
Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.
You may obtain a copy of the License at https://creativecommons.org/licenses/by/4.0/

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language

governing permissions and limitations under the License.

ECOMP and OpenECOMP are trademarks and service marks of AT&T Intellectual Property

VNF
Heat Template
Requirements

for
Pre-Amsterdam ONAP

Revision 2017-2

Revision Date 6/30/2017

https://creativecommons.org/licenses/by/4.0/

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page i

Document Revision History

Date Revision Description

2/1/2017 1.0 Initial publication of VNF Heat Template Requirement for Pre-
Amsterdam ONAP

6/30/2017 2.0 Updated and restructured document.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page ii

Table of Contents
1. Introduction ... 1

1.1 Definitions ... 1

2. General Guidelines ... 3

2.1 YAML Format .. 3

2.2 Heat Orchestration Template Format ... 3

2.3 Environment File Format .. 8

3. ONAP Heat Orchestration Templates: Overview .. 9

3.1 ONAP VNF Modularity Overview .. 9

3.2 Nested Heat Orchestration Templates Overview ... 10

3.3 ONAP Heat Orchestration Template Filenames .. 10

3.4 ONAP Parameter Classifications Overview.. 11

3.5 Support of heat stack update .. 13

4. Networking .. 14

4.1 External Networks ... 14

4.2 Internal Networks .. 15

5. ONAP Resource ID and Parameter Naming Convention ... 15

5.1 {vm-type} ... 15

5.2 {network-role} .. 16

5.3 Resource IDs .. 16

5.4 Resource: OS::Nova::Server - Parameters ... 18

5.5 Resource: OS::Nova::Server – Metadata Parameters .. 23

5.6 Resource: OS::Neutron::Port - Parameters ... 27

5.7 Resource Property “name” ... 43

5.8 ONAP Output Parameter Names ... 44

5.9 Contrail Resource Parameters ... 47

5.10 Parameter Names in Contrail Resources ... 49

6. ONAP VNF Modularity .. 50

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page iii

6.1 Suggested Patterns for Modular VNFs ... 50

6.2 Modularity Rules ... 51

6.3 VNF Modularity Examples .. 52

7. Cinder Volume Templates .. 54

8. ONAP Support of Environment Files .. 56

8.1 SDC Treatment of Environment Files ... 57

8.2 Use of Environment Files when using OpenStack “heat stack-create” CLI 57

9. Heat Template Constructs .. 57

9.1 Nested Heat Templates .. 57

9.2 External References ... 62

9.3 Heat Files Support (get_file) ... 62

9.4 Key Pairs .. 62

9.5 Security Groups .. 63

9.6 Anti-Affinity and Affinity Rules .. 63

9.7 Resource Data Synchronization ... 65

10. High Availability .. 66

11. Post Orchestration & VNF Configuration .. 66

Appendix A - Glossary .. 67

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page iv

Definitions
Throughout the document, these terms have the following meaning:

MUST This word, or the terms "REQUIRED" or "SHALL", mean that the definition is an absolute
requirement of the specification.

MUST NOT This phrase, or the phrase "SHALL NOT", mean that the definition is an absolute prohibition
of the specification.

SHOULD This word, or the adjective "RECOMMENDED", mean that there may exist valid reasons in
particular circumstances to ignore a particular item, but the full implications must be understood and
carefully weighed before choosing a different course.

SHOULD NOT This phrase, or the phrase "NOT RECOMMENDED" mean that there may exist valid
reasons in particular circumstances when the particular behavior is acceptable or even useful, but the full
implications should be understood and the case carefully weighed before implementing any behavior
described with this label.

MAY This word, or the adjective "OPTIONAL", mean that an item is truly optional. One vendor may
choose to include the item because a particular marketplace requires it or because the vendor feels that it
enhances the product while another vendor may omit the same item. An implementation which does not
include a particular option must be prepared to interoperate with another implementation which does
include the option, though perhaps with reduced functionality. In the same vein an implementation which
does include a particular option must be prepared to interoperate with another implementation which does
not include the option (except, of course, for the feature the option provides.)

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 1

1. Introduction

This document is part of a hierarchy of documents that describes the overall Requirements and
Guidelines for ONAP (Open Network Automation Platform). The diagram below identifies where this
document fits in the hierarchy.

ONAP Requirements and Guidelines
VNF Guidelines for Network Cloud and ONAP Future ONAP Subject

Documents

VNF Cloud
Readiness

Requirements
for ONAP

VNF
Management
Requirements

for ONAP

VNF Heat
Template

Requirements
for ONAP

Future
VNF

Requirements
Documents

Future Requirements
Documents

Figure 1 High level organization of ONAP documents

Document summary:

VNF Guidelines for Network Cloud and ONAP
• Describes VNF environment and overview of requirements

VNF Cloud Readiness Requirements for ONAP
• Cloud readiness requirements for VNFs (Design, Resiliency, Security, and DevOps)

VNF Management Requirements for ONAP
• Requirements for how VNFs interact and utilize ONAP

VNF Heat Template Requirements for ONAP
• This document is the VNF Heat Template Requirements for ONAP.

The VNF Heat Template Requirements for ONAP provides requirements and recommendations for
building Heat templates compatible with pre-Amsterdam ONAP release. Pre-Amsterdam ONAP assumes
Network Cloud implementations are OpenStack based.

Feedback on or questions about the content of this document may be sent to the following email address:
VNFGuidelines@list.att.com.

1.1 Definitions
This section defines common terms used in the document.

1.1.1 OpenStack Glossary Definitions
The following terms are defined in the OpenStack Glossary located at https://docs.openstack.org/user-
guide/common/glossary.html.

• Heat: Codename for the Orchestration service.

mailto:VNFGuidelines@list.att.com
https://docs.openstack.org/user-guide/common/glossary.html
https://docs.openstack.org/user-guide/common/glossary.html

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 2

• Heat Orchestration Template (HOT): Heat input in the format native to OpenStack.

• orchestration service (heat): The OpenStack service which orchestrates composite cloud
applications using a declarative template format through an OpenStack-native REST API.

• project: Projects represent the base unit of “ownership” in OpenStack, in that all resources in
OpenStack should be owned by a specific project. In OpenStack Identity, a project must be
owned by a specific domain.

• RESTful: A kind of web *service API that uses REST, or Representational State Transfer. REST
is the style of architecture for hypermedia systems that is used for the World Wide Web.

• stack: A set of OpenStack resources created and managed by the Orchestration service
according to a given template (either an AWS Cloud Formation template or a Heat Orchestration
Template (HOT)).

• tenant: A group of users; used to isolate access to Compute resources. An alternative term for a
project.

1.1.2 Additional Definitions
This section contains some additional useful definitions.

• Heat: OpenStack Orchestration Service, which provides an orchestration engine to launch
multiple composite cloud applications based on Heat templates, which are YAML text files,
readable by humans, that describe the infrastructure for a cloud application, including the servers,
floating IPs, volumes, security groups, users, etc. Heat templates also specify the relationships
between resources (for example, this volume is connected to this server). This enables Heat to
call out to OpenStack APIs to create all of the infrastructure in the correct order to completely
launch a cloud application.

• Heat environment file: A YAML text file which is primarily used to provide values for parameters
defined in a Heat Orchestration Template. The environment file (or ENV file) may also be used to
map or override Heat resources with other resources, to control stack creation on a given
resource, to specify event consumers, etc.

• Heat Stack: The collection of objects (that is, resources) created by a Heat service, including
instances (such as VMs), networks, subnets, routers, ports, router interfaces, user, security
groups, security group rules, auto-scaling rules, etc.

• environment file: The heat environment file affects the runtime behavior of a template. It provides
a way to override the resource implementations and a mechanism to place parameters that the
service needs (https://docs.openstack.org/developer/heat/template_guide/environment.html). In
ONAP’s implementation, the environment file must only contain pseudo constants.

• Pseudo Constants: parameters in the environment file that do not change (i.e., remain constant)
across multiple instantiations of the same VNF.

• YAML: YAML (YAML Ain't Markup Language) is a human friendly data serialization standard for
all programming languages (http://www.yaml.org/).

https://docs.openstack.org/developer/heat/template_guide/environment.html
http://www.yaml.org/

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 3

• External network: ONAP defines an external network in relation to the VNF and not with regard
to the Network Cloud site. External networks may also be referred to as “inter-VNF” networks. An
external network connects VMs in a VNF to

o VMs in another VNF or
o an external gateway or router

• Internal network: ONAP defines an internal network in relation to the VNF and not with regard to
the Network Cloud site. Internal networks may also be referred to as “intra-VNF” networks or
“private” networks. An internal network only connects VMs in a single VNF. It must not connect
to other VNFs or an external gateway or router.

• Cloud Assigned IP Address: A Cloud assigned IP address is an IPv4 or IPv6 address assigned
by OpenStack’s DHCP Service.

• ONAP SDN-C Assigned IP Address: An ONAP SDN-C assigned IP address is an IPv4 or IPv6 IP
address is assigned by the ONAP SDN-C controller. The IP can be

o automatically assigned by SDN-C policies
o manually assigned and preloaded into SDN-C

• Predetermined Static IP Address: A predetermined static IP address is enumerated in the Heat
environment file. A predetermined static IP address is used to attach a VM to an internal network
and the IP is local to the VNF. Therefore, the IP addresses can be re-used at every VNF
instance.

2. General Guidelines
2.1 YAML Format
Heat Orchestration Templates must use valid YAML. YAML (YAML Ain't Markup Language) is a human
friendly data serialization standard for all programming languages. See http://www.yaml.org/.

2.2 Heat Orchestration Template Format
Heat Orchestration templates must be defined in YAML.

YAML rules include:
• Tabs are NOT allowed, use spaces ONLY.
• You MUST indent your properties and lists with 1 or more spaces.
• All Resource IDs and resource property parameters are case-sensitive. (e.g., "ThIs", is not the

same as "thiS")

2.2.1 Heat Orchestration Template Structure
Heat Orchestration template structure follows the following format, as defined by OpenStack at
https://docs.openstack.org/developer/heat/template_guide/hot_spec.html.

http://www.yaml.org/
https://docs.openstack.org/developer/heat/template_guide/hot_spec.html

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 4

heat_template_version: <date>

description:
 # a description of the template

parameter_groups:
 # a declaration of input parameter groups and order

parameters:
 # declaration of input parameters

resources:
 # declaration of template resources

outputs:
 # declaration of output parameters

conditions:
 # declaration of conditions

Heat Orchestration templates for ONAP must contain the following sections:
• heat_template_version:

• description:

• parameters:

• resources:

Heat Orchestration templates for ONAP may contain the following sections:
• parameter_groups:

• outputs:

2.2.1.1 heat_template_version
This section is ONAP mandatory. The heat_template_version must be set to a date that is
supported by the OpenStack environment.

2.2.1.2 description
This ONAP mandatory section allows for a description of the template.

2.2.1.3 parameter_groups
This ONAP optional section allows for specifying how the input parameters should be grouped and the
order to provide the parameters in.

2.2.1.4 parameters
The parameter section is ONAP mandatory. This section allows for specifying input parameters that have
to be provided when instantiating the template. Each parameter is specified in a separated nested block
with the name of the parameters defined in the first line and additional attributes (e.g., type, label)
defined as nested elements.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 5

The Pre-Amsterdam VNF Validation Program (i.e., ICE Project) process requires all parameters declared
in a template to be used in a resource with the exception of the parameters for the OS::Nova::Server
property availability_zone. See Section 5.4.4 for more details on availability_zone.

parameters:
 <param name>:
 type: <string | number | json | comma_delimited_list | boolean>
 label: <human-readable name of the parameter>
 description: <description of the parameter>
 default: <default value for parameter>
 hidden: <true | false>
 constraints:
 <parameter constraints>
 immutable: <true | false>

• param name:
o The name of the parameter.
o ONAP requires that the param name must contain only alphanumeric characters and “_”

underscores. Special characters must not be used.

• type:
o The type of the parameter. Supported types are string, number,

comma_delimited_list, json and boolean.
o This attribute must be provided per the OpenStack Heat Orchestration Template standard.

• label:
o A human readable name for the parameter.
o This attribute is optional.

• description:
o A human readable description for the parameter.
o This attribute is ONAP mandatory; it must be provided. (Note that this attribute is OpenStack

optional.)

• default:
o A default value for the parameter.
o ONAP does not support this attribute; it must not be provided in the Heat Orchestration

Template. If a parameter has a default value, it must be provided in the environment file.
(Note that this attribute is OpenStack optional.)

• hidden:
o Defines whether the parameters should be hidden when a user requests information about a

stack created from the template. This attribute can be used to hide passwords specified as
parameters.

o This attribute is optional and defaults to false.

• constraints:
o A list of constraints to apply. The constraints block of a parameter definition defines

additional validation constraints that apply to the value of the parameter. The parameter

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 6

values provided in the Heat Orchestration Template are validated against the constraints at
instantiation time. The constraints are defined as a list with the following syntax

constraints:
 - <constraint type>: <constraint definition>
 description: <constraint description>

 constraint type: Type of constraint to apply.

 constraint definition: The actual constraint, depending on the constraint type.

 description: A description of the constraint. The text is presented to the user when
the value the user defines violates the constraint. If omitted, a default validation
message is presented to the user. This attribute is optional.

o When the parameter type is set to number, the Heat Orchestration Template uploaded into
ONAP must have constraints for range or allowed_values.

 range: The range constraint applies to parameters of type number. It defines a
lower and upper limit for the numeric value of the parameter. The syntax of the range
constraint is

range: { min: <lower limit>, max: <upper limit> }

It is possible to define a range constraint with only a lower limit or an upper limit.

 allowed_values: The allowed_values constraint applies to parameters of type
string or number. It specifies a set of possible values for a parameter. At deployment
time, the user-provided value for the respective parameter must match one of the
elements of the list. The syntax of the allowed_values constraint is

allowed_values: [<value>, <value>, ...]

Alternatively, the following YAML list notation can be used

allowed_values:
 - <value>
 - <value>
 - ...

o Other <constraint type> are optional, they may be used (e.g., length, modulo,
allowed_pattern, custom_constraint, allowed_values (for string types))

o Note that constrains must not be defined for any parameter enumerated in a nested heat
template.

o Some ONAP parameters must never have constraints defined. See Section 5 for the use
cases where these exceptions exist.

• immutable:
o Defines whether the parameter is updatable. Stack update fails, if this is set to true and the

parameter value is changed.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 7

o This attribute is optional and defaults to false.

2.2.1.5 resources
This section is ONAP mandatory; it must be provided. This section contains the declaration of the single
resources of the template. This section with at least one resource must be defined in the Heat
Orchestration Template, or the template would not create any resources when being instantiated.

Each resource is defined as a separate block in the resources section with the following syntax.

resources:
 <resource ID>:
 type: <resource type>
 properties:
 <property name>: <property value>
 metadata:
 <resource specific metadata>
 depends_on: <resource ID or list of ID>
 update_policy: <update policy>
 deletion_policy: <deletion policy>
 external_id: <external resource ID>
 condition: <condition name or expression or boolean>

• resource ID
o A resource ID that must be unique within the resources section of the Heat Orchestration

Template.

o ONAP requires that the resource ID must be unique across all Heat Orchestration Templates
that compose the VNF. This requirement also applies when a VNF is composed of more
than one Heat Orchestration Template (See Section 3.1).

o The naming convention for a resource ID is provided in Section 5.3.

