
Restconf Adapter
nb-bierman <-> RFC 8040

Summary

Adaptation Requirement Remarks

Common 1. Mapping of root resource from “/restconf” to “/rests”
2. Mapping of /<list-name>/<key> to /<list-name>=<key> in URL

Same requirement for leaf-list
Note: Would need to obtain YANG Schema from odl-yang-tools and do parsing ourselves
or look for some existing utilities. Also Parsing would need to consider applicable YANG
constructs like Augmentation

3. Retrieval of YANG schema:
a. Adapt changes to URL
b. Adapt change to header “accept”
c. Adapt changes to response body

4. Possible Blocker: Response error message translation.

1. To explore further: For Response error message
blocker, needs to cross check ODL implementation

2. Open Point: For content-type difference captured
by Martin. Needs to cross verify with him.

Notification 1. Available Streams Discovery: Mapping of API and response body.
2. Event Notification Subscription

Note: RFC 8040 has introduced concept of “access” in discovered stream and during
subscription, client must subscribe using location information from “access”. As there could be
multiple access, adaptation of this is NOT POSSIBLE and could be a Possible Blocker.

3. Get event notifications: Mapping of response body (only namespace)

1. Open Point: Needs to check ODL implementation
to understand which RFC it follows for Notification.
RFC 8650 is another RFC which defines dynamic
subscriptions over RESTCONF [RFC8040]

RPC 1. Only root resource adaptation is needed. 1. Open Point: For namespace difference note
captured by Martin, needs to cross verify with him.

Data: GET 1. URL adaptation/mapping
2. Query parameter mapping: “select mapped to fields” & “format mapped to “Accept” header”

1. Based on current understanding of RFC/Draft,
response data of GET shouldn’t differ for 8040 &
Bierman. But it would be good to cross-verify this in
ODL/IETF YANG WG to ensure we are not leaving
any border scenario

Summary
Adaptation Requirement Remarks

Data: Post/Put/Delete 1. URL adaptation would be needed. 1. Open Point: For namespace difference note
captured by Martin in yang augment
scenarios needs to be discussed.

Data: Plain Patch 1. URL adaptation.
2. Request body adaptation would be needed if ODL supports older version of bierman

prior to bierman-04

1. Open Point: Bierman version support in
ODL.

Data: YANG patch 1. API adaptation
2. Request Body also needs to be adapted for following
a. Namespace
b. Target if its a list

 Note: This would need YANG schema based parsing to figure out target type in
request body.

Notes:
1. RFC 8040 supports YANG version 1.1, but nb-bierman is only for YANG version 1.0. As adapter job is to support YANG applications using bierman, thereby

additional features of RFC 8040 is not required considered for this analysis
2. Many parts of analysis is based on IETF documents (RFC 8040 & draft-bierman), but actual implementation of ODL could differ from the standard.
3. There is a possibility that some remote scenario would have been missed, would need to confirm few points with IETF YANG WG or with ODL

community.
Suggestion: Implementing such adapter based on current analysis doesn’t looks like a trivial job as would need YANG schema based adaptation/translation of
URI and request body (for YANG Patch). Also solution for blockers needs to be found. Hence if we considering deprecating bierman after few releases, than
leveraging ODL code would need much lesser efforts.

Common: API path
RFC 8040 Bierman Adapter Task

Root
Resource
Discovery

Top level resource is “/rests” Top level resource is “/restconf” Mapping of root resource from “/restconf” to
“/rests”

List in
resource
identifiers
(URL)

api-path = root *("/" (api-identifier / list-instance))
root = string ;; replacement string for {+restconf}
api-identifier = [module-name ":"] identifier
module-name = identifier
list-instance = api-identifier "=" key-value *("," key-value)
key-value = string ;; constrained chars are percent-encoded
string = <an unquoted string>
identifier = (ALPHA / "_")
*(ALPHA / DIGIT / "_" / "-" / ".")

api-path = "/" | ("/" api-identifier 0*("/" (api-identifier |
key-value)))
api-identifier = [module-name ":"] identifier
module-name = identifier
key-value = string ;; An identifier MUST NOT start with
;; (('X'|'x') ('M'|'m') ('L'|'l'))
identifier = (ALPHA / "_")
*(ALPHA / DIGIT / "_" / "-" / ".")
string = <an unquoted string>

