

# E2E Network Slicing Use Case Requirements for R11

**Requirements Subcommittee Review** 

Participants: STL, Wipro, China Telecom, TIM, Huawei, Tech Mahindra, Amdocs, CMCC, AT&T

Authors: Kevin Tang (STL), Ahila P (Wipro), Dong Wang (China Telecom), Henry Yu (Huawei), N.K. Shankar (STL), Borislav Glozman (Amdocs)

Reporters: Kevin Tang (STL) and Ahila P (Wipro)



- 1. ONAP-based Slice Management Overall Architecture and Choices
- 2. ONAP-based Slice Management NSI Life-cycle View
- 3. Kohn Release Requirements and Impacts
- 4. Summary of Kohn Release API Impacts



#### **ONAP-based Slice Management Overall Architecture Choices**



### E2E Network Slicing: Architecture & Interfaces





# **RAN & Transport Subnet: Interaction Scenario 1**



- RAN NSSMF shall be responsible for determination of Slice Profile of FH, MH and RAN NFs.
- RAN NSSMF shall be responsible for entire RAN subnet comprising FH and MH (stitching together, CL actions, etc.)



# RAN & Transport Subnet: Interaction Scenario 2



![](_page_5_Picture_3.jpeg)

### **ONAP-based Slice Management - NSI Life Cycle View**

![](_page_6_Figure_1.jpeg)

![](_page_6_Figure_2.jpeg)

- **Design and pre-provision**: Creation of necessary slice/slice sub-net templates.
- Instantiation/Configuration & Activation/Deactivation of NSIs, including instantiation/mapping of its constituent slice subnets (RAN, Core and Transport).

![](_page_6_Picture_6.jpeg)

## E2E Network Slicing: Proposed Requirements for Kohn

#### • REQ-1: Dynamic discovery of Core and RAN endpoints at NSMF (carry-over)

- o Carry-over requirement from Jakarta release.
- o NSMF discovers the Core and RAN endpoints for back haul dynamically at the time of slice allocation/reuse
- o RAN, Core endpoint of back haul is considered for Kohn release
- o Front haul and mid haul end points discovery is a stretch goal

#### • REQ-2: IBN driven E2E Network Slicing (new, joint with IBN)

- Leverage ML prediction MS done in Jakarta release as a PoC
- Focus on RAN subnet slicing only
- Integration of ML prediction MS with DCAE (IBN and NS teams)
- Enhancement to intent creation and workflow to support E2E Network Slicing based on UUI, AAI and DCAE (IBN team)
- Enhancement to the closed-loop and the ML/Slice analysis MS for slicing KPI monitoring to support IBN (NS team)
- REQ-3: mIoT slice support (New)
  - o Support Slice creation, activation, deactivation and termination for mIoT applications
- REQ-4: Use case test automation (carry-over)
  - Carry out test automation for slicing use case in phases
  - Target to accomplish test automation for manual configurations

![](_page_7_Picture_18.jpeg)

# E2E Network Slicing: Impact Overview

![](_page_8_Figure_1.jpeg)

\* Other relevant impacts are covered by IBN use case

![](_page_8_Picture_4.jpeg)

## RAN Slicing: Proposed Requirements for Kohn

- REQ-5: RAN-Configuration over A1 enhancements (new) (Stretch goal)
  - Sending AI/ML based config updates to Near-RT RIC over A1 from closed loop (throughput guidance or maxNumberofConns)
  - Alignment with O-RAN A1 specification and information models
  - Work with SON use case to leverage A1 termination work in SDN-R and RAN Simulator (TBD)
- REQ-6: CPS-TBDMT enhancement to integrate with NCMP (Carry-over) (Stretch goal)
  - For RAN Slice configuration, CPS Core is invoked directly from TBDMT.
  - Support for CPS-E-05 interface requires Cache to be enabled
  - Support RAN configuration update using NCMP to SND-R
    - RAN slicing requires multiple manipulations while CPS can only do the xNF updates but cannot provide placeholder for other manipulations.
    - SO (RAN NSSMF) cannot invoke CPS for every xNF read/write operations that each RAN slice operation involves
    - More investigation needed with CPS project on the support for the CPS impacts or potential new solutions.
- REQ-7: CSIT for RAN Slicing

![](_page_9_Picture_13.jpeg)

![](_page_9_Picture_14.jpeg)

# **CPS-TBDMT** Enhancement to Integrate with NCMP

![](_page_10_Figure_1.jpeg)

![](_page_10_Picture_2.jpeg)

### **RAN Slicing: Impact Overview**

![](_page_11_Figure_1.jpeg)

![](_page_11_Picture_3.jpeg)