• type
o The resource type, such as OS::Nova::Server or OS::Neutron::Port. Note that the

type may specify a nested heat file. This attribute is required.

• properties
o A list of resource-specific properties. The property value can be provided in place, or via a

function (e.g., Intrinsic functions). This section is optional.

o The naming convention for property parameters is provided in Section 5.

• metadata
o Resource-specific metadata. This section is optional, except for the resource

OS::Nova::Server. See Section 5.4.

• depends_on
o Dependencies of the resource on one or more resources of the template. This attribute is

optional. See Section 9.7 for additional details.

• update_policy

https://docs.openstack.org/developer/heat/template_guide/hot_spec.html#hot-spec-intrinsic-functions
https://docs.openstack.org/developer/heat/template_guide/hot_spec.html#hot-spec-resources-dependencies

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 8

o Update policy for the resource, in the form of a nested dictionary. Whether update policies
are supported and what the exact semantics are depends on the type of the current resource.
This attribute is optional.

• deletion_policy
o Deletion policy for the resource. The allowed deletion policies are Delete, Retain, and

Snapshot. Beginning with heat_template_version 2016-10-14, the lowercase
equivalents delete, retain, and snapshot are also allowed. This attribute is optional; the
default policy is to delete the physical resource when deleting a resource from the stack.

• external_id
o Allows for specifying the resource_id for an existing external (to the stack) resource. External

resources cannot depend on other resources, but we allow other resources to depend on
external resource. This attribute is optional. Note: when this is specified, properties will not be
used for building the resource and the resource is not managed by Heat. This is not possible
to update that attribute. Also, resource won’t be deleted by heat when stack is deleted.

• condition
o Condition for the resource. The condition decides whether to create the resource or not. This

attribute is optional.

2.2.1.6 outputs
This ONAP optional section allows for specifying output parameters available to users once the template
has been instantiated. If the section is specified, it will need to adhere to specific requirements. See
Section 3.4 and Section 5.8 for additional details.

2.3 Environment File Format
The environment file is a yaml text file.
(https://docs.openstack.org/developer/heat/template_guide/environment.html)

The environment file can contain the following sections:
• parameters: A list of key/value pairs.
• resource_registry: Definition of custom resources.
• parameter_defaults: Default parameters passed to all template resources.
• encrypted_parameters: List of encrypted parameters.
• event_sinks: List of endpoints that would receive stack events.
• parameter_merge_strategies: Merge strategies for merging parameters and parameter

defaults from the environment file.

Environment files for ONAP must contain the following sections:
• parameters:

Environment files for ONAP may contain the following sections:
• resource_registry:

• parameter_defaults:

• encrypted_parameters:

• event_sinks:

• parameter_merge_strategies:

https://docs.openstack.org/developer/heat/template_guide/environment.html

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 9

The use of an environment file in OpenStack is optional. In ONAP, it is mandatory. A Heat Orchestration
Template uploaded to ONAP must have a corresponding environment file, even if no parameters are
enumerated in the mandatory parameter section.

(Note that ONAP, the open source version of ONAP, does not programmatically enforce the use of an
environment file.)

2.3.1 SDC Treatment of Environment Files
Parameter values enumerated in the environment file are used by SDC as the default value. However,
the SDC user may use the SDC GUI to overwrite the default values in the environment file.

SDC generates a new environment file for distribution to MSO based on the uploaded environment file
and the user provided GUI updates. The user uploaded environment file is discarded when the new file is
created.

ONAP has requirements for what parameters must be enumerated in the environment file and what
parameter must not be enumerated in the environment file. See Section 3.4 and Section 5 for more
details.

3. ONAP Heat Orchestration Templates: Overview
ONAP supports a modular Heat Orchestration Template design pattern, referred to as VNF Modularity.

3.1 ONAP VNF Modularity Overview
With VNF Modularity, a single VNF may be composed from one or more Heat Orchestration Templates,
each of which represents a subset of the overall VNF. These component parts are referred to as “VNF
Modules”. During orchestration, these modules are deployed incrementally to create the complete VNF.

A modular Heat Orchestration Template can be either one of the following types:
1. Base Module
2. Incremental Module
3. Cinder Volume Module

A VNF must be composed of one “base” module and may be composed of zero to many “incremental”
modules. The base module must be deployed first, prior to the incremental modules.

ONAP also supports the concept of an optional, independently deployed Cinder volume via a separate
Heat Orchestration Templates, referred to as a Cinder Volume Module. This allows the volume to persist
after a Virtual Machine (VM) (i.e., OS::Nova::Server) is deleted, allowing the volume to be reused on
another instance (e.g., during a failover activity).

The scope of a Cinder volume module, when it exists, must be 1:1 with a Base Module or Incremental
Module.

A Base Module must have a corresponding environment file.

An Incremental Module must have a corresponding environment file.

A Cinder Volume Module must have a corresponding environment file.

These concepts will be described in more detail throughout the document. This overview is provided to
set the stage and help clarify the concepts that will be introduced.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 10

3.2 Nested Heat Orchestration Templates Overview
ONAP supports nested Heat Orchestration Templates per OpenStack specifications.

A Base Module may utilize nested templates.

An Incremental Module may utilize nested templates.

A Cinder Volume Module may utilize nested templates.

A nested template must not define parameter constraints in the parameter definition section.

Nested templates may be suitable for larger VNFs that contain many repeated instances of the same VM
type(s). A common usage pattern is to create a nested template for each VM type along with its
supporting resources. The Heat Orchestration Template may then reference these nested templates
either statically (by repeated definition) or dynamically (via OS::Heat::ResourceGroup).

See Section 9.1 for additional details.

3.3 ONAP Heat Orchestration Template Filenames
In order to enable ONAP to understand the relationship between Heat files, the following Heat file naming
convention must be utilized.

In the examples below, <text> represents any alphanumeric string that must not contain any special
characters and must not contain the word “base”.

3.3.1 Base Modules
The file name for the base module must include “base” in the filename and must match one of the
following options:

• base_<text>.y[a]ml
• <text>_base.y[a]ml
• base.y[a]ml
• <text>_base_<text>.y[a]ml

The base module’s corresponding environment file must be named identical to the base module with
“.y[a]ml” replaced with “.env”.

3.3.2 Incremental Modules
There is no explicit naming convention for the incremental modules. As noted above, <text> represents
any alphanumeric string that must not contain any special characters and must not contain the word
“base”.

• <text>.y[a]ml

The incremental module’s corresponding environment file must be named identical to the incremental
module with “.y[a]ml” replaced with “.env”.

To clearly identify the incremental module, it is recommended to use the following naming options for
modules:

• module_<text>.y[a]ml
• <text>_module.y[a]ml
• module.y[a]ml

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 11

3.3.3 Cinder Volume Modules
The file name for the Cinder volume module must be named the same as the corresponding module it is
supporting (base module or incremental module) with “_volume” appended

• <base module name>_volume.y[a]ml
• <incremental module name>_volume.y[a]ml

The volume module’s corresponding environment file must be named identical to the volume module with
“.y[a]ml” replaced with “.env”.

3.3.4 Nested Heat file
There is no explicit naming convention for nested Heat files with the following exceptions; the name
should contain “nest”. As noted above, <text> represents any alphanumeric string that must not contain
any special characters and must not contain the word “base”.

• <text>.y[a]m

Nested Heat files do not have corresponding environment files, per OpenStack specifications. All
parameter values associated with the nested heat file must be passed in as properties in the resource
definition defined in the parent heat template.

3.4 ONAP Parameter Classifications Overview
In order for ONAP to support workflow automation, Heat Orchestration Template resource property
parameters must adhere to specific naming conventions and requirements.

Broadly, ONAP categorizes parameters into four categories:
1. ONAP metadata parameters
2. Instance specific parameters
3. Constant parameters
4. Output parameters.

3.4.1 ONAP Metadata Parameters
There are both mandatory and optional ONAP metadata parameters associated with the resource
OS::Nova::Server.

• ONAP metadata parameters must not have parameter constraints defined.
• Both mandatory and optional (if specified) ONAP metadata parameter names must follow the

ONAP metadata parameter naming convention.

Section 5.5 provides more details on the metadata parameters.

3.4.2 Instance specific parameters
The instance specific parameters are VNF instance specific. The value of the parameter will be different
for every instance of a VNF (e.g., IP address). The instance specific parameters are subdivided into two
categories: ONAP Orchestration Parameters and VNF Orchestration Parameters

3.4.2.1 ONAP Orchestration Parameters
ONAP Orchestration Parameters are per instance parameters where the value is assigned via ONAP
automation. (Note that in some cases, automation is currently not available and the value is loaded into
ONAP prior to instantiation.)

• ONAP orchestration parameters must not be enumerated in the environment file.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 12

• When the ONAP orchestration parameter type is set to number, the parameter must have
constraints for range and/or allowed_values.

• Parameter constraints for ONAP orchestration parameters are optional for all parameter types
other than number. If constraints are specified, they must adhere to the OpenStack
specifications.

• The ONAP orchestration parameter names must follow the ONAP orchestration parameter
naming convention. Section 5 provides additional details.

3.4.2.2 VNF Orchestration Parameters
VNF Orchestration Parameters are per instance parameters where the values are assigned manually.
They are not supported by ONAP automation. The per instance values are loaded into ONAP prior to
VNF instantiation.

• VNF orchestration parameters must not be enumerated in the environment file.
• When the VNF orchestration parameter type is set to number, the parameter must have

constraints for range or allowed_values.
• Parameter constraints for VNF orchestration parameters are optional for all parameter types other

than number. If constraints are specified, they must adhere to the OpenStack specifications.
• The VNF orchestration parameter names should follow the VNF orchestration parameter naming

convention. Section 5 provides additional details.

3.4.3 Constant Parameters
The constant parameters are parameters that remain constant across many VNF instances (e.g., image,
flavor). The constant parameters are subdivided into two categories: ONAP Constant Parameters and
VNF Constant Parameters.

3.4.3.1 ONAP Constant Parameters
• ONAP Constant Parameters must be enumerated in the environment file. These parameter values

are not assigned by ONAP.
• When the ONAP Constant Parameter type is set to number, the parameter must have constraints for

range and/or allowed_values.
• Parameter constraints for ONAP constant parameters are optional for all parameter types other than

number. If constraints are specified, they must adhere to the OpenStack specifications.
• The ONAP Constant Parameter names must follow the ONAP orchestration parameter naming

convention. Section 5 provides additional details.

3.4.3.2 VNF Constant Parameters
• VNF Constant Parameters must be enumerated in the environment file. These parameter values are

not assigned by ONAP.
• When the VNF Constant Parameters type is set to number, the parameter must have constraints for

range and/or allowed_values.
• Parameter constraints for ONAP constant parameters are optional for all parameter types other than

number. If constraints are specified, they must adhere to the OpenStack specifications.
• The VNF Constant Parameters names should follow the ONAP orchestration parameter naming

convention. Section 5 provides additional details.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 13

3.4.4 Output Parameters
The output parameters are parameters defined in the output section of a Heat Orchestration Template.
The ONAP output parameters are subdivided into three categories:

1. ONAP Base Module Output Parameters
2. ONAP Volume Module Output Parameters
3. ONAP Predefined Output Parameters.

3.4.4.1 ONAP Base Module Output Parameters
ONAP Base Module Output Parameters are declared in the outputs: section of the base module Heat
Orchestration Template. A Base Module Output Parameter is available as an input parameter (i.e.,
declared in the “parameters:” section) to all incremental modules in the VNF.
• A Base Module Output Parameter may be used as an input parameter in an incremental module.
• The Output parameter name and type must match the input parameter name and type unless the

Output parameter is of the type comma_delimited_list.
o If the Output parameter has a comma_delimited_list value (e.g., a collection of UUIDs

from a Resource Group), then the corresponding input parameter must be declared as type
json and not a comma_delimited_list, which is actually a string value with embedded
commas.

• When a Base Module Output Parameter is declared as an input parameter in an incremental module
Heat Orchestration Template, parameter constraints must not be declared.

Additional details on ONAP Base Module Output Parameters are provided in Sections 5.8 and Section 6.

3.4.4.2 ONAP Volume Module Output Parameters
The volume template output parameters are only available for the module (base or add on) that the
volume is associated with.
• ONAP Volume Module Output Parameters are declared in the “outputs:” section of the Cinder volume

module Heat Orchestration Template
• An ONAP Volume Module Output Parameter is available as an input parameter (i.e., declared in the

parameters: section) only for the module (base or incremental) that the Cinder volume module is
associated with. The Output parameter name and type must match the input parameter name and
type unless the Output parameter is of the type comma_delimited_list.

• If the Output parameter has a comma_delimited_list value (e.g., a collection of UUIDs from a
Resource Group), then the corresponding input parameter must be declared as type json and not a
comma_delimited_list, which is actually a string value with embedded commas.

• When an ONAP Volume Module Output Parameter is declared as an input parameter in a base
module or incremental module, parameter constraints must not be declared.

Additional details on ONAP Base Module Output Parameters are provided in Sections 5.8 and Section 7.

3.4.4.3 ONAP Predefined Output Parameters
ONAP will look for a small set of pre-defined Heat output parameters to capture resource attributes for
inventory in ONAP. These output parameters are optional and are specified in Section 5.8.3.1.

3.5 Support of heat stack update
VNF Heat Orchestration Templates must not be designed to utilize the OpenStack heat stack-update
command for scaling (growth/de-growth). ONAP does not support the use of heat stack-update
command for scaling.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 14

It is important to note that ONAP only supports heat stack-update for image upgrades.

4. Networking
ONAP defines two types of networks: External Networks and Internal Networks.

ONAP defines an external network in relation to the VNF and not with regard to the Network Cloud site.
External networks may also be referred to as “inter-VNF” networks. An external network connects VMs in
a VNF to

• VMs in another VNF or
• an external gateway or router

ONAP defines an internal network in relation to the VNF and not with regard to the Network Cloud site.
Internal networks may also be referred to as “intra-VNF” networks or “private” networks. An internal
network only connects VMs in a single VNF. It must not connect to other VNFs or an external gateway or
router.

4.1 External Networks
VNF Heat Orchestration Templates must not include any resources for external networks connected to
the VNF. External networks must be orchestrated separately, as independent, stand-alone VNF Heat
Orchestration Templates, so they can be shared by multiple VNFs and managed independently.

When the external network is created, it must be assigned a unique {network-role}. The {network-
role} should describe the network (e.g., oam). The {network-role} while unique to the LCP, can
repeat across LCPs.

An External Network may be a Neutron Network or a Contrail Network

External networks must be passed into the VNF Heat Orchestration Templates as parameters.
• Neutron Network-id (UUID)
• Neutron Network subnet ID (UUID)
• Contrail Network Fully Qualified Domain Name (FQDN)

ONAP enforces a naming convention for parameters associated with external networks. Section 5
provides additional details.

Parameter values associated with an external network will be generated and/or assigned by ONAP at
orchestration time. Parameter values associated with an external network must not be enumerated in the
environment file. Section 5 provides additional details.

