

 Page 1

Data Router

Provisioning API

Background

The Data Router (DR) provisioning API is an HTTPS-based, REST-like API for creating and managing DR

feeds and subscriptions.

 The DR provisioning API is not meant to be used directly by DR end users (publishers and subscribers).

Instead, prospective publishers and subscribers will use a Web-based interface to a metadata repository

that houses information about various data sources in the corporation, including DR data feeds. The

metadata repository will call the DR provisioning API, as needed, to manage feeds and subscriptions. In

this document, the term client system

(or, more briefly, client) refers to a system that accesses the

provisioning API directly. Currently the only client system is the Enterprise Metadata Repository system

(EMR), known as DPLR.

 Note on terminology: In some high-level descriptions of the DR, there is a notion that a feed can have

multiple versions. A new version typically indicates that the payload structure or per-file metadata

schema for the feed has changed in some way.

In this document, the term “feed” refers to a single

version of a feed.

Changes to the Provisioning API in Version 2.1
Version 2.1of the API will be introduced as part of DR Release 3 (R3).

DR introduced a new field called business description to the feed creation. The existing feed description

has been renamed to technical description. Created date field is added for the subscription and feed. A

new logging framework is introduced called Ecomp Logging framework . Two log files have been added

to this following the EELF standards. Groups feature is added to leverage similar privileges as primary

owner to update Feed/Subscriptions in absence of owner. This gives the ability to act upon feeds

published/subscribed by other team members in order to provide business continuity.

Identity, Authentication, and Authorization
The DR provisioning system uses TLS certificates to identify and authenticate clients of the provisioning

API. A client must present a valid certificate, signed by an authority recognized by the DR, with a subject

 Page 2

that has been registered with the DR provisioning system. In addition, the provisioning system verifies

that the source IP address of an incoming provisioning request appears on a list of authorized IP

addresses that have been registered with the DR provisioning system. All incoming provisioning

requests are subjected to this identification, authentication, and authorization process.

Responsibility for identification, authentication, and authorization at the level of individual users is

divided between DPLR, working in conjunction with the Policy Engine (PE), and the DR provisioning

system. Specifically:

 DPLR is responsible for identifying and authenticating a user with the AT&T Global Logon

system, with the user’s ATTUID acting as the user identity. DPLR includes the ATTUID of the user

initiating any provisioning activity in the X-ATT-DR-ON-BEHALF-OF header in each HTTP

request it makes to the Provisioning API. The DR provisioning system relies on DPLR to perform

the necessary authentication.

 DPLR consults the PE to decide whether to allow a user to create a feed or to create a

subscription to an existing feed. If a feed or subscription creation operation is not authorized,

DPLR does not send a request to the Provisioning API. The DR provisioning system relies on

DPLR and the PE to perform authorization and will accept any valid feed or subscription creation

request from DPLR.

 The DR provisioning system performs some simple user-level authorization of other provisioning

requests1:

o The DR provisioning system allows only the user who created a feed or subscription to

retrieve information about that feed or subscription. (Specifically, the ATTUID passed in

a request to retrieve information about a feed or subscription must match the ATTUID

that was passed in the request that created the feed or subscription.)

o The DR provisioning system allows only the user who created a feed or subscription to

modify or delete that feed or subscription. (Specifically, the ATTUID passed in a request

to modify or delete a feed or subscription must match the ATTUID that was passed in

the request that created the feed or subscription.)

o The DR provisioning system allows only the user who created a subscription to reset the

retry mechanism for that subscription. (Specifically, the ATTUID passed in a request to

reset the retry mechanism for a subscription must match the ATTUID that was passed in

the request that created the subscription.)

1 This authorization functionality in the DR provisioning subsystem comes from DR R1, when there was no PE. In a

future release, this functionality may be moved to DPLR and the PE.