Mapping of /<list-name>/<key> to
/<list-name>=<key>

1. Would need to obtain YANG Schema
from odl-yang-tools and do parsing
ourselves or look for some existing
utilities.
Parsing would need to consider
things like Augmentation

2. Do the URL conversion
Open Point: Functionality with Leaf-list

Common: Schema resource
RFC 8040 Bierman Adapter Task

Retrieve Schema
Resource
(YANG modules
supported by
Server)

GET /restconf/data/ietf-yang-library:modules-state HTTP/1.1
Host: example.com
Accept: application/yang-data+json

{
 "ietf-yang-library:modules-state": {
 "module-set-id":
"5479120c17a619545ea6aff7aa19838b036ebbd7",
 "module": [
 {
 "name": "foo",
 "revision": "2012-01-02",
 "schema":
"https://example.com/modules/foo/2012-01-02",
 "namespace": "http://example.com/ns/foo",
 "feature": [
 "feature1",
 "feature2"
],
 "deviation": [
 {
 "name": "foo-dev",
 "revision": "2012-02-16"
 }
],
 "conformance-type": "implement"
 }
]
 }
}

GET /restconf/modules
 HTTP/1.1
Host: example.com
Accept: application/yang.api+json

{
 "ietf-restconf:modules": {
 "module": [
 {
 "name": "foo",
 "revision": "2012-01-02",
 "namespace": "http://example.com/ns/foo",
 "feature": [
 "feature1",
 "feature2"
]
 }
]
 }
}

1. Adapt changes to URL
2. Adapt change to header “accept”
3. Adapt changes to response body

Open Point: Whether ODL support this API

Common: Media type - Open Point

https://wiki.onap.org/display/DW/Switch+from+Biermann-RestConf+to+RFC8040+interface

In ODL implementation of 8040, API supports both application/json
and application/yang-data+json media types. So Modifying the
media types in adapter is not required.

Need to confirm with Martin Skorupski to see if we are missing
something.

https://wiki.onap.org/display/DW/Switch+from+Biermann-RestConf+to+RFC8040+interface
https://wiki.onap.org/display/~demx8as6

Common: Error Response message

RFC 8040 Bierman Adapter Task

Error Response
(Application for all requests)

+--ro errors
 +--ro error*
 +--ro error-type enumeration
 +--ro error-tag string
 +--ro error-app-tag? string
 +--ro error-path? instance-identifier
 +--ro error-message? string
 +--ro error-info

Example:
{
 "ietf-restconf:errors": {
 "error": [
 {
 "error-type": "protocol",
 "error-tag": "invalid-value",
 "error-path": "/example-ops:input/delay",
 "error-message": "Invalid input parameter"
 }
]
 }
}

+--ro errors
 +--ro error
 +--ro error-type enumeration
 +--ro error-tag string
 +--ro error-app-tag? string
 +--ro error-path? data-resource-identifier
 +--ro error-message? string
 +--ro error-info

Example:
{
 "ietf-restconf:errors": {
 "error": {
 "error-type": "protocol",
 "error-tag": "lock-denied",
 "error-message": "Lock failed, lock already held",
 "error-path": "/example-jukebox:jukebox/library
/artist/Foo%20Fighters/album/Wasting%20Light
/song/Burning%20Light"
 }
 }
}

This could be BLOCKER as error
response for RFC 8040 its a list but in
bierman it’s a container (single
instance).
Not sure why RFC 8040 has changed it
to list and its required in which all
scenarios.

Note: Would need to check ODL
implementation to see in which
scenario a multi instance or error is
being sent as an output.