VNFs may use Cloud assigned IP addresses or ONAP SDN-C assigned IP addresses when attaching
VMs to an external network
• A Cloud assigned IP address is assigned by OpenStack’s DHCP Service.
• An ONAP SDN-C assigned IP address is assigned by the ONAP SDN-C controller
• Note that Neutron Floating IPs must not be used. ONAP does not support Neutron Floating IPs (e.g.,

OS::Neutron::FloatingIP)
• ONAP supports the property allowed_address_pairs in the resource OS::Neutron:Port and

the property virtual_machine_interface_allowed_address_pairs in
OS::ContrailV2::VirtualMachineInterfaces. This allows the assignment of a virtual IP
(VIP) address to a set of VMs.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 15

VNF Heat Orchestration Templates must pass the appropriate external network IDs into nested VM
templates when nested Heat is used.

4.2 Internal Networks
The VNF Heat Orchestration Templates must include the resource(s) to create the internal network. The
internal network must be either a Neutron Network or a Contrail Network.

In the modular approach, internal networks must be created in the Base Module, with their resource IDs
exposed as outputs (i.e., ONAP Base Module Output Parameters) for use by all incremental modules. If
the Network resource ID is required in the base template, then a get_resource must be used.

When the internal network is created, it should be assigned a unique {network-role} in the context of the
VNF. Section 5 provides additional details.

VNFs may use Cloud assigned IP addresses or predetermined static IPs when attaching VMs to an
internal network.
• A Cloud assigned IP address is assigned by OpenStack’s DHCP Service.
• A predetermined static IP address is enumerated in the Heat environment file. Since an internal

network is local to the VNF, IP addresses can be re-used at every VNF instance.
• Note that Neutron Floating IPs must not be used. ONAP does not support Neutron Floating IPs (e.g.,

OS::Neutron::FloatingIP)
• ONAP supports the property allowed_address_pairs in the resource OS::Neutron:Port and the

property virtual_machine_interface_allowed_address_pairs in
OS::ContrailV2::VirtualMachineInterfaces. This allows the assignment of a virtual IP
(VIP) address to a set of VMs.

ONAP does not programmatically enforce a naming convention for parameters for internal network.
However, a naming convention is provided that must be followed. Section 5 provides additional details.

5. ONAP Resource ID and Parameter Naming Convention
This section provides the ONAP naming requirements for

1. Resource IDs
2. Resource Property Parameters

5.1 {vm-type}
The Heat Orchestration Templates for a VNF must assign a VNF unique {vm-type} for each Virtual
Machine type (i.e., OS::Nova::Server) instantiated in the VNF. While the {vm-type} must be unique
to the VNF, it does not have to be globally unique across all VNFs that ONAP supports.

Any parameter that is associated with a unique Virtual Machine type in the VNF must include {vm-type}
as part of the parameter name.

Any resource ID that is associated with a unique Virtual Machine type in the VNF must include {vm-
type} as part of the resource ID.

Note that {vm-type} must not be a substring of {network-role}. A substring of a string is another
string that occurs "in". For example, "oam" is a substring of "oam_protected". It will cause the Pre-
Amsterdam VNF Validation Program (i.e., ICE Project) process to produce erroneous error messages.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 16

The {vm-type} should not contain the string “_int” or “int_” or “_int_”. It may cause the Pre-
Amsterdam VNF Validation Program (i.e., ICE Project) process to produce erroneous error messages.

The {vm-type} must be the same case in all parameter names in the VNF.

The {vm-type} must be the same case in all Resource IDs in the VNF.

It is recommended that the {vm-type} case in the parameter names matches the {vm-type} case in
the Resource IDs.

There are two exceptions to the above rules:
1. The six ONAP Metadata parameters must not be prefixed with a common {vm-type} identifier.

They are vnf_name, vnf_id, vf_module_id, vf_module_name, vm_role. The ONAP Metadata
parameters are described in Section 5.5.

2. The parameter referring to the OS::Nova::Server property availability_zone must not be
prefixed with a common {vm-type} identifier. availability_zone is described in Section
5.4.4.

5.2 {network-role}
The assignment of a {network-role} is discussed in Section 4.

Any parameter that is associated with an external network must include the {network-role} as part of
the parameter name.

Any resource ID that is associated with an external network must include the {network-role} as part
of the resource ID.

Any parameter that is associated with an internal network must include int_{network-role} as part of
the parameter name.

Any resource ID that is associated with an internal network must include int_{network-role} as part
of the resource ID.

Note that {network-role} must not be a substring of {vm-type}. A substring of a string is another
string that occurs "in". For example, "oam" is a substring of "oam_protected". It will cause the Pre-
Amsterdam VNF Validation Program (i.e., ICE Project) process to produce erroneous error messages.

The {network-role} should not contain the string “_int” or “int_” or “_int_”. It may cause the Pre-
Amsterdam VNF Validation Program (i.e., ICE Project) process to produce erroneous error messages.

The {network-role} must be the same case in all parameter names in the VNF.

The {network-role} must be the same case in all Resource IDs in the VNF.

It is recommended that the {network-role} case in the parameter names matches the {network-
role} case in the Resource IDs.

5.3 Resource IDs
Heat Orchestration Template resources are described in Section 2.2.1.5

A resource ID that must be unique within the resources section of a Heat Orchestration Template. This is
an OpenStack Requirement.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 17

When a VNF is composed of more than one Heat Orchestration Template (i.e., modules), ONAP requires
that the resource ID must be unique across all modules that compose the VNF.

When a resource is associated with a single {vm-type}, the resource ID must contain {vm-type}.

When a resource is associated with a single external network, the resource ID must contain {network-
role}.

When a resource is associated with a single internal network, the resource ID must contain
int_{network-role}.

When a resource is associated with a single {vm-type} and a single external network, the resource ID
must contain both the {vm-type} and {network-role}.

• The {vm-type} must appear before the {network-role} and must be separated by an
underscore (i.e., {vm-type}_{network-role}).

• Note that an {index} value may separate the {vm-type} and the {network-role}. An
underscore will separate the three values (i.e., {vm-type}_{index}_{network-role}).

When a resource is associated with a single {vm-type} and a single internal network, the resource ID
must contain both the {vm-type} and int_{network-role}.

• The {vm-type} must appear before the int_{network-role} and must be separated by an
underscore (i.e., {vm-type}_int_{network-role}).

• Note that an {index} value may separate the {vm-type} and the int_{network-role}. An
underscore will separate the three values (i.e., {vm-type}_{index}_int_{network-role}).

When a resource is associated with more than one {vm-type} and/or more than one network, the
resource ID

• must not contain the {vm-type} and/or {network-role}/int_{network-role}
• should contain the term “shared” and/or contain text that identifies the VNF.

Only alphanumeric characters and “_” underscores must be used in the resource ID. Special characters
must not be used.

All {index} values must be zero based. That is, the {index} must start at zero and increment by one.

The table below provides example OpenStack Heat resource ID for resources only associated with one
{vm-type} and/or one network.

Resource Type Resource ID Format
OS::Cinder::Volume {vm_type}_volume_{index}
OS::Cinder::VolumeAttachment {vm_type}_volumeattachment_{index}
OS::Heat::CloudConfig {vm_type}_RCC
OS::Heat::MultipartMime {vm_type}_RMM
OS::Heat::ResourceGroup {vm_type}_RRG
OS::Heat::SoftwareConfig {vm_type}_RSC

OS::Neutron::Port
{vm_type}_{index}_{network_role}_{index}_port
{vm_type}_{index}_int_{network_role}_{index}_port

OS::Neutron::SecurityGroup {vm_type}_RSG
OS::Neutron::Subnet {network_role}_subnet_{index}

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 18

OS::Nova::Server {vm_type}_{index}
OS::Nova::ServerGroup {vm_type}_RSG
OS::Swift::Container {vm_type}_RSwiftC

Table 1: Example OpenStack Heat Resource ID

The table below provides example Contrail Heat resource ID for resources only associated with one {vm-
type} and/or one network.

Resource Type Resource ID Format
OS::ContrailV2::InstanceIp {vm_type}_{index}_{network_role}_RII
OS::ContrailV2::InterfaceRouteTable {network_role}_RIRT
OS::ContrailV2::NetworkIpam {network_role}_RNI
OS::ContrailV2::PortTuple {vm_type}_RPT
OS::ContrailV2::ServiceHealthCheck {vm_type}_RSHC_{LEFT|RIGHT}
OS::ContrailV2::ServiceTemplate {vm_type}_RST_{index}
OS::ContrailV2::VirtualMachineInterface int_{network_role}_RVMI
OS::ContrailV2::VirtualNetwork int_{network_role}_RVN

Table 2: Example Contrail Heat resource ID

5.4 Resource: OS::Nova::Server - Parameters
The resource OS::Nova::Server manages the running virtual machine (VM) instance within an
OpenStack cloud. (See
https://docs.openstack.org/developer/heat/template_guide/openstack.html#OS::Nova::Server.)

Four properties of this resource must follow the ONAP parameter naming convention. The four
properties are:

1. image
2. flavor
3. name
4. availability_zone

The table below provides a summary. The sections that follow provides additional details.

Note that the {vm_type} must be identical across all four property parameter for a given
OS::Nova::Server resource.

Resource OS::Nova::Server

Property Name ONAP Parameter Name
Parameter

Type
Parameter Value

Generation
ONAP Parameter Classification

image {vm-type}_image_name string Environment File ONAP Constant

https://docs.openstack.org/developer/heat/template_guide/openstack.html#OS::Nova::Server

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 19

flavor {vm-type}_flavor_name string Environment File ONAP Constant

name
{vm-type}_name_{index} string ONAP ONAP Orchestration

{vm-type}_names CDL ONAP ONAP Orchestration

availability_zone availability_zone_{index} string ONAP ONAP Orchestration

Table 3 Resource Property Parameter Names

5.4.1 Property: image
The parameter associated with the property image is an ONAP Constant parameter.

The parameters must be named {vm-type}_image_name in the Heat Orchestration Template.

The parameter must be declared as type: string

The parameter must be enumerated in the Heat Orchestration Template environment file.

Each VM type (i.e., {vm-type}) must have a separate parameter for image, even if more than one {vm-
type} shares the same image. This provides maximum clarity and flexibility.

Example Parameter Definition

parameters:
 {vm-type}_image_name:
 type: string
 description: {vm-type} server image

5.4.2 Property: flavor
The parameter associated with the property flavor is an ONAP Constant parameter.

The parameters must be named {vm-type}_flavor_name in the Heat Orchestration Template.

The parameter must be declared as type: string

The parameter must be enumerated in the Heat Orchestration Template environment file.

Each VM type (i.e., {vm-type}) must have a separate parameter for flavors, even if more than one {vm-
type} shares the same flavor. This provides maximum clarity and flexibility.

Example Parameter Definition

parameters:
 {vm-type}_flavor_name:
 type: string
 description: {vm-type} flavor

5.4.3 Property: Name
The parameter associated with the property name is an ONAP Orchestration parameter.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 20

The parameter value is provided to the Heat template by ONAP. The parameter must not be enumerated
in the environment file.

The parameter must be declared as type: string or type: comma_delimited_list

If the parameter is declared as type:string, the parameter must be named {vm-
type}_name_{index}, where {index} is a numeric value that starts at zero and increments by one.

If the parameter is declared as type:comma_delimited_list, the parameter must be named as {vm-
type}_names

Each element in the VM Name list should be assigned to successive instances of that VM type.

If a VNF contains more than three instances of a given {vm-type}, the comma_delimited_list form
of the parameter name (i.e., {vm-type}_names) should be used to minimize the number of unique
parameters defined in the Heat.

Example: Parameter Definition

parameters:
 {vm-type}_names:
 type: comma_delimited_list
 description: VM Names for {vm-type} VMs

 {vm-type}_name_{index}:
 type: string
 description: VM Name for {vm-type} VM {index}

Example: comma_delimited_list

In this example, the {vm-type} has been defined as “lb” for load balancer.

parameters:
 lb_names:
 type: comma_delimited_list
 description: VM Names for lb VMs

resources:
 lb_0:
 type: OS::Nova::Server
 properties:
 name: { get_param: [lb_names, 0] }
 ...

 lb_1:
 type: OS::Nova::Server
 properties:
 name: { get_param: [lb_names, 1] }
 ...

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 21

Example: fixed-index

In this example, the {vm-type} has been defined as “lb” for load balancer.

parameters:
 lb_name_0:
 type: string
 description: VM Name for lb VM 0

 lb_name_1:
 type: string
 description: VM Name for lb VM 1

resources:
 lb_0:
 type: OS::Nova::Server
 properties:
 name: { get_param: lb_name_0 }
 ...

 lb_1:
 type: OS::Nova::Server
 properties:
 name: { get_param: lb_name_1 }
 ...

5.4.3.1 Contrail Issue with Values for OS::Nova::Server Property Name
The Contrail GUI has a limitation displaying special characters. The issue is documented in
https://bugs.launchpad.net/juniperopenstack/+bug/1590710. It is recommended that special characters
be avoided. However, if special characters must be used, the only special characters supported are:

 - “ ! $ ‘ () = ~ ^ | @ ` { } [] > , . _

5.4.4 Property: availability_zone
The parameter associated with the property availability_zone is an ONAP Orchestration parameter.

The parameter value is provided to the Heat template by ONAP. The parameter must not be enumerated
in the environment file.

The parameter must be named availability_zone_{index} in the Heat Orchestration Template.
The {index} must start at zero. The {index} must increment by one. The parameter name must not
include the {vm-type}.

The parameter must be declared as type: string

The parameter must not be declared as type: comma_delimited_list

https://bugs.launchpad.net/juniperopenstack/+bug/1590710

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 22

5.4.5 Example
The example below depicts part of a Heat Orchestration Template that uses the four
OS::Nova::Server properties discussed in this section.

In the Heat Orchestration Template below, four Virtual Machines (OS::Nova::Server) are created: two
dns servers with {vm-type} set to “dns” and two oam servers with {vm-type} set to “oam”. Note that
the parameter associated with the property name is a comma_delimited_list for dns and a string for
oam.

parameters:
 dns_image_name:
 type: string
 description: dns server image
 dns_flavor_name:
 type: string
 description: dns server flavor
 dns_names:
 type: comma_delimited_list
 description: dns server names
 oam_image_name:
 type: string
 description: oam server image
 oam_flavor_name:
 type: string
 description: oam server flavor
 oam_name_0:
 type: string
 description: oam server name 0
 oam_name_1:
 type: string
 description: oam server name 1
 availability_zone_0:
 type: string
 description: availability zone ID or Name
 availability_zone_1:
 type: string
 description: availability zone ID or Name

resources:
 dns_server_0:
 type: OS::Nova::Server
 properties:
 name: { get_param: [dns_names, 0] }
 image: { get_param: dns_image_name }
 flavor: { get_param: dns_flavor_name }
 availability_zone: { get_param: availability_zone_0 }
 . . .

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 23

 dns_server_1:
 type: OS::Nova::Server
 properties:
 name: { get_param: [dns_names, 1] }
 image: { get_param: dns_image_name }
 flavor: { get_param: dns_flavor_name }
 availability_zone: { get_param: availability_zone_1 }
 . . .

 oam_server_0:
 type: OS::Nova::Server
 properties:
 name: { get_param: oam_name_0 }
 image: { get_param: oam_image_name }
 flavor: { get_param: oam_flavor_name }
 availability_zone: { get_param: availability_zone_0 }
 . . .

 oam_server_1:
 type: OS::Nova::Server
 properties:
 name: { get_param: oam_name_1 }
 image: { get_param: oam_image_name }
 flavor: { get_param: oam_flavor_name }
 availability_zone: { get_param: availability_zone_1 }
 . . .