 Page 3

API Specification

The API Provisioning Model
The DR provisioning API defines two resource types—the feed and the subscription, each with JSON

representations. The API models the provisioning data as a collection of feeds that are known to the DR

(the feeds collection), with each feed containing a collection of the subscriptions to the feed. The

standard HTTP operations (POST, GET, PUT, and DELETE), used in conjunction with these resource

representations, allow an API user to create, get information about, modify, and delete feeds and

subscriptions.

The API exposes URLs that a client system uses when making API requests. These URLs address

resources and collections of resources. The API is designed so that a client system needs to know only

one URL in advance in order to get started with provisioning, namely, the URL that points to the feeds

collection2. All of the other URLs that a client system needs are generated by the DR when the DR

creates feeds and subscriptions. These URLs are returned to the DR in the DR’s responses to API

requests. This document uses symbolic names, rather than literal URL strings, for the various URLs. The

URL for the feeds collection is given the symbolic name <drFeedsURL>. Later sections of the document

will introduce the other URLs and explain how they are used.

Common Characteristics of API Requests
A client system invokes the DR provisioning API by making HTTP requests to appropriate URLs, as

described in more detail below. All API HTTP requests share some common characteristics:

 All API requests are secured using HTTPS, to provide for encryption and for mutual

authentication of the client system and the API server.

o The DR uses a server certificate signed by VeriSign and issued under AT&T Services, Inc.3

A client system must be configured to recognize this certificate authority. As is

customary in HTTPS, the common name in the server certificate’s subject will match the

fully-qualified domain name used to reach the server hosting the API.

o The DR requires the client system to present a client certificate signed by VeriSign and

issued under AT&T Services, Inc4. The DR maintains (through a mechanism outside the

scope of this document) a list of client subjects authorized to use the API. The

certificate presented by a client must have a subject on the list of authorized subjects.

Prior to using the provisioning API, the operators of a client system must provide the DR

tier 3 field support team a list of the subjects it will use in its client certificates.

2 In the current production environment, this URL is https://data-router.com/.
3
4

 Page 4

 All API requests must originate from a list of authorized source IP addresses. The DR maintains

(through a mechanism outside the scope of this document) a list of IP addresses from which API

requests are permitted. Prior to using the provisioning API, the operators of a client system

must provide the DR tier 3 field support team a list of the IP addresses from which requests will

be sent.

 All API requests must contain an X-ATT-DR-ON-BEHALF-OF header containing the ATTUID

of the publisher or subscriber on whose behalf the request is being made. In making a request,

the client system asserts that the identity has been authenticated. The value in this header

must be 8 characters long, or shorter. The API server truncates longer values.

 All API requests that include a body must include a Content-Type header whose value

accurately reflects the type of content being provided, using one of the DR-specific media types

defined below.

 The response from the API server to any API request will indicate the outcome of the request

using one of the standard HTTP status codes5. The exact codes used depend on the type of

request and are described later.

Feed Management
Creating a new feed means adding a feed resource to the DR’s feeds collection by POSTing a

representation of the new feed resource to the URL representing the collection, <drFeedsURL>.

When the DR creates a feed in response to an API request, the DR assigns a unique URL for the feed.

This document uses the symbolic name <feedURL> to refer to an instance of such a URL. The client

system uses the feed URL to make changes to the feed, to delete the feed, or to retrieve information

about the feed. The DR also assigns distinct URLs used for publishing to a feed (symbolic name

<publishURL>), subscribing to a feed (symbolic name <subscribeURL>), and obtaining log information

related to activity on the feed (symbolic name <feedLogURL>).

Feed Representations
 The API uses JSON objects to represent feeds. The API supports two representations of a feed:

 The full representation, including all of the information that the DR holds about a feed. This

representation has the media type: application/vnd.att-dr.feed-

full;version=2.06.

5 See RFC 2616, section 10, for definitions of all the standard status codes.
6 The API uses a version parameter on each of the media types it defines. This makes it easier to change

representations in the future while maintaining backward compatibility. If the version parameter is omitted,

the DR will assume a value of 2.0. (Version 1.0, used in DR R1, does not include the suspend field.) In DR

R2 and beyond, the Provisioning API will accept requests containing version 1.0 or version 2.0 objects. (In the case

 Page 5

 A representation that contains just the information about a feed that is set by the client system.

