicBean)

/topics/create PO
ST

Delete Topic deleteTopicString

topicName)

/topics/{topicName} DEL

ETE

Not

used
in
curren
t MR
versio
n

Get

Publishers
for a Topic

getPublishersByTopicName(

String topicName)

/topics/{topicName}/pr

oducers

GE

T

UEB

Back
ward

Add a
Publisher to
write
ACL on a
Topic

permitPublisherForTopic(Stri
ng topicName, String
producerId)

/topics/{topicName}/pr
oducers/{producerId}

PU
T

Comp
atibilit
y

Remove a

Publisher
from
write ACL
on a Topic

denyPublisherForTopic(Strin

g topicName,String
producerId)

/topics/{topicName}/pr

oducers/{producerId}

DEL

ETE

Get

Consumers
for a Topic

getConsumersByTopicName

(String topicName)

/topics/{topicName}/co

nsumers

GE

T

Add a
Consumer to

read ACL
on a Topic

permitConsumerForTopic(Str
ing topicName,String

consumerId)

/topics/{topicName}/co
nsumers/{consumerId}

PU
T

Remove a
Consumer
from
read ACL

on a Topic

denyConsumerForTopic(Stri
ng topicName,String
consumerId)

/topics/{topicName}/co
nsumers/{consumerId}

DEL
ETE

API
Key
s

Get All API
Keys List

getAllApiKeys() /apiKeys GE
T

UEB
Back
ward
Comp
atibilit

y

Get
individual
API Key

Details

getApiKey(String
apiKeyName)

/apiKeys /{apiKey} GE
T

Create API
Key

createApiKey(ApiKeyBean
nsaApiKey)

/apiKeys /create PO
ST

Update API

Key

updateApiKey (String

apiKeyName)

/apiKeys /{apiKey} PU

T

Delete API
Key

deleteApiKey(String
apiKeyName)

/apiKeys /{apiKey} DEL
ETE

Eve
nts
(Pu
blis
h
and
Sub

scri
be)

Consume
Messages

getEvents(String topic,
String consumergroup,Strin
g consumerid)

/events/{topic}/{consu
mergroup}/{consumeri
d}

GE
T

Publish

Messages

pushEvents(@PathParam("t

opic") String topic,
InputStream
msg,@QueryParam("partitio
nKey") String partitionKey)

/events /{topic} PO

ST

Publish

Messages
with
a transactio
n id header

pushEventsWithTransaction(

@PathParam("topic") String
topic,
@QueryParam("partitionKey"
) String partitionKey)

/events

/transaction/{topic}

PO

ST

Met
rics

Get All
Metrics

getMetrics() /metrics GE
T

UEB
Back

ward
Comp
atibilit
y

Get Metrics
by name

getMetricsByName(@PathP
aram("metricName") String
metricName)

/metrics/{metricName} GE
T

Ad

min

Get a list of

all the
registered
consumers

getConsumerCache() /admin /consumerCac

he

GE

T

Clears

Consumer
cache

dropConsumerCache() /admin /dropConsum

erCache

PO

ST

Get List of
blacklisted
IPs

getBlacklist() /admin/ blacklist GE
T

Add IP to
the list
of blacklist
ed IPs

addToBlacklist
(@PathParam("ip") String ip
)

/admin/blacklist/{ip} PO
ST

Remove IP

from
blacklisted
IPs

removeFromBlacklist(@Path

Param("ip") String ip)

/admin /blacklist/{ip} DEL

ETE

Tra
nsa
ctio
ns

Get a list of
all the
existing Tra
nsaction Ids

getAllTransactionObjs() /transaction GE
T

Get details

of a
particular
transaction
id

getTransactionObj(@PathPa

ram("transactionId") String
transactionId)

/transaction/{transactio

nId}

GE

T