5.5 Resource: OS::Nova::Server – Metadata Parameters
The resource OS::Nova::Server has an OpenStack optional property metadata. The metadata
property is mandatory for ONAP Heat Orchestration Templates; it must be included.

ONAP requires the following three mandatory metadata parameters for an OS::Nova::Server
resource:

• vnf_id
• vf_module_id

• vnf_name

ONAP allows the following three optional metadata parameters for an OS::Nova::Server resource.
They may be included

• vm_role

• vf_module_name
Note that the metadata parameters do not and must not contain {vm-type} in their name.

When Metadata parameters are past into a nested heat template, the parameter names must not change.

The table below provides a summary. The sections that follow provides additional details.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 24

Metadata Parameter
Name

Parameter
Type Mandatory/Optional Parameter Value

Generation
vnf_id string Mandatory ONAP
vf_module_id string Mandatory ONAP
vnf_name string Mandatory ONAP
vf_module_name string Optional ONAP
vm_role string Optional YAML or Environment File

Table 4: ONAP Metadata

5.5.1 vnf_id
The vnf_id parameter is mandatory; it must be included in the Heat Orchestration Template.

The vnf_id parameter value will be supplied by ONAP. ONAP generates the UUID that is the vnf_id
and supplies it to the Heat Orchestration Template at orchestration time.

The parameter must be declared as type: string

Parameter constraints must not be defined.

The parameter must not be enumerated in the Heat environment file.

Example Parameter Definition

parameters:
 vnf_id:
 type: string
 description: Unique ID for this VNF instance

5.5.2 vf_module_id
The vf_module_id parameter is mandatory; it must be included in the Heat Orchestration Template.

The vf_module_id parameter value will be supplied by ONAP. ONAP generates the UUID that is the
vf_module_id and supplies it to the Heat Orchestration Template at orchestration time.

The parameter must be declared as type: string

Parameter constraints must not be defined.

The parameter must not be enumerated in the Heat environment file.

Example Parameter Definition

parameters:
 vnf_module_id:
 type: string
 description: Unique ID for this VNF module instance

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 25

5.5.3 vnf_name
The vnf_name parameter is mandatory; it must be included in the Heat Orchestration Template.

The vnf_name parameter value will be generated and/or assigned by ONAP and supplied to the Heat
Orchestration Template by ONAP at orchestration time.

The parameter must be declared as type: string

Parameter constraints must not be defined.

The parameter must not be enumerated in the Heat environment file.

Example Parameter Definition

parameters:
 vnf_name:
 type: string
 description: Unique name for this VNF instance

5.5.4 vf_module_name
The vf_module_name parameter is optional; it may be included in the Heat Orchestration Template.

The vf_module_name parameter is the name of the name of the Heat stack (e.g., <STACK_NAME>) in
the command “Heat stack-create” (e.g., Heat stack-create [-f <FILE>] [-e <FILE>]
<STACK_NAME>). The <STACK_NAME> needs to be specified as part of the orchestration process.

The parameter must be declared as type: string

Parameter constraints must not be defined.

The parameter must not be enumerated in the Heat environment file.

Example Parameter Definition

parameters:
 vf_module_name:
 type: string
 description: Unique name for this VNF Module instance

5.5.5 vm_role
The vm_role parameter is optional; it may be included in the Heat Orchestration Template.

Any roles tagged to the VMs via metadata will be stored in ONAP’s A&AI system and available for use by
other ONAP components and/or north bound systems.

The vm_role values must be either
• hard-coded into the Heat Orchestration Template or
• enumerated in the environment file.

Defining the vm_role as the {vm-type} is a recommended convention

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 26

The parameter must be declared as type: string

Parameter constraints must not be defined.

Example Parameter Definition

parameters:
 vm_role:
 type: string
 description: Unique role for this VM

Example Resource Definition: Hard Coded

In this example, the {vm-role} is hard coded in the Heat Orchestration Template.

resources:
 dns_servers:
 type: OS::Nova::Server
 properties:

 metadata:
 vm_role: lb

Example Resource Definition: get_param

In this example, the {vm-role} is enumerated in the environment file.

resources:
 dns_servers:
 type: OS::Nova::Server
 properties:

 metadata:
 vm_role: { get_param: vm_role }

5.5.6 Example
The example below depicts part of a Heat Orchestration Template that uses the five of the
OS::Nova::Server metadata parameter discussed in this section. The {vm-type} has been defined
as lb for load balancer.

parameters:
 lb_name_0
 type: string
 description: VM Name for lb VM 0
 vnf_name:
 type: string

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 27

 description: Unique name for this VNF instance
 vnf_id:
 type: string
 description: Unique ID for this VNF instance
 vf_module_name:
 type: string
 description: Unique name for this VNF Module instance
 vf_module_id:
 type: string
 description: Unique ID for this VNF Module instance
 vm_role:
 type: string
 description: Unique role for this VM

resources:

 lb_vm_0:
 type: OS::Nova::Server
 properties:
 name: { get_param: lb_name_0 }
 ...
 metadata:
 vnf_name: { get_param: vnf_name }
 vnf_id: { get_param: vnf_id }
 vf_module_name: { get_param: vf_module_name }
 vf_module_id: { get_param: vf_module_id }
 vm_role: lb

5.6 Resource: OS::Neutron::Port - Parameters
The resource OS::Neutron::Port is for managing Neutron ports (See
https://docs.openstack.org/developer/heat/template_guide/openstack.html#OS::Neutron::Port.)

5.6.1 Introduction
Four properties of the resource OS::Neutron::Port that must follow the ONAP parameter naming
convention. The four properties are:

1. network
2. fixed_ips, ip_address
3. fixed_ips, subnet_id
4. allowed_address_pairs, ip_address

The parameters associated with these properties may reference an external network or internal network.
External networks and internal networks are defined in Section 4.

5.6.1.1 External Networks
When the parameter references an external network

• the parameter name must contain {network-role}

https://docs.openstack.org/developer/heat/template_guide/openstack.html#OS::Neutron::Port

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 28

• the parameter must not be enumerated in the Heat environment file
• the parameter is classified as an ONAP Orchestration Parameter

Property Name ONAP Parameter Name Parameter Type

network
{network-role}_net_id string
{network-role}_net_name string

fixed_ips, ip_address

{vm-type}_{network-role}_ip_{index} string
{vm-type}_{network-role}_ips comma_delimited_list
{vm-type}_{network-role}_v6_ip_{index} string
{vm-type}_{network-role}_v6_ips comma_delimited_list

fixed_ips, subnet
{network-role}_subnet_id string
{network-role}_v6_subnet_id string

allowed_address_pairs,
ip_address

{vm-type}_{network-role}_floating_ip string
{vm-type}_{network-role}_floating_v6_ip string
{vm-type}_{network-role}_ip_{index} string
{vm-type}_{network-role}_ips comma_delimited_list
{vm-type}_{network-role}_v6_ip_{index} string
{vm-type}_{network-role}_v6_ips comma_delimited_list

Table 5: OS::Neutron::Port Resource Property Parameters (External Networks)

5.6.1.2 Internal Networks
When the parameter references an internal network

• the parameter name must contain int_{network-role}
• the parameter may be enumerated in the environment file.

Property Parameter Name for Internal Networks Parameter Type

network
int_{network-role}_net_id string
int_{network-role}_net_name string

fixed_ips, ip_address

{vm-type}_int_{network-role}_ip_{index} string
{vm-type}_int_{network-role}_ips comma_delimited_list
{vm-type}_int_{network-role}_v6_ip_{index} string
{vm-type}_int_{network-role}_v6_ips comma_delimited_list

fixed_ips, subnet
int_{network-role}_subnet_id string
int_{network-role}_v6_subnet_id string

allowed_address_pairs,
ip_address

{vm-type}_int_{network-role}_floating_ip string
{vm-type}_int_{network-role}_floating_v6_ip string
{vm-type}_int_{network-role}_ip_{index} string
{vm-type}_int_{network-role}_ips comma_delimited_list
{vm-type}_int_{network-role}_v6_ip_{index} string
{vm-type}_int_{network-role}_v6_ips comma_delimited_list

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 29

Table 6: Port Resource Property Parameters (Internal Networks)

5.6.2 Property: network
The property networks in the resource OS::Neutron::Port must be referenced by Neutron Network
ID, a UUID value, or by the network name defined in OpenStack.

5.6.2.1 External Networks
When the parameter associated with the property network is referencing an “external” network, the
parameter must adhere to the following naming convention in the Heat Orchestration Template

• {network-role}_net_id for the Neutron network ID

• {network-role}_net_name for the network name in OpenStack

The parameter must be declared as type: string

The parameter must not be enumerated in the Heat environment file.

Example Parameter Definition

parameters:
 {network-role}_net_id:
 type: string
 description: Neutron UUID for the {network-role} network

 {network-role}_net_name:
 type: string
 description: Neutron name for the {network-role} network

Example: One Cloud Assigned IP Address (DHCP) assigned to a network that has only one subnet

In this example, the {network-role} has been defined as oam to represent an oam network and the
{vm-type} has been defined as lb for load balancer. The Cloud Assigned IP Address uses the
OpenStack DHCP service to assign IP addresses.

parameters:
 oam_net_id:
 type: string
 description: Neutron UUID for the oam network

resources:
 lb_port_1:
 type: OS::Neutron::Port
 network: { get_param: oam_net_id }

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 30

5.6.2.2 Internal Networks
When the parameter associated with the property network is referencing an “internal” network, the
parameter must adhere to the following naming convention.

• int_{network-role}_net_id for the Neutron network ID

• int_{network-role}_net_name for the network name in OpenStack

The parameter must be declared as type: string

The assumption is that internal networks are created in the base module. The Neutron Network ID will be
passed as an output parameter (e.g., ONAP Base Module Output Parameter) to the incremental modules.
In the incremental modules, it will be defined as input parameter.

Example Parameter Definition

parameters:
 int_{network-role}_net_id:
 type: string
 description: Neutron UUID for the {network-role} network

 int_{network-role}_net_name:
 type: string
 description: Neutron name for the {network-role} network

5.6.3 Property: fixed_ips, Map Property: subnet_id
The property fixed_ips is used to assign IPs to a port. The Map Property subnet_id specifies the
subnet the IP is assigned from.

The property fixed_ips and Map Property subnet_id must be used if a Cloud (i.e., DHCP) IP address
assignment is being requested and the Cloud IP address assignment is targeted at a specific subnet
when two or more subnets exist.

The property fixed_ips and Map Property subnet_id should not be used if all IP assignments are
fixed, or if the Cloud IP address assignment does not target a specific subnet or there is only one subnet.

Note that DHCP assignment of IP addresses is also referred to as cloud assigned IP addresses.

5.6.3.1 Subnet of an External Networks
When the parameter is referencing a subnet of an “external” network, the property fixed_ips and Map
Property subnet_id parameter must adhere to the following naming convention.

• {network-role}_subnet_id if the subnet is an IPv4 subnet

• {network-role}_v6_subnet_id if the subnet is an IPv6 subnet

The parameter must be declared as type: string

The parameter must not be enumerated in the Heat environment file.

Example Parameter Definition

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 31

parameters:
 {network-role}_subnet_id:
 type: string
 description: Neutron subnet UUID for the {network-role} network

 {network-role}_v6_subnet_id:
 type: string
 description: Neutron subnet UUID for the {network-role} network

Example: One Cloud Assigned IPv4 Address (DHCP) assigned to a network that has two or more
subnets subnet:

In this example, the {network-role} has been defined as oam to represent an oam network and the
{vm-type} has been defined as lb for load balancer. The Cloud Assigned IP Address uses the
OpenStack DHCP service to assign IP addresses.

parameters:
 oam_net_id:
 type: string
 description: Neutron UUID for the oam network

 oam_subnet_id:
 type: string
 description: Neutron subnet UUID for the oam network

resources:
 lb_port_1:
 type: OS::Neutron::Port
 network: { get_param: oam_net_id }
 fixed_ips:
 - subnet_id: { get_param: oam_subnet_id }

Example: One Cloud Assigned IPv4 address and one Cloud Assigned IPv6 address assigned to a
network that has at least one IPv4 subnet and one IPv6 subnet

In this example, the {network-role} has been defined as oam to represent an oam network and the
{vm-type} has been defined as lb for load balancer.

parameters:
 oam_net_id:
 type: string
 description: Neutron UUID for the oam network

 oam_subnet_id:
 type: string
 description: Neutron subnet UUID for the oam network

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 32

 oam_v6_subnet_id:
 type: string
 description: Neutron subnet UUID for the oam network

resources:
 lb_port_1:
 type: OS::Neutron::Port
 properties:
 network: { get_param: oam_net_id }
 fixed_ips:
 - subnet_id: { get_param: oam_subnet_id }
 - subnet_id: { get_param: oam_v6_subnet_id }

5.6.3.2 Internal Networks
When the parameter is referencing the subnet of an “internal” network, the property fixed_ips and Map
Property subnet_id parameter must adhere to the following naming convention.

• int_{network-role}_subnet_id if the subnet is an IPv4 subnet

• int_{network-role}_v6_subnet_id if the subnet is an IPv6 subnet

The parameter must be declared as type: string

The assumption is that internal networks are created in the base module. The Neutron subnet network ID
will be passed as an output parameter (e.g., ONAP Base Module Output Parameter) to the incremental
modules. In the incremental modules, it will be defined as input parameter.

Example Parameter Definition

parameters:
 int_{network-role}_subnet_id:
 type: string
 description: Neutron subnet UUID for the {network-role} network

 int_{network-role}_v6_subnet_id:
 type: string
 description: Neutron subnet UUID for the {network-role} network

5.6.4 Property: fixed_ips, Map Property: ip_address
The property fixed_ips is used to assign IPs to a port. The Map Property ip_address specifies the
IP address to be assigned to the port.

The property fixed_ips and Map Property ip_address must be used when statically assigning one or
more IP addresses to a port. This is also referred to as ONAP SDN-C IP address assignment. ONAP’s
SDN-C provides the IP address assignment.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 33

An IP address is assigned to a port on a VM (referenced by {vm-type}) that is connected to an external
network (referenced by {network-role}) or internal network (referenced by int_{network-role}).

When a SDN-C IP assignment is made to a port connected to an external network, the parameter name
must contain {vm-type} and {network-role}.

When a SDN-C IP assignment is made to a port connected to an internal network, the parameter name
must contain {vm-type} and int_{network-role}.

5.6.4.1 IP Address Assignments on External Networks
When the property fixed_ips and Map Property ip_address is used to assign IP addresses to an
external network, the parameter name is dependent on the parameter type (comma_delimited_list or
string) and IP address type (IPv4 or IPv6).

When the parameter for property fixed_ips and Map Property ip_address is declared type:
comma_delimited_list, the parameter must adhere to the following naming convention

• {vm-type}_{network-role}_ips for IPv4 address

• {vm-type}_{network-role}_v6_ips for IPv6 address

Each element in the IP list should be assigned to successive instances of {vm-type} on {network-
role}.

The parameter must not be enumerated in the Heat environment file.