This representation has the media type: application/vnd.att-dr.feed;version=2.0.

Table 1 below shows the fields in the full representation of a feed, listing restrictions on the content of

each field as well as indicating what entity sets the value of the field (the client system or the DR) and

whether the value can be updated after the feed has been created. Table 2 and Table 4 provide

additional details.

Table 1 : Feed Object

Field Type Description Restrictions Set By Updatable? Required

name string Feed name Length <=20 Client No Yes

Version String Feed version Length <= 20

Name/version

Combination must

be unique in the DR

Client No Yes

Description String Feed Description Length <= 256 Client Yes No

Business

Description

String Business

Description

Length <=256 Client Yes No

Authorization Object Information for

authorizing

publishing requests

-

 Client Yes Yes

Suspend

Boolean Set to true if feed

is in suspended

state

 Client Yes No; if

absent

defaults

to false

Publisher

String

Publisher identity

as passed in X-ATT-

DR-ON-BEHALF-OF

at creation time

DR

No

Yes

of a version 1.0 object, the Provisioning API will use the default value (false) for the absent suspend field.)

The Provisioning API will always return a version 2.0 object in a response.

 Page 6

Links

Object

URLs related to this

feed - see Table 4

below

DR

No

Yes

groupid Integer client yes Yes

The authorization field is a JSON object containing lists of the endpoint addresses and identifiers

that are authorized to publish to the feed. All fields are required, set by the client, and updatable. Table

2 describes the object’s fields.

Table 2: Feed Authorization Object

Field Type Description Restrictions

classification string An indicator of the feed’s

data security classification

Length <=32

endpoint_ids object[] Array of objects defining the

identities that are

At least 1 id in the array

7

The name and version, taken together, uniquely identify the feed.

 allowed to publish to this

feed—see Table 3 below

endpoint_addrs string[] Array of IP addresses or IP

subnetwork addresses that

are allowed to publish to this

feed; an empty array indicates

that publish requests are

permitted from any IP address

Each string must be a valid

textual representation of

 IPv4 or IPv6 host address or

subnetwork address.

The endpoint_ids array contains objects that define an identifier and password that a publishing

endpoint will use to authenticate to the DR publishing API. Table 3 lists the fields in an endpoint identity

object.

Table 3: Endpoint Identity Object

Field Type Description Restrictions

 Page 7

id string Publishing endpoint

identifier

Length <= 20

password string Password associated with
id

Length <= 32

The links field in the authorization object is a JSON object containing the links (URLs) that the

DR has generated for the feed. These links are used for various operations involving the feed, such as

publishing files to the feed and subscribing to the feed. Table 4 lists the object’s fields, all of which are

set by the DR and none of which can be updated. The Symbolic Name column gives the name that this

document uses to refer to instances of these links.

Table 4: Feed Links Object

Field Description Symbolic Name

self URL pointing to this feed, used for updating and deleting the

feed

<feedURL>

publish URL for publishing requests for this feed <publishURL>

subscribe URL for subscribing to this feed <subscribeURL>

log URL for accessing log information about this feed <feedLogURL>

The application/vnd.att-dr.feed representation has the same fields as the full

representation, except that it does not include the publisher and links fields.

Figure 1 below shows an example of a JSON object containing the full representation of a feed resource.

{
 "name" : "feedx",
 "version" : "v1.0.0",
 "description" : "My example feed",

 "business_description" : " This is a feed for bus_desc",

 "authorization" :
 {
 "classification" : "unrestricted",
 "endpoint_ids" : [
 {"id" : "pub01", "password" : "relkwelj"},
 {"id" : "pub06", "password" : "o9eq1mbd"}
],
 "endpoint_addrs" : ["10.0.0.1", "192.168.0.1", "10.10.10.0/24"]
 },
 "suspend" : false,
 "publisher" : "pub393",
 "links" :
 {
 "self" : "https://feeds.dr.att.com/6YeW23nZ",

 Page 8

 "publish" : "https://pub.dr.com/RsgI1c6x",

"

subscribe" : "https://sub.dr.com/eM2q4At9",

"log

" : "https://logs.dr.com/yVqw90tF"
 }

 "created_date" : “'2016-06-29 11:26:11'” ,

 “Last_Modified” : “2016-07-04” 04:15:15’” ,
 "groupid" : “22” ,

 “changeowner” : true,

}

Figure 1: Example of a Feed Object
The identifiers and URLs used in the production system may be quite different from the ones shown here.