### TN Sub-net Slicing: Proposed Requirements for Kohn

- **REQ-8**: TN NSSMF enhancements according to IETF latest specification (Carry-over) (Covered by CCVPN use case)
- **REQ-9**: Transport Slicing enhancement to support IBN based TN slicing (Carry-over) (Covered by CCVPN use case)
- **REQ-10**: CSIT for TN slicing (Carry-over) (Covered by CCVPN use case)

![](_page_12_Picture_4.jpeg)

#### Carry-over requirements from Jakarta Release

- REQ-11: DCAE Non-functional requirements (Carry-over)
  - DCAEGEN2-2907: REQ-358 No root (superuser) access to database from application container
  - DCAEGEN2-2801: Enhancements to KPI Computation MS (partial)
- REQ-12: Fix to Core Slicing issues (Carry-over) (could also be put to the Jakarta maintenance release)
  - <u>https://jira.onap.org/browse/SO-3810</u>
  - <a href="https://jira.onap.org/browse/SO-3835">https://jira.onap.org/browse/SO-3835</a>
  - https://jira.onap.org/browse/SO-3838
- REQ-13: Carry-over integration tests from Jakarta
  - Depending on the progress of the testing in Jakarta release

![](_page_13_Picture_10.jpeg)

#### API impact summary

| Interacting components                           | API impact? | Remarks                                    |
|--------------------------------------------------|-------------|--------------------------------------------|
| ExtAPI -> Northbound                             | No          |                                            |
| UUI -> SO                                        | Yes         | Dynamic endpoints discovery at NSMF        |
| SO -> OOF                                        | No          |                                            |
| OOF -> CPS                                       | No          |                                            |
| SO (NSMF) -> SO (NSSMF)                          | Yes         | Dynamic endpoints discovery at NSMF        |
| SO (NSSMF Adapter) -> SO<br>(External RAN NSSMF) | No          |                                            |
| SO -> SDN-C/SDN-R                                | No          |                                            |
| SDN-R -> RAN Simulator                           | Yes         | A1 interrace for RAN policy/configuration  |
| Any component / SO -> AAI                        | Yes         | SO invokes AAI to read the nexthopinfo     |
| DCAE Slice Analysis MS -> CPS                    | No          |                                            |
| CPS -> CCSDK/SDN-C                               | Yes         | Use CPS as an abstract layer to update xNF |
| UUI -> DCAE                                      | Yes         | Slicing KPIs monitoring                    |
| AAI -> DCAE                                      | Yes         | For IBN driven closed loop                 |

![](_page_14_Picture_2.jpeg)

![](_page_14_Picture_3.jpeg)

![](_page_15_Picture_0.jpeg)

# Thank You!

#### 3.4 Intent-driving E2E Slicing usecase

![](_page_16_Figure_1.jpeg)

![](_page_16_Picture_2.jpeg)

### **Closed Loop: Overview**

![](_page_17_Figure_1.jpeg)

- Leverage the SON ⇔ Control Loop (CL) framework in ONAP
- Based on PM/FM data, analyze NSI/NSSI traffic patterns, KPI adherence, and resource occupancy in NSI/NSSI
- Based on analysis, trigger OOF for NSI resource optimization/reallocation to guarantee KPI adherence and optimal use of resources
- Perform necessary resource adjustments via SO and Domain Controllers (modify NSI/NSSI/S-NSSAI mapping/etc.)

![](_page_17_Picture_6.jpeg)

#### **Closed Loop: Jakarta Release Impacts**

![](_page_18_Figure_1.jpeg)

THELINUX FOUNDATION

- The PM data collected from RAN in Step 1 is DL/UL PRB usage for data traffic.
- The configuration update determined by Slice Analysis MS and triggering Policy in Step 4 is slice specific throughput guidance for Near-RT coverage area (i.e., at Near-RT RIC level).
- Step 8 is over **O1** in Jakarta, it will be over **A1** in future releases.

Notes:

1. DFC and VES Collector are not shown in the flow but are used.

![](_page_18_Picture_7.jpeg)

### Intelligent Slicing (IBN Based CL): Jakarta Release Impacts

![](_page_19_Figure_1.jpeg)

THELINUX FOUNDATION

- The PM data collected from RAN in Step 1 is PDU sessions requested, setup successfully & failures.
- 2 micro services are required, one for training and exporting the model (downloaded to the local machine in J release), and another for prediction.
- At Step 4, predicted output from ML MS, which should be aligned with the intent, is slice specific maxNumberof Conns for each cell (i.e., cell level for each S-NSSAI).
- Control loop is triggered by Slice Analysis MS using policy
- Step 10 is over O1 in Jakarta and will be over A1 in future releases

#### <u>Notes</u>

• DFC and VES Collector are not shown in the flow but are used.

![](_page_19_Picture_9.jpeg)