Example Parameter Definition

parameters:

 {vm-type}_{network-role}_ips:
 type: comma_delimited_list
 description: Fixed IPv4 assignments for {vm-type} VMs on the {network-
role} network

 {vm-type}_{network-role}_v6_ips:
 type: comma_delimited_list
 description: Fixed IPv6 assignments for {vm-type} VMs on the {network-
role} network

Example: comma_delimited_list parameters for IPv4 and IPv6 Address Assignments to an external
network

In this example, the {network-role} has been defined as oam to represent an oam network and the
{vm-type} has been defined as db for database.

parameters:
 oam_net_id:
 type: string

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 34

 description: Neutron UUID for a oam network

 db_oam_ips:
 type: comma_delimited_list
 description: Fixed IPv4 assignments for db VMs on the oam network

 db_oam_v6_ips:
 type: comma_delimited_list
 description: Fixed IPv6 assignments for db VMs on the oam network

resources:
 db_0_port_1:
 type: OS::Neutron::Port
 network: { get_param: oam_net_id }
 fixed_ips: [{ “ip_address”: {get_param: [db_oam_ips, 0]}}, {
“ip_address”: {get_param: [db_oam_v6_ips, 0]}}]

 db_1_port_1:
 type: OS::Neutron::Port
 properties:
 network: { get_param: oam_net_id }
 fixed_ips:
 - “ip_address”: {get_param: [db_oam_ips, 1]}
 - “ip_address”: {get_param: [db_oam_v6_ips, 1]}

When the parameter for property fixed_ips and Map Property ip_address is declared type:
string, the parameter must adhere to the following naming convention.

• {vm-type}_{network-role}_ip_{index} for an IPv4 address

• {vm-type}_{network-role}_v6_ip_{index} for an IPv6 address

The value for {index} must start at zero (0) and increment by one.

The parameter must not be enumerated in the Heat environment file.

Example Parameter Definition

parameters:

 {vm-type}_{network-role}_ip_{index}:
 type: string
 description: Fixed IPv4 assignment for {vm-type} VM {index} on
the{network-role} network

 {vm-type}_{network-role}_v6_ip_{index}:
 type: string
 description: Fixed IPv6 assignment for {vm-type} VM {index} on
the{network-role} network

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 35

Example: string parameters for IPv4 and IPv6 Address Assignments to an external network

In this example, the {network-role} has been defined as “oam” to represent an oam network and
the {vm-type} has been defined as “db” for database.

parameters:
 oam_net_id:
 type: string
 description: Neutron UUID for an OAM network

 db_oam_ip_0:
 type: string
 description: Fixed IPv4 assignment for db VM 0 on the OAM network

 db_oam_ip_1:
 type: string
 description: Fixed IPv4 assignment for db VM 1 on the OAM network

 db_oam_v6_ip_0:
 type: string
 description: Fixed IPv6 assignment for db VM 0 on the OAM network

 db_oam_v6_ip_1:
 type: string
 description: Fixed IPv6 assignment for db VM 1 on the OAM network

resources:
 db_0_port_1:
 type: OS::Neutron::Port
 properties:
 network: { get_param: oam_net_id }
 fixed_ips: [{ “ip_address”: {get_param: db_oam_ip_0}}, {
“ip_address”: {get_param: db_oam_v6_ip_0]}}]

 db_1_port_1:
 type: OS::Neutron::Port
 properties:
 network: { get_param: oam_net_id }
 fixed_ips:
 - “ip_address”: {get_param: db_oam_ip_1}}]
 - “ip_address”: {get_param: db_oam_v6_ip_1}}]

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 36

5.6.4.2 IP Address Assignment on Internal Networks
When the property fixed_ips and Map Property ip_address is used to assign IP addresses to an
internal network, the parameter name is dependent on the parameter type (comma_delimited_list or
string) and IP address type (IPv4 or IPv6).

When the parameter for property fixed_ips and Map Property ip_address is declared type:
comma_delimited_list, the parameter must adhere to the following naming convention

• {vm-type}_int_{network-role}_ips for IPv4 address

• {vm-type}_int_{network-role}_v6_ips for IPv6 address

Each element in the IP list should be assigned to successive instances of {vm-type} on {network-
role}.

The parameter must be enumerated in the Heat environment file. Since an internal network is local to the
VNF, IP addresses can be re-used at every VNF instance.

Example Parameter Definition

parameters:

 {vm-type}_int_{network-role}_ips:
 type: comma_delimited_list
 description: Fixed IPv4 assignments for {vm-type} VMs on the
int_{network-role} network

 {vm-type}_int_{network-role}_v6_ips:
 type: comma_delimited_list
 description: Fixed IPv6 assignments for {vm-type} VMs on the
int_{network-role} network

Example: comma_delimited_list parameters for IPv4 and IPv6 Address Assignments to an internal
network

In this example, the {network-role} has been defined as oam_int to represent an oam network
internal to the vnf. The role oam_int was picked to differentiate from an external oam network with a
{network-role} of oam. The {vm-type} has been defined as db for database.

parameters:
 int_oam_int_net_id:
 type: string
 description: Neutron UUID for the oam internal network

 db_int_oam_int_ips:
 type: comma_delimited_list
 description: Fixed IPv4 assignments for db VMs on the oam internal
network

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 37

 db_int_oam_int_v6_ips:
 type: comma_delimited_list
 description: Fixed IPv6 assignments for db VMs on the oam internal
network

resources:
 db_0_port_1:
 type: OS::Neutron::Port
 properties:
 network: { get_param: int_oam_int_net_id }
 fixed_ips: [{ “ip_address”: {get_param: [db_int_oam_int_ips, 0]}}, {
“ip_address”: {get_param: [db_int_oam_int_v6_ips, 0]}}]

 db_1_port_1:
 type: OS::Neutron::Port
 properties:
 network: { get_param: int_oam_int_net_id }
 fixed_ips:
 - “ip_address”: {get_param: [db_int_oam_int_ips, 1]}
 - “ip_address”: {get_param: [db_int_oam_int_v6_ips, 1]}

When the parameter for property fixed_ips and Map Property ip_address is declared type:
string, the parameter must adhere to the following naming convention.

• {vm-type}_int_{network-role}_ip_{index} for an IPv4 address

• {vm-type}_int_{network-role}_v6_ip_{index} for an IPv6 address

The value for {index} must start at zero (0) and increment by one.

The parameter must be enumerated in the Heat environment file. Since an internal network is local to the
VNF, IP addresses can be re-used at every VNF instance.

Example Parameter Definition

parameters:

 {vm-type}_int_{network-role}_ip_{index}:
 type: string
 description: Fixed IPv4 assignment for {vm-type} VM {index} on
the{network-role} network

 {vm-type}_int_{network-role}_v6_ip_{index}:
 type: string
 description: Fixed IPv6 assignment for {vm-type} VM {index} on
the{network-role} network

Example: string parameters for IPv4 and IPv6 Address Assignments to an internal network

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 38

In this example, the {network-role} has been defined as oam_int to represent an oam network
internal to the vnf. The role oam_int was picked to differentiate from an external oam network with a
{network-role} of oam. The {vm-type} has been defined as db for database.

parameters:
 int_oam_int_net_id:
 type: string
 description: Neutron UUID for an OAM internal network

 db_oam_int_ip_0:
 type: string
 description: Fixed IPv4 assignment for db VM on the oam_int network

 db_oam_int_ip_1:
 type: string
 description: Fixed IPv4 assignment for db VM 1 on the oam_int network

 db_oam_int_v6_ip_0:
 type: string
 description: Fixed IPv6 assignment for db VM 0 on the oam_int network

 db_oam_int_v6_ip_1:
 type: string
 description: Fixed IPv6 assignment for db VM 1 on the oam_int network

resources:
 db_0_port_0:
 type: OS::Neutron::Port
 properties:
 network: { get_param: int_oam_int_net_id }
 fixed_ips: [{ “ip_address”: {get_param: db_oam_int_ip_0}}, {
“ip_address”: {get_param: db_oam_int_v6_ip_0]}}]

 db_1_port_0:
 type: OS::Neutron::Port
 properties:
 network: { get_param: int_oam_int_net_id }
 fixed_ips:
 - “ip_address”: {get_param: db_oam_int_ip_1}}]
 - “ip_address”: {get_param: db_oam_int_v6_ip_1}}]

5.6.5 Property: allowed_address_pairs, Map Property: ip_address
The property allowed_address_pairs in the resource OS::Neutron::Port allows the user to specify a
mac_address and/or ip_address that will pass through a port regardless of subnet. This enables the use
of protocols such as VRRP, which floats an IP address between two instances to enable fast data plane
failover. The map property ip_address specifies the IP address.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 39

The allowed_address_pairs is an optional property. It is not required.

An ONAP Heat Orchestration Template allows the assignment of one IPv4 address
allowed_address_pairs and/or one IPv6 address to a {vm-type} and {network-
role}/int_{network-role} combination.

An ONAP Heat Orchestration Template allows the assignment of one IPv6 address
allowed_address_pairs and/or one IPv6 address to a {vm-type} and {network-
role}/int_{network-role} combination.

Note that the management of these IP addresses (i.e. transferring ownership between active and standby
VMs) is the responsibility of the application itself.

Note that these parameters are not intended to represent Neutron “Floating IP” resources, for which
OpenStack manages a pool of public IP addresses that are mapped to specific VM ports. In that case,
the individual VMs are not even aware of the public IPs, and all assignment of public IPs to VMs is via
OpenStack commands. ONAP does not support Neutron-style Floating IPs.

5.6.5.1 External Networks
When the parameter is referencing an “external” network, the property allowed_address_pairs and
Map Property ip_address parameter must adhere to the following naming convention.

• {vm-type}_{network-role}_floating_ip for an IPv4 address

• {vm-type}_{network-role}_floating_v6_ip for an IPv6 address

The parameter must be declared as type: string

The parameter must not be enumerated in the Heat environment file.

Example Parameter Definition

parameters:

 {vm-type}_{network-role}_floating_ip:
 type: string
 description: VIP for {vm-type} VMs on the {network-role} network

 {vm-type}_{network-role}_floating_v6_ip:
 type: string
 description: VIP for {vm-type} VMs on the {network-role} network

Example:

In this example, the {network-role} has been defined as oam to represent an oam network and the
{vm-type} has been defined as db for database.

parameters:

 oam_net_id:
 type: string

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 40

 description: Neutron UUID for the oam network

 db_oam_ips:
 type: comma_delimited_list
 description: Fixed IPs for db VMs on the oam network

 db_oam_floating_ip:
 type: string
 description: VIP IP for db VMs on the oam network

resources:
 db_0_port_0:
 type: OS::Neutron::Port
 properties:
 network: { get_param: oam_net_id }
 fixed_ips: [{ “ip_address”: {get_param: [db_oam_ips,0] }}]
 allowed_address_pairs: [{ “ip_address”: {get_param:
db_oam_floating_ip}}]

 db_1_port_0:
 type: OS::Neutron::Port
 properties:
 network: { get_param: oam_net_id }
 fixed_ips: [{ “ip_address”: {get_param: [db_oam_ips,1] }}]
 allowed_address_pairs: [{ “ip_address”: {get_param:
db_oam_floating_ip}}]

5.6.5.2 Internal Networks
When the parameter is referencing an “internal” network, the property allowed_address_pairs and
Map Property ip_address parameter must adhere to the following naming convention.

• {vm-type}_int_{network-role}_floating_ip for an IPv4 address

• {vm-type}_int_{network-role}_floating_v6_ip for an IPv6 address

The parameter must be declared as type: string

The parameter must be enumerated in the Heat environment file.

Example Parameter Definition

parameters:

 {vm-type}_int_{network-role}_floating_ip:
 type: string
 description: VIP for {vm-type} VMs on the int_{network-role} network

 {vm-type}_int_{network-role}_floating_v6_ip:
 type: string

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 41

 description: VIP for {vm-type} VMs on the int_{network-role} network

5.6.5.3 Multiple allowed_address_pairs for a {vm-type} / {network-role} combination
The parameter {vm-type}_{network-role}_floating_ip provides only one allowed address pair
IPv4 address per {vm-type} and {network-role} pair.

The parameter {vm-type}_{network-role}_floating_v6_ip provides only one allowed address
pair IPv6 address per {vm-type} and {network-role} pair.

If there is a need for multiple allowed address pair IPs for a given {vm-type} and {network-role}
combination within a VNF, then the parameter names defined for the property fixed_ips and Map
Property ip_address should be used with the allowed_address_pairs property. The examples
below illustrate this.

Example: A VNF has four load balancers. Each pair has a unique VIP.

In this example, there are two administrative VM pairs. Each pair has one VIP. The {network-role}
has been defined as oam to represent an oam network and the {vm-type} has been defined as admin
for an administrative VM.

Pair 1: Resources admin_0_port_0 and admin_1_port_0 share a unique VIP,
[admin_oam_ips,2]

Pair 2: Resources admin_2_port_0 and admin_3_port_0 share a unique VIP,
[admin_oam_ips,5]

parameters:
 oam_net_id:
 type: string
 description: Neutron UUID for the oam network
 admin_oam_ips:
 type: comma_delimited_list
 description: Fixed IP assignments for admin VMs on the oam network

resources:

 admin_0_port_0:
 type: OS::Neutron::Port
 properties:
 network: { get_param: oam_net_id }
 fixed_ips: [{ “ip_address”: {get_param: [admin_oam_ips,0] }}]
 allowed_address_pairs: [{ “ip_address”: {get_param: [admin_oam_ips,2]
}}]

 admin_1_port_0:
 type: OS::Neutron::Port
 properties:

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 42

 network: { get_param: oam_net_id }
 fixed_ips: [{ “ip_address”: {get_param: [admin_oam_ips,1] }}]
 allowed_address_pairs: [{ “ip_address”: {get_param: [admin_oam_ips,2]
}}]

 admin_2_port_0:
 type: OS::Neutron::Port
 properties:
 network: { get_param: oam_net_id }
 fixed_ips: [{ “ip_address”: {get_param: [admin_oam_ips,3] }}]
 allowed_address_pairs: [{ “ip_address”: {get_param: [admin_oam_ips,5]
}}]

 admin_3_port_0:
 type: OS::Neutron::Port
 properties:
 network: { get_param: oam_net_id }
 fixed_ips: [{ “ip_address”: {get_param: [admin_oam_ips,4] }}]
 allowed_address_pairs: [{ “ip_address”: {get_param: [admin_oam_ips,5]
}}]

Example: A VNF has two load balancers. The pair of load balancers share two VIPs.

In this example, there is one load balancer pairs. The pair has two VIPs. The {network-role} has
been defined as oam to represent an oam network and the {vm-type} has been defined as lb for a load
balancer VM.

resources:
 lb_0_port_0:
 type: OS::Neutron::Port
 properties:
 network: { get_param: oam_net_id }
 fixed_ips: [{ “ip_address”: {get_param: [lb_oam_ips,0] }}]
 allowed_address_pairs: [{ "ip_address": {get_param: [lb_oam_ips,2] },
{get_param: [lb_oam_ips,3] }}]

 lb_1_port_0:
 type: OS::Neutron::Port
 properties:
 network: { get_param: oam_net_id }
 fixed_ips: [{ “ip_address”: {get_param: [lb_oam_ips,1] }}]
 allowed_address_pairs: [{ "ip_address": {get_param: [lb_oam_ips,2] },
{get_param: [lb_oam_ips,3] }}]

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 43

As a general rule, provide the fixed IPs for the VMs indexed first in the CDL and then the VIPs as shown
in the examples above.