Creating a Feed
To create a feed, a client system POSTs an application/vnd.att-dr.feed representation of the

feed to the <drFeedsURL>. The POST request must conform to the common characteristics of API

HTTP requests, described above.

If the request is successful, the DR will return a response with a status code of 201 (“Created”) and a

body containing the complete representation of the newly-created feed

(application/vnd.attdr.feed-full). The response will also include a Location header

containing the URL of the newly-created feed (<feedURL>)7.

If the request fails, the DR will return a response with a status code indicating an error. See Appendix 1

for a description of common error cases.

Modifying a Feed
To modify an existing feed, a client system makes an HTTP PUT request to the <feedURL>, with the body

containing an application/vnd.att-dr.feed representation of the modified feed. The PUT

request must conform to the common characteristics of API HTTP requests, described above.

If the request is successful, the DR will return a response with a status code of 200 (“OK”) and a body

containing the complete representation of the modified feed (application/vnd.att-

dr.feedfull).

 If the request fails, the DR will return a response with a status code indicating an error. See Appendix 1

for a description of common error cases.

Suspending or Reinstating a Feed
Suspending or reinstating a feed is just a special case of modifying a feed. To suspend a feed, the

representation of the modified feed includes the suspend parameter with a value of true. To

7 This same URL is also carried in the self field of the links object in the full representation of the feed.

 Page 9

reinstate a feed, the representation of the modified feed includes the suspend parameter with a value

of false.

Deleting a Feed
To delete a feed, a client system makes an HTTP DELETE request to the <feedURL>. The DELETE request

must conform to the common characteristics of API HTTP requests, described above. The request has

no body.

If the request is successful, the DR will return a response with a status code of 204 (“No Content”). The

response will have no body.

If the request fails, the DR will return a response with a status code indicating an error. See Appendix 1

for a description of common error cases.

Note that it is not necessary to suspend a feed prior to deleting it.

Retrieving Information about a Feed
To retrieve a representation of a feed, a client system makes an HTTP GET request to the <feedURL>.

The GET request must conform to the common characteristics of API HTTP requests, described above.

If the request is successful, the DR will return a response with a status code of 200 (“OK”) and a body

containing the complete representation of the feed (application/vnd.att-dr.feed-full).

 If the request fails, the DR will return a response with a status code indicating an error. See Appendix 1

for a description of common error cases.

Subscription Management
Every DR subscription is associated with a specific feed—the feed from which the subscription will

receive published files. In the DR provisioning API’s resource model, each feed has a collection

containing all of the subscriptions to that feed. This collection is identified by a URL, <subscribeURL>,

generated by the DR when the feed is created and returned to the client system in the response to the

API request that created the feed. A client system creates a subscription to a feed by POSTing a

representation of the new subscription resource to the feed’s <subscribeURL>.

 When the DR creates a subscription in response to an API request, the DR assigns the subscription a

unique subscription URL (symbolic name <subscriptionURL>). The client system uses the subscription

URL to make changes to the subscription, to delete the subscription, or to retrieve information about

the subscription. The DR also assigns a distinct URL used for obtaining log information related to activity

on the subscription (symbolic name <subLogURL>).

 Page 10

Subscription Representations
The API uses JSON objects to represent feeds. The API supports two representations of a subscription:

 The full representation, including all of the information that the DR holds about a subscription. This

representation has the media type: application/vnd.att-dr.subscription-

full;version=2.08.