Notification
RFC 8040 Bierman Adapter Task

Retrieve
Server
supported
event Stream

GET /restconf/data/ietf-restconf-monitoring:restconf-state/\
streams
 HTTP/1.1
Host: example.com
Accept: application/yang-data+xml

The server might send the following response:
HTTP/1.1 200 OK
Content-Type: application/yang-data+xml

<?xml version="1.0" encoding="UTF-8"?>
<streams xmlns="urn:ietf:params:xml:ns:yang:ietf-restconf-monitoring">
 <stream>
 <name>NETCONF</name>
 <description>default NETCONF event stream</description>
 <replay-support>true</replay-support>
 <replay-log-creation-time>\
2007-07-08T00:00:00Z\</replay-log-creation-time>
 <access>
 <encoding>xml</encoding>
 <location>https://example.com/streams/NETCONF\</location>
 </access>
 <access>
 <encoding>json</encoding>

<location>https://example.com/streams/NETCONF-JSON\</location>
 </access>
 </stream>
 ...
</streams>

GET /restconf/streams
HTTP/1.1
Host: example.com
Accept: application/yang.api+xml

The server might send the following response:
HTTP/1.1 200 OK
Content-Type: application/yang-data+xml

<?xml version="1.0" encoding="UTF-8"?>
<streams xmlns="urn:ietf:params:xml:ns:yang:ietf-restconf">
 <stream>
 <name>NETCONF</name>
 <description>default NETCONF event
stream</description>
 <replay-support>true</replay-support>

<replay-log-creation-time>2007-07-08T00:00:00Z</replay-log-
creation-time>
 <events />
 </stream>
 ...
</streams>

● Both API & Response body
needs adaptation

RFC 8040 has introduced
concept of “access” and during
subscription client must
subscribe using location.
As there could be multiple
access, adaptation of this is NOT
POSSIBLE and could be a
BLOCKER.

Notification
RFC 8040 Bierman Adapter Task

Subscribing
to receive
notifications

The RESTCONF client can then use this URL value to start
monitoring
the event stream:
GET /streams/NETCONF
HTTP/1.1
Host: example.com
Accept: text/event-stream
Cache-Control: no-cache
Connection: keep-alive

GET /restconf/streams/stream/NETCONF/events
HTTP/1.1
Host: example.com
Accept: text/event-stream
Cache-Control: no-cache
Connection: keep-alive

RFC 8040 has introduced concept of
“access” and during subscription client
must subscribe using location.
As there could be multiple access,
adaptation of this is NOT POSSIBLE and
could be a BLOCKER.

Open Point: Needs to check ODL
implementation to understand which RFC
it follows for Notification.
RFC 8650 is another RFC which defines
dynamic subscriptions over RESTCONF
[RFC8040]

Receiving
event
notifications

<?xml version="1.0" encoding="UTF-8"?>
<notification
xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2013-12-21T00:01:00Z</eventTime>
 <event xmlns="http://example.com/event/1.0">
 <event-class>fault</event-class>
 <reporting-entity>
 <card>Ethernet0</card>
 </reporting-entity>
 <severity>major</severity>
 </event>
</notification>

<?xml version="1.0" encoding="UTF-8"?>
<notification
xmlns="urn:ietf:params:xml:ns:yang:ietf-restconf">
 <event-time>2013-09-30T00:01:00Z</event-time>
 <event xmlns="http://example.com/event/1.0">
 <eventClass>fault</eventClass>
 <reportingEntity>
 <card>Ethernet0</card>
 </reportingEntity>
 <severity>major</severity>
 </event>
</notification>

1. Namespace in response body
needs adaptation.

RPC operation
RFC 8040 Bierman Adapter Task

POST {+restconf}/operations/<operation>
The <operation> field identifies the module name and rpc
identifier string for the desired operation.

POST /restconf/operations/example-ops:reboot
HTTP/1.1
Host: example.com
Content-Type: application/yang-data+json
{
"example-ops:input" : {
"delay" : 600,
"message" : "Going down for system maintenance",
"language" : "en-US"
}
}

POST /restconf/operations/example-ops:reboot HTTP/1.1
Host: example.com
Content-Type: application/yang.data+json
{
"example-ops:input" : {
"delay" : 600,
"message" : "Going down for system maintenance",
"language" : "en-US"
}
}

1. Only root resource adaptation is
needed.

https://wiki.onap.org/display/DW/Switch+from+Biermann-RestConf+to+RFC8040+interface Open Point
Needs discussion with
Martin Skorupski
Needs to understand
the Note provided with
this example

https://wiki.onap.org/display/DW/Switch+from+Biermann-RestConf+to+RFC8040+interface
https://wiki.onap.org/display/~demx8as6