5.6.5.4 ONAP SDN-C Assignment of allowed_address_pair IP Addresses
The following items must be taken into consideration when designing Heat Orchestration Templates that
expect ONAP’s SDN-C to assign allowed_address_pair IP addresses via automation.

The VMs must be of the same {vm-type}.

The VMs must be created in the same module (base or incremental).

5.7 Resource Property “name”
The parameter naming convention of the property name for the resource OS::Nova::Server has been
defined in Section 5.3.3.

This section provides the requirements how the property name for non OS::Nova::Server resources
must be defined when the property is used. Not all resources require the property name (e.g., it is
optional) and some resources do not support the property.

When the property name for a non OS::Nova::Server resources is defined in a Heat Orchestration
Template, the intrinsic function str_replace must be used in conjunction with the ONAP supplied
metadata parameter vnf_name to generate a unique value. This prevents the enumeration of a unique
value for the property name in a per instance environment file.

Note that

• In most cases, only the use of the metadata value vnf_name is required to create a unique
property name

• the Heat Orchestration Template pseudo parameter 'OS::stack_name’ may also be used in
the str_replace construct to generate a unique name when the vnf_name does not provide
uniqueness

Example: Property name for resource OS::Neutron::SecurityGroup

resources:
 DNS_SECURITY_GROUP:
 type: OS::Neutron::SecurityGroup
 properties:
 description: vDNS security group
 name:
 str_replace:
 template: VNF_NAME_sec_grp_DNS
 params:
 VNF_NAME: {get_param: vnf_name}
 rules: [.
]

Example: Property name for resource OS::Cinder::Volume

resources:

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 44

 DNS_Cinder_Volume:
 type: OS::Cinder::Volume
 properties:
 description: Cinder Volume
 name:
 str_replace:
 template: VNF_NAME_STACK_NAME_dns_volume
 params:
 VNF_NAME: {get_param: vnf_name}
 STACK_NAME: { get_param: 'OS::stack_name' }

5.7.1 Contrail Issue with Values for the Property Name
The Contrail GUI has a limitation displaying special characters. The issue is documented in
https://bugs.launchpad.net/juniperopenstack/+bug/1590710. It is recommended that special characters
be avoided. However, if special characters must be used, note that for the following resources:

• Virtual Machine
• Virtual Network
• Port
• Security Group
• Policies
• IPAM Creation

the only special characters supported are:

 - “ ! $ ‘ () = ~ ^ | @ ` { } [] > , . _

5.8 ONAP Output Parameter Names
ONAP defines three types of Output Parameters as detailed in Section 3.4.4.

5.8.1 ONAP Base Module Output Parameters:
ONAP Base Module Output Parameters do not have an explicit naming convention. The parameter name
must contain {vm-type} and {network-role} when appropriate.

5.8.2 ONAP Volume Template Output Parameters:
ONAP Base Module Output Parameters do not have an explicit naming convention. The parameter name
must contain {vm-type} when appropriate.

5.8.3 Predefined Output Parameters
ONAP currently defines one predefined output parameter the OAM Management IP Addresses.

5.8.3.1 OAM Management IP Addresses
A VNF may have a management interface for application controllers to interact with and configure the
VNF. Typically, this will be via a specific VM that performs a VNF administration function. The IP
address of this interface must be captured and inventoried by ONAP. The IP address might be a VIP if
the VNF contains an HA pair of management VMs, or may be a single IP address assigned to one VM.

https://bugs.launchpad.net/juniperopenstack/+bug/1590710

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 45

The Heat template may define either (or both) of the following Output parameters to identify the
management IP address.

• oam_management_v4_address

• oam_management_v6_address

Notes:

• The use of this output parameters are optional.

• The Management IP Address should be defined only once per VNF, so it must only appear in one
Module template

• If a fixed IP for the admin VM is passed as an input parameter, it may be echoed in the output
parameters. In this case, a IPv4 and/or IPv6 parameter must be defined in the parameter section
of the YAML Heat template. The parameter maybe named oam_management_v4_address
and/or oam_management_v6_address or may be named differently.

• If the IP for the admin VM is obtained via DHCP, it may be obtained from the resource attributes.
In this case, oam_management_v4_address and/or oam_management_v6_address must not
be defined in the parameter section of the YAML Heat template.

Example: SDN-C Assigned IP Address echoed as oam_management_v4_address

parameters:
 admin_oam_ip_0:
 type: string
 description: Fixed IPv4 assignment for admin VM 0 on the OAM network
 . . .

resources:
 admin_oam_net_0_port:
 type: OS::Neutron::Port
 properties:
 name:
 str_replace:
 template: VNF_NAME_admin_oam_net_0_port
 params:
 VNF_NAME: {get_param: vnf_name}
 network: { get_param: oam_net_id }
 fixed_ips: [{ "ip_address": { get_param: admin_oam_ip_0 }}]
 security_groups: [{ get_param: security_group }]

 admin_server:
 type: OS::Nova::Server
 properties:
 name: { get_param: admin_names }
 image: { get_param: admin_image_name }

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 46

 flavor: { get_param: admin_flavor_name }
 availability_zone: { get_param: availability_zone_0 }
 networks:
 - port: { get_resource: admin_oam_net_0_port }
 metadata:
 vnf_id: { get_param: vnf_id }
 vf_module_id: { get_param: vf_module_id }
 vnf_name: {get_param: vnf_name }

Outputs:
 oam_management_v4_address:
 value: {get_param: admin_oam_ip_0 }

Example: Cloud Assigned IP Address output as oam_management_v4_address

parameters:
 . . .
resources:
 admin_oam_net_0_port:
 type: OS::Neutron::Port
 properties:
 name:
 str_replace:
 template: VNF_NAME_admin_oam_net_0_port
 params:
 VNF_NAME: {get_param: vnf_name}
 network: { get_param: oam_net_id }
 security_groups: [{ get_param: security_group }]

 admin_server:
 type: OS::Nova::Server
 properties:
 name: { get_param: admin_names }
 image: { get_param: admin_image_name }
 flavor: { get_param: admin_flavor_name }
 availability_zone: { get_param: availability_zone_0 }
 networks:
 - port: { get_resource: admin_oam_net_0_port }
 metadata:
 vnf_id: { get_param: vnf_id }
 vf_module_id: { get_param: vf_module_id }
 vnf_name: {get_param: vnf_name }

Outputs:
 oam_management_v4_address:
 value: {get_attr: [admin_server, networks, {get_param: oam_net_id}, 0] }

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 47

5.9 Contrail Resource Parameters
ONAP requires the parameter names of certain Contrail Resources to follow specific naming conventions.
This section provides these requirements.

5.9.1 Contrail Network Parameters
Contrail based resources may require references to a Contrail network using the network FQDN.

5.9.1.1 External Networks
When the parameter associated with the Contrail Network is referencing an “external” network, the
parameter must adhere to the following naming convention in the Heat Orchestration Template

• {network-role}_net_fqdn

The parameter must be declared as type: string

The parameter must not be enumerated in the Heat environment file.

Example: Parameter declaration

parameters:
 {network-role}_net_fqdn:
 type: string
 description: Contrail FQDN for the {network-role} network

Example: Contrail Resource OS::ContrailV2::VirtualMachineInterface Reference to a Network FQDN.

In this example, the {network-role} has been defined as oam to represent an oam network and the
{vm-type} has been defined as fw for firewall. The Contrail resource
OS::ContrailV2::VirtualMachineInterface property virtual_network_refs references a
contrail network FQDN.

FW_OAM_VMI:
 type: OS::ContrailV2::VirtualMachineInterface
 properties:
 name:
 str_replace:
 template: VM_NAME_virtual_machine_interface_1
 params:
 VM_NAME: { get_param: fw_name_0 }
 virtual_machine_interface_properties:
 virtual_machine_interface_properties_service_interface_type: {
get_param: oam_protected_interface_type }
 virtual_network_refs:
 - get_param: oam_net_fqdn
 security_group_refs:
 - get_param: fw_sec_grp_id

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 48

5.9.2 Interface Route Table Prefixes for Contrail InterfaceRoute Table
The parameter associated with the resource OS::ContrailV2::InterfaceRouteTable property
interface_route_table_routes, map property
interface_route_table_routes_route_prefix is an ONAP Orchestration Parameter.

The parameters must be named {vm-type}_{network-role}_route_prefixes in the Heat
Orchestration Template.

The parameter must be declared as type: json

The parameter supports IP addresses in the format:
1. Host IP Address (e.g., 10.10.10.10)
2. CIDR Notation format (e.g., 10.0.0.0/28)

The parameter must not be enumerated in the Heat environment file.

Example Parameter Definition

parameters:
 {vm-type}_{network-role}_route_prefixes:
 type: json
 description: JSON list of Contrail Interface Route Table route prefixes

Example:

parameters:
 vnf_name:
 type: string
 description: Unique name for this VF instance
 fw_int_fw_route_prefixes:
 type: json
 description: prefix for the ServiceInstance InterfaceRouteTable
 int_fw_dns_trusted_interface_type:
 type: string
 description: service_interface_type for ServiceInstance

<resource name>:
 type: OS::ContrailV2::InterfaceRouteTable
 depends_on: [resource name of OS::ContrailV2::ServiceInstance]
 properties:
 name:
 str_replace:
 template: VNF_NAME_interface_route_table
 params:
 VNF_NAME: { get_param: vnf_name }
 interface_route_table_routes:
 interface_route_table_routes_route: { get_param:
fw_int_fw_route_prefixes }

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 49

 service_instance_refs:
 - get_resource: < resource name of OS::ContrailV2::ServiceInstance >
 service_instance_refs_data:
 - service_instance_refs_data_interface_type: { get_param:
int_fw_interface_type }

5.10 Parameter Names in Contrail Resources
Contrail Heat resource properties will use, when appropriate, the same naming convention as OpenStack
Heat resources. For example, the resource OS::ContrailV2::InstanceIp has two properties that
the parameter naming convention is identical to properties in OS::Neutron::Port.

Example: Contrail Resource OS::ContrailV2::InstanceIp, Property instance_ip_address

The property instance_ip_address uses the same parameter naming convention as the property
fixed_ips and Map Property ip_address in OS::Neutron::Port. The resource is assigning an
ONAP SDN-C Assigned IP Address. The {network-role} has been defined as oam_protected to
represent an oam protected network and the {vm-type} has been defined as fw for firewall.

 CMD_FW_OAM_PROTECTED_RII:
 type: OS::ContrailV2::InstanceIp
 depends_on:
 - FW_OAM_PROTECTED_RVMI
 properties:
 virtual_machine_interface_refs:
 - get_resource: FW_OAM_PROTECTED_RVMI
 virtual_network_refs:
 - get_param: oam_protected_net_fqdn
 instance_ip_address: { get_param: [fw_oam_protected_ips, get_param: index] }

Example: Contrail Resource OS::ContrailV2::InstanceIp, Property subnet_uuid

The property instance_ip_address uses the same parameter naming convention as the property
fixed_ips and Map Property subnet_id in OS::Neutron::Port. The resource is assigning a
Cloud Assigned IP Address. The {network-role} has been defined as “oam_protected” to
represent an oam protected network and the {vm-type} has been defined as “fw” for firewall.

 CMD_FW_SGI_PROTECTED_RII:
 type: OS::ContrailV2::InstanceIp
 depends_on:
 - FW_OAM_PROTECTED_RVMI
 properties:
 virtual_machine_interface_refs:
 - get_resource: FW_OAM_PROTECTED_RVMI
 virtual_network_refs:
 - get_param: oam_protected_net_fqdn
 subnet_uuid: { get_param: oam_protected_subnet_id }

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 50

6. ONAP VNF Modularity
ONAP supports a modular Heat Orchestration Template design pattern, referred to as VNF Modularity.
With this approach, a single VNF may be composed from one or more Heat Orchestration Templates,
each of which represents a subset of the overall VNF. These component parts are referred to as “VNF
Modules”. During orchestration, these modules are deployed incrementally to create the complete VNF.

A modular Heat Orchestration Template can be either one of the following types:
1. Base Module
2. Incremental Module
3. Cinder Volume Module

A VNF must be composed of one “base” module and may be composed of zero to many “incremental”
modules. The base module must be deployed first, prior to the incremental modules.

ONAP also supports the concept of an optional, independently deployed Cinder volume via a separate
Heat Orchestration Templates, referred to as a Cinder Volume Module. This allows the volume to persist
after a VM (i.e., OS::Nova::Server) is deleted, allowing the volume to be reused on another instance
(e.g., during a failover activity).

The scope of a Cinder volume module, when it exists, must be 1:1 with a Base module or Incremental
Module.

A Base Module must have a corresponding environment file.

An Incremental Module must have a corresponding environment file.

A Cinder Volume Module must have a corresponding environment file.

A VNF module (base, incremental, cinder) may support nested templates.

A shared Heat Orchestration Template resource must be defined in the base module. A shared resource
is a resource that that will be referenced by another resource that is defined in the Base Module and/or
one or more incremental modules.

When the shared resource needs to be referenced by a resource in an incremental module, the UUID of
the shared resource must be exposed by declaring an ONAP Base Module Output Parameter.

Note that a Cinder volume is not a shared resource. A volume template must correspond 1:1 with a base
module or incremental module.

An example of a shared resource is the resource OS::Neutron::SecurityGroup. Security groups
are sets of IP filter rules that are applied to a VNF’s networking. The resource OS::Neutron::Port
has a property security_groups which provides the security groups associated with port. The value of
parameter(s) associated with this property must be the UUIDs of the resource(s)
OS::Neutron::SecurityGroup.

Note: A Cinder volume is not considered a shared resource. A volume template must correspond 1:1
with a base template or add-on module template.

6.1 Suggested Patterns for Modular VNFs
There are numerous variations of VNF modularity. Below are two suggested usage patterns.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 51

Option 1: Modules per VNFC type
a. Base module contains only the shared resources.
b. Group all VMs (e.g., VNFCs) of a given type (i.e. {vm-type}) into its own incremental module.

That is, the VNF has an incremental module for each {vm-type}.
c. For a given {vm-type} incremental module, the VNF may have

i. One incremental module used for both initial turn up and re-used for scaling. This
approach is used when the number of VMs instantiated will be the same for initial
deployment and scaling.

ii. Two incremental modules, where one is used for initial turn up and one is used for
scaling. This approach is used when the number of VMs instantiated will be different for
initial deployment and scaling.

Option 2: Base VNF with Incremental Growth Modules
a. Base module contains a complete initial VNF instance
b. Incremental modules for incremental scaling units

i. May contain VMs of multiple types in logical scaling combinations
ii. May be separated by VM type for multi-dimensional scaling

With no growth units, Option 2 is equivalent to the “One Heat Template per VNF” model.

Note that modularization of VNFs is not required. A single Heat Orchestration Template (a base module)
may still define a complete VNF, which might be appropriate for smaller VNFs that do not have any
scaling options.