 A representation that contains just the information about a subscription that is set by the client

system. This representation has the media type: application/vnd.att-

dr.subscription;version=2.0.

Table 5 below shows the fields in the full representation of a subscription, listing restrictions on the

content of each field as well as indicating what entity sets the value of the field (the API client or the DR)

and whether the value can be updated after the subscription has been created. Table 6 and Table 7

provide additional details.

Table 5: Subscription Object

Field Type Description Restrictions Set By Updatable? Required?

delivery object Address and

credentials

for delivery

— see Table

6 below

 Client Yes Yes

follow_redirect boolean Set to true if feed
redirection is
expected

 Client Yes Yes

metadataOnly boolean Set to true if
subscription is to
receive only per-

file metadata

 Client Yes Yes

suspend boolean Set to true if the

subscription is in

the suspended

state

 Client Yes No; if

absent,

defaults

to false

8 As with the feed media types, if the version parameter is omitted, the DR will assume a value of 2.0. (Version

1.0, used in DR R1, does not include the suspend field.) In DR R2 and beyond, the Provisioning API will

accept requests containing version 1.0 or version 2.0 objects. (In the case of a version 1.0 object, the Provisioning

API will use the default value (false) for the absent suspend field.) The Provisioning API will always return a

version 2.0 object in a response.

 Page 11

subscriber string Subscriber identity,

as passed in X-
ATT-DR-

ONBEHALF-OF

at

creation time

 DR No Yes

links object URLs related to

this subscription—

see Table 7 below

 DR No Yes

groupid Integer Client Yes Yes

The delivery field is a JSON object containing the information that the DR will need to deliver files to

the subscriber. Table 6 describes the object’s fields, all of which are required, set by the client, and

updatable.

Table 6: Delivery Object

Type Description Restrictions

string URL to which deliveries for this subscription

should be directed

Valid HTTPS URL,

length <= 256

string User ID to be passed in the Authorization

header when deliveries are made

Length <= 20

string Password to be passed in the Authorization

header when deliveries are made

Length <= 32

boolean Flag indicating whether the DR should use the

HTTP 100-continue feature
Must be: true
to use 100continue

 false to disable using

100-continue

The links field is a JSON object containing the links (URLs) that the DR has generated for the

subscription. Table 7 describes the object’s fields, all of which are set by the DR and none of which can

be updated.

Table 7: Subscription Links Object

Field Description Symbolic Name

self URL pointing to this subscription, used for updating and

deleting the subscription

<subscriptionURL>

 Page 12

feed URL of the feed to which this subscription applies; the same

URL as the <feedURL> in the representation of the feed

<feedURL>

log URL for accessing log information about this subscription <subLogURL>

Figure 2: Example of a Subscription Object
The identifiers and URLs used in the production system may be quite different from the ones shown here

Figure 2 above gives an example of a JSON object containing the full representation of a subscription

resource.

The application/vnd.att-dr.subscription representation has the same fields as the full

representation, except that it does not include the subscriber and links fields.

{

 "delivery" :

 {

 "url" : "https://sub.example.com/myfeed",

"

user" : "datarouter",

 "password" : "rewqpoiu",

 "use100" : true },

 "metadataOnly" : false,

 "follow_redirect" : false,

 "suspend" : false,

 "subscriber" : "sub949",

 “groupid” : “22”,

 "links" : {

 "self" : "https://subs.dr.com/kk394Wzz",

 "feed" : "https://feeds.dr.com/6YeW23nZ",

 "log" : "https://logs.dr.com/Ui2XbnaG"

}

}

 Page 13

Creating a Subscription
To create a subscription, a client system POSTs an application/vnd.att-dr.subscription

representation of the subscription to the <subscribeURL> for the feed. The POST request must

conform to the common characteristics of API HTTP requests, described above.

If the request is successful, the DR will return a response with a status code of 201 (“Created”) and a

body containing the complete representation of the newly-created subscription

(application/vnd.att-dr.subscription-full). The response will also include a

Location header containing the URL of the newly-created subscription (<subscriptionURL>)9.

