

Sylvain Desbureaux

OOM journey from
Gerrit / Jenkins to Gitlab

Agenda

• OOM and gerrit’s use
– Jenkins
– Gating via Gitlab CI

• Job migration to gitlab
– Sensitive tasks
– Linting
– Gating

• Next steps

Jenkins limitations

• Jenkins from LFN uses VM to perform the
jobs
– Therefore, dependencies are shared
– Complicated to test code against different versions

of same executable
– JJB are thought for maven and (a bit) docker and

not for helm
• For OOM committers, Jenkins adds more

issues than it helps

OOM and current gerrit use

• LF rule enforcement is done via git hooks
on gerrit
– CLA signature check
– “Issue-ID” and “Signed-by” being set check

OOM and current Jenkins use

• Jenkins performs “linting”
– Helm linting
– Bash script linting
– No whitespaces / tabs linting
– Image being released linting
– Commit message format linting
– Documentation linting (doc8, link check, …)

OOM and current Gitlab CI use

• Gitlab CI (+ some micro services)
performs gating
– Each gerrit review sent to OOM (and

integration and core SO) are deployed
– We then check that everything works when

deployed

OOM and current Gitlab CI use
gerrit gerrit2mqtt mqtt2gerrit MQTT Gating

controller
Gating

Worker X
Gitlab CI

Push code
Send to μs

Send to new code topic

“You’re number XX in queue”

“Gating started”

“Gating finished, here’s the results”

Check if current gate
has finished

Check if current gate
has finished

Start gating

Check if current gate
has finished

Check if current gate
has finished

Add review in queue

Remove review
from queue

Job migration to gitlab: sensitive tasks

• Some tasks are sensitive because they need
to have access to sensitive data

• CLA check needs to have list of all users with
signed CLA

• Helm upload needs to have credentials to
push into ONAP nexus

Job migration to gitlab: sensitive tasks

• CLA check: use ”external validation”
Gitlab External

Validation
Frontend1

CLA Check2 MQTT

Push code
Send to

external validation

Send result

CLA check will
• Update users lists if too old (once every hour)
• Take the list of all code authors from the merge

request
• Validate they’re present in one of user lists
• Approve / disapprove according to the result

1: https://gitlab.com/Orange-OpenSource/lfn/onap/gating-tools/external-approval-listener
2: https://gitlab.com/Orange-OpenSource/lfn/onap/gating-tools/cla-checker

https://gitlab.com/Orange-OpenSource/lfn/onap/gating-tools/external-approval-listener
https://gitlab.com/Orange-OpenSource/lfn/onap/gating-tools/cla-checker

Job migration to gitlab: sensitive tasks

• Helm upload: (will) use protected / hidden
environment variables
– Creds will be set into protected and hidden

variables
• They can be used only on procted branches (master

+ ‘stable/*’)
• Script using them won’t show them
• Can’t be retrieved out of OOM repo

Job migration to gitlab: linting

• All linting tasks will be performed into dedicated steps
using

– Dedicated docker container(s) (helm linter will use a matrix
of container in order to check against needed versions)

– Simple scripts

• Tasks will be triggered only if needed:
– Doc task will be triggered only if “doc” folder is touched
– Helm / gating / linting will be triggered only if “Kubernetes”

folder is triggered

Job migration to gitlab: launching gates

• Launching gates has 2 issues to solve:
– We need to be able to work in ”gerrit triggerd”

mode and in “gitlab triggered” mode
– We have a limited number of systems for the

gate so the queue system must remain

Job migration to gitlab: launching gates
gerrit gerrit2mqtt mqtt2gerrit MQTT Gating

controller
Gating

Worker X
Gitlab CI

Push code
External approver call

Send to new request topic

“You’re number XX in queue”

“Gating started”

“Gating finished, here’s the results”

Check if current gate
has finished

Check if current gate
has finished

Start gating

Check if current gate
has finished

Check if current gate
has finished

Add review in queue

Remove review
from queue

gitlab mqtt2gitlabgitlab2mqtt
gating

launcher

Check if everything is ready

Send to new code topic

Job migration to gitlab: launching gates

• Gating launcher1 will:
– Check that Kubernetes folder has changed
– Check that helm linting is OK
– If yes, ask for a gate

• Gitlab2mqtt is the same tool as CLA check
External Validation Frontend2

• MQTT2Gitlab3 is a new μs
1: https://gitlab.com/Orange-OpenSource/lfn/onap/gating-tools/gating-launcher
2: https://gitlab.com/Orange-OpenSource/lfn/onap/gating-tools/external-approval-listener
3: https://gitlab.com/Orange-OpenSource/lfn/onap/gating-tools/mqtt-to-gitlab-mr

https://gitlab.com/Orange-OpenSource/lfn/onap/gating-tools/gating-launcher
https://gitlab.com/Orange-OpenSource/lfn/onap/gating-tools/external-approval-listener
https://gitlab.com/Orange-OpenSource/lfn/onap/gating-tools/mqtt-to-gitlab-mr

Next steps

• All μs are deployed on ONAP Azure tooling zone (on
Kubernetes)

• Tests have been made and it works

• We can migrate “when we want”

• Decide to move to Gitlab instead of Gerrit / Jenkins
decision will be taken by the next OOM PTL

Annex

User journey to push code

User journey to push code
Create a branch (via UI or git cli) Click on create Merge Request

User journey to push code
Verify that the target branch is onap/oom/oom