6.2 Modularity Rules
There are some rules to follow when building modular VNF templates:

1. All VNFs must have one Base VNF Module (template) that must be the first one deployed. The
base template:

a. Must include all shared resources (e.g., private networks, server groups, security groups)
b. Must expose all shared resources (by UUID) as “outputs” in its associated Heat template

(i.e., ONAP Base Module Output Parameters)
c. May include initial set of VMs
d. May be operational as a stand-alone “minimum” configuration of the VNF

2. VNFs may have one or more incremental modules which:
a. Defines additional resources that can be added to an existing VNF
b. Must be complete Heat templates

i. i.e. not snippets to be incorporated into some larger template
c. Should define logical growth-units or sub-components of an overall VNF
d. On creation, receives appropriate Base Module outputs as parameters

i. Provides access to all shared resources (by UUID)
ii. must not be dependent on other Add-On VNF Modules

e. Multiple instances of an incremental Module may be added to the same VNF (e.g.,
incrementally grow a VNF by a fixed “add-on” growth units)

3. Each VNF Module (base or incremental) may have (optional) an associated Cinder Volume
Module (see Section 2.5)

a. Volume modules must correspond 1:1 with a base module or incremental module

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 52

b. A Cinder volume may be embedded within the base module or incremental module if
persistence is not required

4. Shared resource UUIDs are passed between the base module and incremental modules via Heat
Outputs Parameters (i.e., Base Module Output Parameters)

a. The output parameter name in the base must match the parameter name in the add-on
module

6.3 VNF Modularity Examples
Example: Base Module creates SecurityGroup

A VNF has a base module, named base.yaml, that defines a OS::Neutron::SecurityGroup. The
security group will be referenced by an OS::Neutron::Port resource in an incremental module,
named INCREMENTAL_MODULE.yaml. The base module defines a parameter in the out section named
dns_sec_grp_id. dns_sec_grp_id is defined as a parameter in the incremental module. ONAP
captures the UUID value of dns_sec_grp_id from the base module output statement and provides the
value to the incremental module.

Note that the example below is not a complete Heat Orchestration Template. The {network-role}
has been defined as oam to represent an oam network and the {vm-type} has been defined as dns.

base_MODULE.yaml

parameters:
 . . .

resources:
 DNS_SECURITY_GROUP:
 type: OS::Neutron::SecurityGroup
 properties:
 description: vDNS security group
 name:
 str_replace:
 template: VNF_NAME_sec_grp_DNS
 params:
 VMF_NAME: {get_param: vnf_name}
 rules: [.
]
 . . .

outputs:
 dns_sec_grp_id:
 description: UUID of DNS Resource SecurityGroup
 value: { get_resource: DNS_SECURITY_GROUP }

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 53

INCREMENTAL_MODULE.yaml

parameters:
 dns_sec_grp_id:
 type: string
 description: security group UUID
 . . .

resources:

 dns_oam_0_port:
 type: OS::Neutron::Port
 properties:
 name:
 str_replace:
 template: VNF_NAME_dns_oam_port
 params:
 VNF_NAME: {get_param: vnf_name}
 network: { get_param: oam_net_name }
 fixed_ips: [{ "ip_address": { get_param: dns_oam_ip_0 }}]
 security_groups: [{ get_param: dns_sec_grp_id }]

Examples: Base Module creates an internal network

A VNF has a base module, named base_module.yaml, that creates an internal network. An
incremental module, named incremental_module.yaml, will create a VM that will connect to the
internal network. The base module defines a parameter in the out section named int_oam_net_id.
int_oam_net_id is defined as a parameter in the incremental module. ONAP captures the UUID
value of int_oam_net_id from the base module output statement and provides the value to the
incremental module.

Note that the example below is not a complete Heat Orchestration Template. The {network-role}
has been defined as oam to represent an oam network and the {vm-type} has been defined as lb for
load balancer.

base.yaml

heat_template_version: 2013-05-23

resources:
 int_oam_network:
 type: OS::Neutron::Network
 properties:
 name: {… }
 . . .

outputs:

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 54

 int_oam_net_id:
 value: {get_resource: int_oam_network }

incremental.yaml
heat_template_version: 2013-05-23

parameters:
 int_oam_net_id:
 type: string
 description: ID of shared private network from Base template
 lb_name_0:
 type: string
 description: name for the add-on VM instance

Resources:
 lb_server:
 type: OS::Nova::Server
 properties:
 name: {get_param: lb_name_0}
 networks:
 - port: { get_resource: lb_port }
 . . .

 lb_port:
 type: OS::Neutron::Port
 properties:
 network_id: { get_param: int_oam_net_id }
...

7. Cinder Volume Templates
ONAP supports the independent deployment of a Cinder volume via separate Heat Orchestration
Templates, the Cinder Volume module. This allows the volume to persist after VNF deletion so that they
can be reused on another instance (e.g., during a failover activity).

A Base Module or Incremental Module may have a corresponding volume module. Use of separate
volume modules is optional. A Cinder volume may be embedded within the Base Module or Incremental
Module if persistence is not required.

If a VNF Base Module or Incremental Module has an independent volume module, the scope of volume
templates must be 1:1 with Base module or Incremental module. A single volume module must create
only the volumes required by a single Incremental module or Base module.

The following rules apply to independent volume Heat templates:

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 55

• Cinder volumes must be created in a separate Heat Orchestration Template from the Base
Module or Incremental Module.

o A single Cinder volume module must include all Cinder volumes needed by the
Base/Incremental module.

o The volume template must define “outputs” for each Cinder volume resource universally
unique identifier (UUID) (i.e. ONAP Volume Template Output Parameters).

• The VNF Incremental Module or Base Module must define input parameters that match each
Volume output parameter (i.e., ONAP Volume Template Output Parameters).

o ONAP will supply the volume template outputs automatically to the bases/incremental
template input parameters.

• Volume modules may utilize nested Heat templates.

Examples: Volume Template

A VNF has a Cinder volume module, named incremental_volume.yaml, that creates an independent
Cinder volume for a VM in the module incremental.yaml. The incremental_volume.yaml
defines a parameter in the output section, lb_volume_id_0 which is the UUID of the cinder volume.
lb_volume_id_0 is defined as a parameter in incremental.yaml. ONAP captures the UUID value
of lb_volume_id_0 from the volume module output statement and provides the value to the
incremental module.

Note that the example below is not a complete Heat Orchestration Template. The {vm-type} has been
defined as “lb” for load balancer

incremental_volume.yaml
parameters:
 vnf_name:
 type: string
 lb_volume_size_0:
 type: number
 ...

resources:
 dns_volume_0:
 type: OS::Cinder::Volume
 properties:
 name:
 str_replace:
 template: VNF_NAME_volume_0
 params:
 VNF_NAME: { get_param: vnf_name }
 size: {get_param: dns_volume_size_0}

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 56

 ...

outputs:
 lb_volume_id_0:
 value: {get_resource: dns_volume_0}
 ...

incremental.yaml

parameters:
 lb_name_0:
 type: string
 lb_volume_id_0:
 type: string
 ...

resources:
 lb_0:
 type: OS::Nova::Server
 properties:
 name: {get_param: dns_name_0}
 networks:
 ...

 lb_0_volume_attach:
 type: OS::Cinder::VolumeAttachment
 properties:
 instance_uuid: { get_resource: lb_0 }
 volume_id: { get_param: lb_volume_id_0 }

8. ONAP Support of Environment Files
The use of an environment file in OpenStack is optional. In ONAP, it is mandatory. A Heat Orchestration
Template uploaded to ONAP must have a corresponding environment file, even if no parameters are
required to be enumerated.

(Note that ONAP, the open source version of ONAP, does not programmatically enforce the use of an
environment file.)

A Base Module Heat Orchestration Template must have a corresponding environment file.

An Incremental Module Heat Orchestration Template must have a corresponding environment file.

A Cinder Volume Module Heat Orchestration Template must have a corresponding environment file.

A nested heat template must not have an environment file; OpenStack does not support it.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 57

The environment file must contain parameter values for the ONAP Orchestration Constants and VNF
Orchestration Constants. These parameters are identical across all instances of a VNF type, and
expected to change infrequently. The ONAP Orchestration Constants are associated with
OS::Nova::Server image and flavor properties (See Section 4.3). Examples of VNF Orchestration
Constants are the networking parameters associated with an internal network (e.g., private IP ranges)
and Cinder volume sizes.

The environment file must not contain parameter values for parameters that are instance specific (ONAP
Orchestration Parameters, VNF Orchestration Parameters). These parameters are supplied to the Heat
by ONAP at orchestration time.

8.1 SDC Treatment of Environment Files
Parameter values enumerated in the environment file are used by SDC as the default value. However,
the SDC user may use the SDC GUI to overwrite the default values in the environment file.

SDC generates a new environment file for distribution to MSO based on the uploaded environment file
and the user provided GUI updates. The user uploaded environment file is discarded when the new file is
created. Note that if the user did not change any values via GUI updates, the SDC generated
environment file will contain the same values as the uploaded file.

8.2 Use of Environment Files when using OpenStack “heat stack-create” CLI
When ONAP is instantiating the Heat Orchestration Template, certain parameter must not be enumerated
in the environment file. This document provides the details of what parameters should not be
enumerated.

If the Heat Orchestration Template is to be instantiated from the OpenStack Command Line Interface
(CLI) using the command “heat stack-create”, all parameters must be enumerated in the environment file.

9. Heat Template Constructs
9.1 Nested Heat Templates
ONAP supports nested Heat templates per the OpenStack specifications. Nested templates may be
suitable for larger VNFs that contain many repeated instances of the same VM type(s). A common usage
pattern is to create a nested template for each {vm-type} along with its supporting resources. The VNF
module may then reference these component templates either statically by repeated definition or
dynamically by using the resource OS::Heat::ResourceGroup.

9.1.1 Nested Heat Template Requirements
ONAP supports nested Heat Orchestration Templates. A Base Module, Incremental Module, and Cinder
Volume Module may use nested heat.

A Heat Orchestration Template may reference the nested heat statically by repeated definition.

A Heat Orchestration Template may reference the nested heat dynamically using the resource
OS::Heat::ResourceGroup.

A Heat Orchestration template must have no more than three levels of nesting. ONAP supports a
maximum of three levels.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 58

Nested heat templates must be referenced by file name. The use of resource_registry in the
environment file is not supported and must not be used.

A nested heat yaml file must have a unique file names within the scope of the VNF

ONAP does not support a directory hierarchy for nested templates. All templates must be in a single, flat
directory (per VNF)

A nested heat template may be used by any module within a given VNF.

Note that:

• Constrains must not be defined for any parameter enumerated in a nested heat template.

• All parameters defined in nested heat must be passed in as properties of the resource calling the
nested yaml file.

• When OS::Nova::Server metadata parameters are past into a nested heat template, the
parameter names must not change

• With nested templates, outputs are required to expose any resource properties of the child
templates to the parent template. Those would not explicitly be declared as parameters but
simply referenced as get_attribute targets against the “parent” resource.

9.1.1.1 Nested Heat Template Example: Static

incremental.yaml

Resources:
 dns_server_0:
 type: nested.yaml
 properties:
 dns_image_name: { get_param: dns_image_name }
 dns_flavor_name: { get_param: dns_flavor_name }
 availability_zone: { get_param: availability_zone_0 }
 security_group: { get_param: DNS_shared_sec_grp_id }
 oam_net_id: { get_param: oam_protected_net_id }
 dns_oam_ip: { get_param: dns_oam_ip_0 }
 dns_name: { get_param: dns_name_0 }
 vnf_name: { get_param: vnf_name }
 vnf_id: { get_param: vnf_id }
 vf_module_id: {get_param: vf_module_id}

 dns_server_1:
 type: nested.yaml
 properties:
 dns_image_name: { get_param: dns_image_name }
 dns_flavor_name: { get_param: dns_flavor_name }
 availability_zone: { get_param: availability_zone_1 }
 security_group: { get_param: DNS_shared_sec_grp_id }

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 59

 oam_net_id: { get_param: oam_protected_net_id }
 dns_oam_ip: { get_param: dns_oam_ip_1 }
 dns_name: { get_param: dns_name_1 }
 vnf_name: { get_param: vnf_name }
 vnf_id: { get_param: vnf_id }
 vf_module_id: {get_param: vf_module_id}

nested.yaml
 dns_oam_0_port:
 type: OS::Neutron::Port
 properties:
 name:
 str_replace:
 template: VNF_NAME_dns_oam_port
 params:
 VNF_NAME: {get_param: vnf_name}
 network: { get_param: oam_net_id }
 fixed_ips: [{ "ip_address": { get_param: dns_oam_ip }}]
 security_groups: [{ get_param: security_group }]

 dns_servers:
 type: OS::Nova::Server
 properties:
 name: { get_param: dns_names }
 image: { get_param: dns_image_name }
 flavor: { get_param: dns_flavor_name }
 availability_zone: { get_param: availability_zone }
 networks:
 - port: { get_resource: dns_oam_0_port }
 metadata:
 vnf_id: { get_param: vnf_id }
 vf_module_id: { get_param: vf_module_id }
 vnf_name {get_param: vnf_name }

9.1.2 Use of Heat ResourceGroup
The OS::Heat::ResourceGroup is a useful Heat element for creating multiple instances of a given
resource or collection of resources. Typically it is used with a nested Heat template, to create, for
example, a set of identical OS::Nova::Server resources plus their related OS::Neutron::Port
resources via a single resource in a master template.

ResourceGroup may be used in ONAP to simplify the structure of a Heat template that creates multiple
instances of the same VM type.

However, there are important caveats to be aware of:

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 60

ResourceGroup does not deal with structured parameters (comma-delimited-list and json) as one might
typically expect. In particular, when using a list-based parameter, where each list element corresponds to
one instance of the ResourceGroup, it is not possible to use the intrinsic “loop variable” %index% in the
ResourceGroup definition.

For instance, the following is not valid Heat for ResourceGroup:

type: OS::Heat::ResourceGroup
 resource_def:
 type: my_nested_vm_template.yaml
 properties:
 name: {get_param: [vm_name_list, %index%]}

Although this appears to use the nth entry of the vm_name_list list for the nth element of the
ResourceGroup, it will in fact result in a Heat exception. When parameters are provided as a list (one for
each element of a ResourceGroup), you must pass the complete parameter to the nested template
along with the current index as separate parameters.

Below is an example of an acceptable Heat Syntax for a ResourceGroup:

type: OS::Heat::ResourceGroup
 resource_def:
 type: my_nested_vm_template.yaml
 properties:
 names: {get_param: vm_name_list}
 index: %index%

You can then reference within the nested template as:

{ get_param: [names, {get_param: index}] }

9.1.2.1 ResourceGroup Property count
ONAP requires that the OS::Heat::ResourceGroup property count be defined (even if the value is
one) and that the value must be enumerated in the environment file. This is required for ONAP to build
the TOSCA model for the VNF.

type: OS::Heat::ResourceGroup
 properties:
 count: { get_param: count }
 index_var: index
 resource_def:
 type: my_nested_vm_template.yaml
 properties:
 names: {get_param: vm_name_list}
 index: index

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 61

9.1.2.2 Availability Zone and ResourceGroups
The resource OS::Heat::ResourceGroup and the property availability_zone has been an
“issue” with a few VNFs since ONAP only supports availability_zone as a string parameter and
not a comma_delimited_list. This makes it difficult to use a ResourceGroup to create Virtual
Machines in more than one availability zone.

There are numerous solutions to this issue. Below are two suggested usage patterns.

Option 1: create a CDL in the OS::Heat::ResourceGroup. In the resource type:
OS::Heat::ResourceGroup, create a comma_delimited_list availability_zones by using
the intrinsic function list_join.