If the request fails, the DR will return a response with a status code indicating an error. See Appendix 1

for a description of common error cases.

Modifying a Subscription
To modify an existing subscription, a client system makes an HTTP PUT request to the

<subscriptionURL>, with the body containing an application/vnd.att-dr.subscription

representation of the modified subscription. The PUT request must conform to the common

characteristics of API HTTP requests, described above.

If the request is successful, the DR will return a response with a status code of 200 (“OK”) and a body

containing the complete representation of the modified subscription

(application/vnd.attdr.subscription-full).

If the request fails, the DR will return a response with a status code indicating an error. See Appendix 1

for a description of common error cases.

9 This same URL is also carried in the self field of the links object in the full representation of the subscription.

 Page 14

Suspending or Reinstating a Subscription

Suspending or reinstating a subscription is just a special case of modifying a subscription. To suspend a

subscription, the representation of the modified subscription includes the suspend parameter with a

value of true. To reinstate a subscription, the representation of the modified subscription includes the

suspend parameter with a value of false.

Deleting a Subscription
To delete a subscription, a client system makes an HTTP DELETE request to the <subscriptionURL>. The

DELETE request must conform to the common characteristics of API HTTP requests, described above.

The request has no body.

If the request is successful, the DR will return a response with a status code of 204 (“No Content”). The

response will have no body.

If the request fails, the DR will return a response with a status code indicating an error. See Appendix 1

for a description of common error cases.

Note that it is not necessary to suspend a subscription prior to deleting it.

Retrieving Information about a Subscription
To retrieve a representation of a subscription, a client system makes an HTTP GET request to the

<subscriptionURL>. The GET request must conform to the common characteristics of API HTTP requests,

described above.

If the request is successful, the DR will return a response with a status code of 200 (“OK”) and a body

containing the complete representation of the subscription

(application/vnd.attdr.subscription-full).

 If the request fails, the DR will return a response with a status code indicating an error. See Appendix 1

for a description of common error cases.

Resetting a Subscription’s Retry Schedule
When the DR is unable to make a delivery to a subscription, under certain circumstances the DR will

hold the file and retry the delivery according to a retry schedule. In some cases, a subscriber will fix

whatever problem was causing the delivery failures and wants the DR to make a new attempt

immediately, bypassing the retry schedule. The provisioning server will accept a request to reset the

retry schedule and will then signal the DR nodes to begin delivering any files for that subscription as

soon as the node has delivery capacity available.

To make a request to reset a subscription’s retry schedule, the client makes an HTTP POST request to

the <subscriptionURL>. The POST request must conform to the common characteristics of API HTTP

requests, described above. The POST request has a body with a content type of

 Page 15

application/vnd.att-dr.subscription-control. The body is a JSON object with a single

boolean property, failed. To reset the retry schedule (by indicating that the subscription is no longer

in a failed delivery state), this property is set to false10. (The provisioning server will accept a request

with the failed property set to true, but the request will have no effect.)

Figure 3 below shows an example of the subscription control object used to reset the retry schedule.

{
 "failed" : false
}

Figure 3: Example of a Subscription Control Object

If the request is successful, the DR will return a response with a status code of 202 (“Accepted”). The

response will have no body. Note that a success response means only that the DR provisioning server

recognizes the request as a valid one and will attempt to signal the DR nodes to begin deliveries for the

subscription. A success response does not mean that deliveries have actually started. Note also that in

some cases, a DR node may be out of service and thus will not receive the request. If such a node holds

deliveries for the subscription, that node will not begin deliveries for the subscription until it comes back

into service.

If the request fails, the DR will return a response with a status code indicating an error. See Appendix 1

for a description of common error cases.

Feeds Collection Queries
The DR provisioning API supports queries asking about the feeds known to the DR. A client system

makes such a query by directing a GET request to the <drFeedsURL>, optionally including a query string,

as described in Table 8. The GET request must conform to the common characteristics of API HTTP

requests, described above.