Data: GET
RFC 8040 Bierman Adapter Task

To retrieve
configuration data

GET
/restconf/data/example-events:events?content=config
HTTP/1.1
Host: example.com
Accept: application/yang-data+json

The server might respond as follows:
{
 "example-events:events": {
 "event": [
 {
 "name": "interface-up",
 "description": "Interface up notification count"
 }
]
 }
}

GET /restconf/config/example-jukebox:jukebox/
library/artist/Foo%20Fighters/album?format=json HTTP/1.1
Host: example.com
Accept: application/yang.data+json

The server might respond:
{
 "album": {
 "name": "Wasting Light",
 "genre": "example-jukebox:alternative",
 "year": 2011
 }
}

URL adaptation (translation)

To retrieve only non
configuration data

GET
/restconf/data/example-events:events?content=nonconfi
g
Host: example.com
Accept: application/yang-data+json
The server might respond as follows:
{
 "example-events:events": {
 "event": {
 "name": "interface-up",
 "event-count": 42
 }
 }
}

GET /restconf/operational/example-jukebox:jukebox/library
Host: example.com
Accept: application/yang.data+json
The server might respond:
{
 "example-jukebox:library": {
 "artist-count": 42,
 "album-count": 59,
 "song-count": 374
 }
}

URL adaptation (translation)

Note: Based on current understanding of RFC/Draft, response data of GET shouldn’t differ for 8040 &
Bierman. But it would be good to cross-verify this in ODL/IETF YANG WG to ensure we are not leaving
any border scenario.

Data: Get: Query parameters
RFC 8040 Bierman Adapter Task

Select (beieram)
Fields
(RFC8040)

The "fields" query parameter is used to optionally
identify data nodes within the target resource to be
retrieved in a GET method.

For example, assume that the target resource is
the "album" list.
retrieve only the "label" and "catalogue-number" of
the "admin" container within an album, use
"fields=admin(label;catalogue-number)".

"/" is used in a path to retrieve a child node of a
node.
example, to retrieve only the "label" of an album,
use "fields=admin/label"

The "select" query parameter is used to specify an expression
which can represent a subset of all data nodes within the target
resource.

GET /restconf?select=version&format=json HTTP/1.1
Host: example.com
Accept: application/yang.api+json
The server might respond as follows.

{ "ietf-restconf:version": "1.0" }

● Map “select” to “fields”

format Not supported ● The "format" parameter is used to specify the format
of any content returned in the response.

● This parameter MAY be used instead of the "Accept"
header to identify the format desired in the response.

● The "format" parameter is only supported for the GET
and HEAD methods.

● If the "format" parameter is present, then it overrides
the Accept header, if present.

Example
GET /restconf/config/example-routing:routing?format=json
Host: example.com

● Map “format” to “Accept”
header

Data: POST, Delete & PUT
RFC 8040 Bierman Adapter Task

Create a new
data resource

POST
/restconf/data/example-jukebox:jukebox/library
HTTP/1.1
Host: example.com
Content-Type: application/yang-data+json

{
 "example-jukebox:artist": {
 "name": "Foo Fighters"
 }
}

POST /restconf/config/example-jukebox:jukebox/library
HTTP/1.1
Host: example.com
Content-Type: application/yang.data+json

{
 "example-jukebox:artist": {
 "name": "Foo Fighters"
 }
}

URL adaptation (translation)

Delete an
existing resource

DELETE /restconf/data/example-jukebox:jukebox/\
library/artist=Foo%20Fighters/album=Wasting%20L
ight HTTP/1.1
Host: example.com

DELETE /restconf/config/example-jukebox:jukebox/
library/artist/Foo%20Fighters/album/Wasting%20Light
HTTP/1.1
Host: example.com

URL adaptation (translation)

Replace an
existing resource

PUT /restconf/data/example-jukebox:jukebox/\
library/artist=Foo%20Fighters/album=Wasting%20L
ight
Host: example.com
Content-Type: application/yang-data+json
{
 "example-jukebox:album":
 {
 "name": "Wasting Light",
 "genre": "example-jukebox:alternative",
 "year": 2011
 }
}