<resource name>:
 type: OS::Heat::ResourceGroup
 properties:
 count: { get_param: node_count }
 index_var: index
 resource_def:
 type: nested.yaml
 properties:
 index: index
 avaialability_zones: { list_join: [',', [{ get_param:
availability_zone_0 }, { get_param: availability_zone_1 }]] }

In the nested heat

parameters:
 avaialability_zones:
 type: comma_delimited_list
 description:

resources:
 servers:
 type: OS::Nova::Server
 properties:
 name: { get_param: [dns_names, get_param: index] }
 image: { get_param: dns_image_name }
 flavor: { get_param: dns_flavor_name }
 availability_zone: { get_param: [avaialability_zones, get_param:
index] }

Option 2: Create a resource group per availability zone. A separate OS::Heat::ResourceGroup is
created for each availability zone.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 62

9.2 External References
Heat templates should not reference any HTTP-based resource definitions, any HTTP-based nested
configurations, or any HTTP-based environment files.

• During orchestration, ONAP should not retrieve any such resources from
external/untrusted/unknown sources.

• VNF images should not contain such references in user-data or other configuration/operational
scripts that are specified via Heat or encoded into the VNF image itself.

Note: HTTP-based references are acceptable if the HTTP-based reference is accessing information with
the VM private/internal network.

9.3 Heat Files Support (get_file)
Heat Templates may contain the inclusion of text files into Heat templates via the Heat get_file
directive. This may be used, for example, to define a common “user-data” script, or to inject files into a
VM on startup via the “personality” property.

Support for Heat Files is subject to the following limitations:

• The get_files targets must be referenced in Heat templates by file name, and the
corresponding files should be delivered to ONAP along with the Heat templates.

o URL-based file retrieval must not be used; it is not supported.

• The included files must have unique file names within the scope of the VNF.

• ONAP does not support a directory hierarchy for included files.

o All files must be in a single, flat directory per VNF.

• Included files may be used by all Modules within a given VNF.

• get_file directives may be used in both non-nested and nested templates

9.4 Key Pairs
When Nova Servers are created via Heat templates, they may be passed a “keypair” which provides an
ssh key to the ‘root’ login on the newly created VM. This is often done so that an initial root key/password
does not need to be hard-coded into the image.

Key pairs are unusual in OpenStack, because they are the one resource that is owned by an OpenStack
User as opposed to being owned by an OpenStack Tenant. As a result, they are usable only by the User
that created the keypair. This causes a problem when a Heat template attempts to reference a keypair by
name, because it assumes that the keypair was previously created by a specific ONAP user ID.

When a keypair is assigned to a server, the SSH public-key is provisioned on the VMs at instantiation
time. They keypair itself is not referenced further by the VM (i.e. if the keypair is updated with a new
public key, it would only apply to subsequent VMs created with that keypair).

Due to this behavior, the recommended usage of keypairs is in a more generic manner which does not
require the pre-requisite creation of a keypair. The Heat should be structured in such a way as to:

• Pass a public key as a parameter value instead of a keypair name

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 63

• Create a new keypair within the VNF Heat templates (in the base module) for use within that VNF

By following this approach, the end result is the same as pre-creating the keypair using the public key –
i.e., that public key will be provisioned in the new VM. However, this recommended approach also makes
sure that a known public key is supplied (instead of having OpenStack generate a public/private pair to be
saved and tracked outside of ONAP). It also removes any access/ownership issues over the created
keypair.

The public keys may be enumerated as a VNF Orchestration Constant in the environment file (since it is
public, it is not a secret key), or passed at run-time as instance-specific parameters. ONAP will never
automatically assign a public/private key pair.

Example (create keypair with an existing ssh public-key for {vm-type} of lb (for load balancer)):

parameters:
 vnf_name:
 type: string
 lb_ssh_public_key:
 type: string

resources:
 my_keypair:
 type: OS::Nova::Keypair
 properties:
 name:
 str_replace:
 template: VNF_NAME_key_pair
 params:
 VNF_NAME: { get_param: vnf_name }
 public_key: {get_param: lb_ssh_public_key}
 save_private_key: false

9.5 Security Groups
OpenStack allows a tenant to create Security groups and define rules within the security groups.

Security groups, with their rules, may either be created in the Heat Orchestration Template or they can be
pre-created in OpenStack and referenced within the Heat template via parameter(s). There can be a
different approach for security groups assigned to ports on internal (intra-VNF) networks or external
networks (inter-VNF). Furthermore, there can be a common security group across all VMs for a specific
network or it can vary by VM (i.e., {vm-type}) and network type (i.e., {network-role}).

9.6 Anti-Affinity and Affinity Rules
Anti-affinity or affinity rules are supported using normal OpenStack OS::Nova::ServerGroup
resources. Separate ServerGroups are typically created for each VM type to prevent them from residing
on the same host, but they can be applied to multiple VM types to extend the affinity/anti-affinity across
related VM types as well.

Example:

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 64

In this example, the {network-role} has been defined as oam to represent an oam network and the
{vm-type} have been defined as lb for load balancer and db for database.

resources:
db_server_group:
 type: OS::Nova::ServerGroup
 properties:
 name:
 str_replace:
 params:
 $vnf_name: {get_param: vnf_name}
 template: $vnf_name-server_group1
 policies:
 - anti-affinity

lb_server_group:
 type: OS::Nova::ServerGroup
 properties:
 name:
 str_replace:
 params:
 $vnf_name: {get_param: vnf_name}
 template: $vnf_name-server_group2
 policies:
 - affinity

db_0:
 type: OS::Nova::Server
 properties:
 ...
 scheduler_hints:
 group: {get_resource: db_server_group}

db_1:
 type: OS::Nova::Server
 properties:
 ...
 scheduler_hints:
 group: {get_resource: db_server_group}

lb_0:
 type: OS::Nova::Server
 properties:
 ...
 scheduler_hints:
 group: {get_resource: lb_server_group}

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 65

9.7 Resource Data Synchronization
For cases where synchronization is required in the orchestration of Heat resources, two approaches are
recommended:

• Standard Heat depends_on property for resources

o Assures that one resource completes before the dependent resource is orchestrated.

o Definition of completeness to OpenStack may not be sufficient (e.g., a VM is considered
complete by OpenStack when it is ready to be booted, not when the application is up and
running).

• Use of Heat Notifications

o Create OS::Heat::WaitCondition and OS::Heat::WaitConditionHandle
resources.

o Pre-requisite resources issue wc_notify commands in user_data.

o Dependent resource define depends_on in the OS::Heat::WaitCondition resource.

Example: “depends_on” case

In this example, the {network-role} has been defined as oam to represent an oam network and the
{vm-type} has been defined as oam to represent an oam server.

resources:
 oam_server_01:
 type: OS::Nova::Server
 properties:
 name: {get_param: [oam_ names, 0]}
 image: {get_param: oam_image_name}
 flavor: {get_param: oam_flavor_name}
 availability_zone: {get_param: availability_zone_0}
 networks:
 - port: {get_resource: oam01_port_0}
 - port: {get_resource: oam01_port_1}
 user_data:
 scheduler_hints: {group: {get_resource: oam_servergroup}}
 user_data_format: RAW

 oam_01_port_0:
 type: OS::Neutron::Port
 properties:
 network: {get_resource: oam_net_name}
 fixed_ips: [{"ip_address": {get_param: [oam_oam_net_ips, 1]}}]
 security_groups: [{get_resource: oam_security_group}]

 oam_01_port_1:
 type: OS::Neutron::Port

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 66

 properties:
 network: {get_param: oam_net_name}
 fixed_ips: [{"ip_address": {get_param: [oam_oam_net_ips, 2]}}]
 security_groups: [{get_resource: oam_security_group}]

 oam_01_vol_attachment:
 type: OS::Cinder::VolumeAttachment
 depends_on: oam_server_01
 properties:
 volume_id: {get_param: oam_vol_1}
 mountpoint: /dev/vdb
 instance_uuid: {get_resource: oam_server_01}

10. High Availability
VNF/VM parameters may include availability zone IDs for VNFs that require high availability.

The Heat must comply with the following requirements to specific availability zone IDs:

• The Heat template should spread Nova and Cinder resources across the availability zones as
desired

11. Post Orchestration & VNF Configuration
Heat templates should contain a minimum amount of post-orchestration configuration data. For instance,
do not embed complex user-data scripts in the template with large numbers of configuration parameters
to the Heat template.

• VNFs may provide configuration APIs for use after VNF creation. Such APIs will be invoked via
application and/or SDN controllers.

Note: It is important to follow this convention to the extent possible even in the short-term as of the long-
term direction.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 67

Appendix A - Glossary

VM Virtual Machine (VM) is a virtualized computation environment that behaves very much like a
physical computer/server. A VM has all its ingredients (processor, memory/storage, interfaces/ports) of a
physical computer/server and is generated by a hypervisor, which partitions the underlying physical
resources and allocates them to VMs. Virtual Machines are capable of hosting a virtual network function
component (VNFC).

VNF Virtual Network Function (VNF) is the software implementation of a function that can be deployed
on a Network Cloud. It includes network functions that provide transport and forwarding. It also includes
other functions when used to support network services, such as network-supporting web servers and
database.

VNFC Virtual Network Function Component (VNFC) are the sub-components of a VNF providing a VNF
Provider a defined sub-set of that VNF's functionality, with the main characteristic that a single instance of
this component maps 1:1 against a single Virtualization Container. See Figure 2 for the relationship
between VNFC and VNFs.

Figure 2. Virtual Function Entity Relationship

Service 1

VNF1

VNFC2

VNFC1

VNF2

Service 2

VNF3

VNF2

Service 3

Virtual Network Function
Component (VNFC) Virtual Network Function Service

VNFC3

VNFC4

VNFC5

VNFC3

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License");

you may not use this documentation except in compliance with the License.

Page 68

Copyright 2017 AT&T Intellectual Property. All Rights Reserved.

This paper is licensed to you under the Creative Commons License:

Creative Commons Attribution-ShareAlike 4.0 International Public License

You may obtain a copy of the License at:

https://creativecommons.org/licenses/by-sa/4.0/legalcode

You are free to:

• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material for any purpose, even commercially.
• The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes
were made. You may do so in any reasonable manner, but not in any way that suggests the licensor
endorses you or your use.

• ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

• No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

Notices:

• You do not have to comply with the license for elements of the material in the public domain or where
your use is permitted by an applicable exception or limitation.

• No warranties are given. The license may not give you all of the permissions necessary for your
intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you
use the material.

https://creativecommons.org/licenses/by-sa/4.0/legalcode

	1. Introduction
	1.1 Definitions
	1.1.1 OpenStack Glossary Definitions
	1.1.2 Additional Definitions

	2. General Guidelines
	2.1 YAML Format
	2.2 Heat Orchestration Template Format
	2.2.1 Heat Orchestration Template Structure
	2.2.1.1 heat_template_version
	2.2.1.2 description
	2.2.1.3 parameter_groups
	2.2.1.4 parameters
	2.2.1.5 resources
	2.2.1.6 outputs

	2.3 Environment File Format
	2.3.1 SDC Treatment of Environment Files

	3. ONAP Heat Orchestration Templates: Overview
	3.1 ONAP VNF Modularity Overview
	3.2 Nested Heat Orchestration Templates Overview
	3.3 ONAP Heat Orchestration Template Filenames
	3.3.1 Base Modules
	3.3.2 Incremental Modules
	3.3.3 Cinder Volume Modules
	3.3.4 Nested Heat file

	3.4 ONAP Parameter Classifications Overview
	3.4.1 ONAP Metadata Parameters
	3.4.2 Instance specific parameters
	3.4.2.1 ONAP Orchestration Parameters
	3.4.2.2 VNF Orchestration Parameters

	3.4.3 Constant Parameters
	3.4.3.1 ONAP Constant Parameters
	3.4.3.2 VNF Constant Parameters

	3.4.4 Output Parameters
	3.4.4.1 ONAP Base Module Output Parameters
	3.4.4.2 ONAP Volume Module Output Parameters
	3.4.4.3 ONAP Predefined Output Parameters

	3.5 Support of heat stack update

	4. Networking
	4.1 External Networks
	4.2 Internal Networks

	5. ONAP Resource ID and Parameter Naming Convention
	5.1 {vm-type}
	5.2 {network-role}
	5.3 Resource IDs
	5.4 Resource: OS::Nova::Server - Parameters
	5.4.1 Property: image
	5.4.2 Property: flavor
	5.4.3 Property: Name
	5.4.3.1 Contrail Issue with Values for OS::Nova::Server Property Name

	5.4.4 Property: availability_zone
	5.4.5 Example

	5.5 Resource: OS::Nova::Server – Metadata Parameters
	5.5.1 vnf_id
	5.5.2 vf_module_id
	5.5.3 vnf_name
	5.5.4 vf_module_name
	5.5.5 vm_role
	5.5.6 Example

	5.6 Resource: OS::Neutron::Port - Parameters
	5.6.1 Introduction
	5.6.1.1 External Networks
	5.6.1.2 Internal Networks

	5.6.2 Property: network
	5.6.2.1 External Networks
	5.6.2.2 Internal Networks

	5.6.3 Property: fixed_ips, Map Property: subnet_id
	5.6.3.1 Subnet of an External Networks
	5.6.3.2 Internal Networks

	5.6.4 Property: fixed_ips, Map Property: ip_address
	5.6.4.1 IP Address Assignments on External Networks
	5.6.4.2 IP Address Assignment on Internal Networks

	5.6.5 Property: allowed_address_pairs, Map Property: ip_address
	5.6.5.1 External Networks
	5.6.5.2 Internal Networks
	5.6.5.3 Multiple allowed_address_pairs for a {vm-type} / {network-role} combination
	5.6.5.4 ONAP SDN-C Assignment of allowed_address_pair IP Addresses

	5.7 Resource Property “name”
	5.7.1 Contrail Issue with Values for the Property Name

	5.8 ONAP Output Parameter Names
	5.8.1 ONAP Base Module Output Parameters:
	5.8.2 ONAP Volume Template Output Parameters:
	5.8.3 Predefined Output Parameters
	5.8.3.1 OAM Management IP Addresses

	5.9 Contrail Resource Parameters
	5.9.1 Contrail Network Parameters
	5.9.1.1 External Networks

	5.9.2 Interface Route Table Prefixes for Contrail InterfaceRoute Table

	5.10 Parameter Names in Contrail Resources

	6. ONAP VNF Modularity
	6.1 Suggested Patterns for Modular VNFs
	6.2 Modularity Rules
	6.3 VNF Modularity Examples

	7. Cinder Volume Templates
	8. ONAP Support of Environment Files
	8.1 SDC Treatment of Environment Files
	8.2 Use of Environment Files when using OpenStack “heat stack-create” CLI

	9. Heat Template Constructs
	9.1 Nested Heat Templates
	9.1.1 Nested Heat Template Requirements
	9.1.1.1 Nested Heat Template Example: Static

	9.1.2 Use of Heat ResourceGroup
	9.1.2.1 ResourceGroup Property count
	9.1.2.2 Availability Zone and ResourceGroups

	9.2 External References
	9.3 Heat Files Support (get_file)
	9.4 Key Pairs
	9.5 Security Groups
	9.6 Anti-Affinity and Affinity Rules
	9.7 Resource Data Synchronization

	10. High Availability
	11. Post Orchestration & VNF Configuration
	Appendix A - Glossary