If the request is successful, the DR will return a response with a status code of 200 (“OK”) and a body

containing the result. As Table 8 indicates, some queries return a full representation of a single feed.

Responses to these queries return a body with application/vnd.att-dr.feed-full content.

Other queries return a list of <feedURL> values. The bodies for responses to such queries have a

Content-Type of application/vnd.att-dr.feed-list. The body consists of a JSON array

of strings, with each string being a <feedURL>.

If the request fails, the DR will return a response with a status code indicating an error. See Appendix 1

for a description of common error cases.

10 The rationale for naming the field “failed” is that the DR considers a subscription that’s awaiting a retry after a

delivery failure to be in a “failed” state. The POST request sets the subscription’s state back to a non-failed state,

so that the DR will attempt to deliver to it as soon as it can, rather than waiting for the retry interval to expire.

 Page 16

Table 8: Feeds Collection Queries

Query String Response

(none) List of the <feedURL>s for all of the feeds known to the DR.

?name=feed_name List of the <feedURL>s for all of the feeds whose name fields

have the value feed_name.

?name=feed_name&version=version_id Full representation of the feed whose name field has the value

feed_name and whose version field has the value version_id.

?publisher=publisher_identity List of the <feedURL>s for all of the feeds whose publisher

fields have the value publisher_identity.

?subscriber=subscriber_identity List of the <feedURL>s for all of the feeds to which a subscriber

with identity subscriber_identity has a subscription.

Subscription Collection Query
Each feed representation points to a collection containing the subscriptions to the feed. This collection

is addressed using the <subscribeURL> for a feed. A client system can obtain a list of the

<subscriptionURL>s for all of the subscriptions to the feed by making an HTTP GET operation against the

<subscribeURL>. The GET request must conform to the common characteristics of API HTTP requests,

described above.

If the request is successful, the DR will return a response with a status code of 200 (“OK”) and a body

with a Content-Type of application/vnd.att-dr.subscription-list. The body consists

of a JSON array of strings, with each string being a <subscriptionURL>.

If the request fails, the DR will return a response with a status code indicating an error. See Appendix 1

for a description of common error cases.

Business Description
A new field is added to the Data router during the creation of the feed called Business Description. The

purpose of this field is to provide the description related to the business aspects of the feed. This field is

not mandatory.

The below figure shows the JSON example for business description in a feed

{

 "business_description" : "Test Business description."

}

 Page 17

Created date

This is a new addition to the feed creation. Whenever a new feed is created , the timestamp of the feed

is recorded is the backend. These timestamps will be updated every time whenever a change has been

made to the feed. These updated feed will be tagged as Last modified and the timestamp while creating

the feed will be created date.

 created_date : 2016-06-29 11:26:11

 Last_Modified : 2016-07-04 04:15:15

Groups
Groups are new features added to the data router during the creation of the feed. When a feed is

created, an option is provided to select the group functionality. The members of that individual group

will have access to the feed details and the authorization to edit/delete that feed. Similar to the

individual users feed creations, the feed created with group functionality will have an unique URL for

the feed assigned by the data router. However, this group feature is optional.

A representation that contains just the information about a group that is set by the client system. This
representation has the media type: application/vnd.att-dr.groups;version=2.1

Feed/Subscription Groups

Field Type Description Length

authid String Authentication ID sent by DPLR 50

name String Name of the Group Length<=20

description String Description of the group

classification String An indicator of the feed’s data

security classification

Length <=32

 Page 18

members String Members who belong to the

group

Add/Edit Groups

Adding or editing a group can be performed by two ways. Firstly, by using a json object and secondly by

using the curl command. Listed below are some examples of the json object.

JSON object to add or Edit the group

{

 "authid": "GROUP-0000-c2754bb7-92ef-4869-9c6b-1bc1283be4c0",

 "name": "Test Group",

 "description": "Test Description of Group .",

 "classification": "publisher/subscriber",

 "members": "{id=attuid, name=User1}, {id=attuid, name=User 2]"

}

Request for Co-owner of the group

When a feed is created by the user from a group , the members from the group have to raise a request

to be the co-owner of the feed. (i.e) everyone in the group can access the feed in order to edit or modify

the feed or subscription.