PUT /restconf/config/example-jukebox:jukebox/
library/artist/Foo%20Fighters/album/Wasting%20Light
Host: example.com
If-Match: b3830f23a4c
Content-Type: application/yang.data+json
{
 "example-jukebox:album": {
 "name": "Wasting Light",
 "genre": "example-jukebox:alternative",
 "year": 2011
 }
}

URL adaptation (translation)

Data: POST, Delete & PUT - Open Point
https://wiki.onap.org/display/DW/Switch+from+Biermann-RestConf+to+RFC8040+interface

This is an YANG Augmentation scenario.
In which module name for every leaf
looks unnecessary.

Need to check with Martin on why
module-name (namespace) needs to be
specified for every YANG leaf, because it
is already specified for top level
container “notification-config” for
nb-bierman.

Ideally XML/JSON
serialization/deserialization of data
shouldn’t change for bierman and RFC
8040, can also cross check with ODL
community.

https://wiki.onap.org/display/DW/Switch+from+Biermann-RestConf+to+RFC8040+interface

Data: POST, Delete & PUT - Open Point
https://wiki.onap.org/display/DW/Switch+from+Biermann-RestConf+to+RFC8040+interface

This is again YANG Augmentation
scenario, In which module name for
every leaf looks necessary.

Need to check with Martin on why
module-name (namespace) NEED NOT
to be specified for every Augmented
YANG leaf for RFC 8040.

Ideally XML/JSON
serialization/deserialization of data
shouldn’t change for bierman and RFC
8040, can also cross check with ODL
community.

https://wiki.onap.org/display/DW/Switch+from+Biermann-RestConf+to+RFC8040+interface

Data: Plain Patch
RFC 8040 Bierman - 02 Adapter Task

Plain Patch an
existing
resource(merge)

To replace just the "year" field in the "album"
resource (instead of replacing the entire
resource with the PUT method), the client
might send a plain patch as follows:

PATCH
/restconf/data/example-jukebox:jukebox/\
library/artist=Foo%20Fighters/album=Wastin
g%20Light

<album
xmlns="http://example.com/ns/example-jukeb
ox">
 <year>2011</year>
</album>

PATCH
/restconf/config/example-jukebox:jukebox/
library/artist/Foo%20Fighters/album/Wasting%2
0Light HTTP/1.1

{ "example-jukebox:year" : 2011 }

Note: In Bierman02 body is like shown
above. In bierman04 body is same with
RFC8040.

Needs to check implementation in ODL for
Patch follows Bierman-02 or Bierman-04

Based on that what to adapt can be figured out.

Data: YANG Patch
RFC 8040 Bierman Adapter Task

YANG Patch PATCH /restconf/data/example-jukebox:jukebox/\

library/artist=Foo%20Fighters/album=Wasting%20Light
\
 HTTP/1.1
 Host: example.com
 Accept: application/yang-data+json
 Content-Type: application/yang-patch+json

{
 "ietf-yang-patch:yang-patch": {
 "patch-id": "add-songs-patch-2",
 "edit": [
 {
 "edit-id": "edit1",
 "operation": "create",
 "target": "/song=Rope",
 "value": {
 "song": [
 {
 "name": "Rope",
 "location": "/media/rope.mp3",
 "format": "MP3",
 "length": 259
 }
]
 }
 }
]
 }
}

PATCH
/restconf/config/example-jukebox:jukebox/
library/artist/Foo%20Fighters/album/Wasting%2
0Light
HTTP/1.1
Host: example.com
Accept: application/yang.patch-status+json
Content-Type: application/yang.patch+json

{
 "ietf-restconf:yang-patch": {
 "patch-id": "add-songs-patch-2",
 "edit": [
 {
 "edit-id": 1,
 "operation": "create",
 "target": "/song",
 "value": {
 "song": {
 "name": "Rope",
 "location": "/media/rope.mp3",
 "format": "MP3",
 "length": 259
 }
 }
 }
]
 }
}

1. API adaptation
2. Request Body also needs to be

adapted for following
a. Namespace
b. Target if its a list

 Note: This would need YANG
schema based parsing to figure out target
type.

Thanks