 Page 19

Example for an edit request as a co-owner for the feed

-H "X-ATT-DR-ON-BEHALF-OF: ATTUID" -H "X-ATT-DR-ON-BEHALF-OF-GROUP: GROUP-0000-c2754bb7-92ef-

4869-9c6b-1bc1283be4c0

Change ownership of the feed

The JSON PUT will have a parameter for the change of owner for the feed. It will change the ownership

only if “changeowner = true ” with group header parameter (e.g. "X-ATT-DR-ON-BEHALF-OF-GROUP:

GROUP-0000-c2754bb7-92ef-4869-9c6b-1bc1283be4c0"). If the group header parameter is missing, it

would be ignored.

{

 "changeowner" : true/false,

}

Appendix 1: Error Conditions
The DR provisioning API uses standard HTTP error status codes to indicate problems in handling a

request. Table 9 lists the codes that a client system is most likely to encounter while using the API. This

is not an exhaustive list—other codes may be used, and some HTTP libraries that a client system might

use sometimes generate error responses locally, outside of the control of the API.

In keeping with HTTP’s standard usage of status codes, codes in the range 400-499 indicate a problem

with the request. Requests that elicit a response in the 400-499 range should not be retried without

first being modified to correct the problem. Status codes in the 500-599 range indicate a problem on

the server side. Requests that elicit a response in the 500-599 range can be retried once the server

problem is cleared.

The DR provisioning API never redirects requests and so does not use status codes in the range 300-399.

A response with an error status code may include a body with HTML or plain text content providing a

description of the problem.

 Page 20

Table 9: Error Status Codes

Code Meaning Description

400 Bad Request The request is defective in some way. Possible causes:

 JSON object in request body does not conform to the spec.

 X-ATT-DR-ON-BEHALF-OF header missing.

401 Indicates that the request was missing the Authorization header or, if the header
was presented, the credentials were not acceptable

403 Forbidden The request failed authorization. Possible causes:

 Request originated from an unauthorized IP address.

 Client certificate subject is not on the API’s authorized list.

 X-ATT-DR-ON-BEHALF-OF identity is not authorized to perform

the requested action.

404 Not Found The Request-URI does not point to a resource that is known to the API.

405 Method Not

Allowed

The HTTP method in the request is not supported for the resource addressed by

the Request-URI.

415 Unsupported

Media Type

The media type in the request’s Content-Type header is not appropriate for

the request.

500 Internal Server

Error

The DR API server encountered an internal error and could not complete the

request.

503 Service

Unavailable

The DR API service is temporarily unavailable. The response may include a

Retry-After header indicating when the client system should retry the

request.

200 to
299

 Success Response

-1 Fail Delivery

 Page 21

Change History

Version 2.1

Changes to the DR including the introduction of Groups feature , addition of the field business

description, and created date.

 Version 2.0.1

Changes for DR R3, including the introduction of a capability to reset a subscription’s retry timer.

Version 2.0
Changes for DR R2, including the introduction of the suspend field in the feed and subscription

objects.

Version 1.4
Passwords are not obscured in the response to GET requests against feeds and subscriptions. (Bug #30)

Added language to clarify that the endpoint_addrs array may be empty. (Bug #28) Remove

language stating that the feeds collection URL has not yet been defined, and add a footnote giving the

current production URL.

Version 1.3
Document length restriction on the X-ATT-DR-ON-BEHALF-OF header value. (Bug #11)

Version 1.2
Add information about certificate signing .

Add the version parameter to media types.

Add use100 flag to the delivery object for subscriptions, to control the DR’s use of the HTTP

100continue feature when making a delivery.

Version 1.1
Correct the name of the HTTP header (“Authorization”, not “Authentication”) in Table 6. Correct typos.

Version 1.0
Initial version; reviewed on March 8, 2013 and base lined with no substantive changes.

