ONAP R7 SDC Data Model Specification	
ONAP R7 SDC Data Model Specification	
SDC TOSCA AID
Data Model Specification
ONAP R7 Release

[image: 2arc_bottom300]

Table of Contents
1.	Revision History	5
2.	References and Applicable Documents	6
2.	Overview	7
2.1.	TOSCA Modeling for Instantiation in ONAP	7
2.2.	Current Use of TOSCA Models in ONAP	9
2.3.	High Level Overview of Service Level TOSCA Model	10
2.4.	High Level Overview of VNF Level TOSCA Model	15
2.5.	Organization of this Document	18
3.	Summary of key TOSCA concepts	19
3.1.	Substitution Mapping	19
3.2.	Inputs	20
3.2.1.	get_inputs function	22
3.3.	Relationships	23
4.	ONAP TOSCA Modeling and Data Model	23
4.1.	Introduction	23
4.2.	Version Management	23
4.3.	ONAP Type Definitions	23
4.3.1.	ONAP Node Types	23
4.3.1.1.	Tosca Node Type Definitions	23
4.3.1.1.1.	Keynames	23
4.3.1.1.2.	Grammar	24
4.3.1.2.	SDC Node Type Metadata	25
4.3.1.3.	SDC NS Node Type Definitions	30
4.3.1.4.	SDC VL Node Type Definitions	33
4.3.1.4.1.	tosca.nodes.nfv.NsVirtualLink	33
4.3.1.4.2.	org.openecomp.resource.V1.extVL	35
4.3.1.4.3.	org.openecomp.resource.vl.extVL	35
4.3.1.5.	SDC CP Node Type Definitions	37
4.3.1.5.1.	org.openecomp.resource.cp.extCP	38
4.3.1.5.2.	org.openecomp.resource.cp.v2.extCP	41
4.3.1.5.3.	org.openecomp.resource.cp.v2.extNeutronCP	41
4.3.1.5.4.	org.openecomp.resource.cp.v2.extContrailCP	47
4.3.1.5.5.	org.openecomp.resource.cp.v2.extVirtualMachineInterfaceCP	50
4.3.1.5.6.	org.openecomp.resource.cp.nodes.network.Port	53
4.3.1.5.7.	org.openecomp.resource.cp.nodes.network.v2.SubInterface	56
4.3.1.5.8.	org.openecomp.resource.cp.nodes.heat.network.v2.contrailV2.VLANSubInterface	59
4.3.1.5.9.	62
4.3.1.6.	SDC VFC Node Type Definitions	62
4.3.1.6.1.	org.openecomp.nodes.VnfConfiguration	62
4.3.1.6.2.	org.openecomp.resource.abstract.nodes.MultiFlavorVFC	62
4.3.1.7.	SDC Abstract (VFC, VF, CR, PNF, Service) Type Definitions	63
4.3.1.7.1.	org.openecomp.resource.abstract.nodes.VFC	63
4.3.1.7.2.	org.openecomp.resource.abstract.nodes.VF	65
4.3.1.7.3.	org.openecomp.resource.abstract.nodes.PNF	66
4.3.1.7.4.	org.openecomp.resource.abstract.nodes.CR	67
4.3.1.7.5.	org.openecomp.resource.abstract.nodes.service:	68
4.3.1.7.6.	org.openecomp.nodes.ForwardingPath	68
4.3.1.8.	SDC ServiceProxy Node Type Definitions	69
4.3.1.8.1.	org.openecomp.nodes.ServiceProxy	69
4.3.1.8.1.1.	from org.openecomp.nodes.ServiceProxy	69
4.3.1.9.	SDC Configuration Node Type Definitions	70
4.3.1.9.1.	org.openecomp.nodes.Configuration	70
4.3.1.9.2.	org.openecomp.nodes.PortMirroringConfiguration	71
4.3.1.9.3.	org.openecomp.nodes.PortMirroringConfigurationByPolicy	72
4.3.1.9.4.	org.openecomp.nodes.VLANNetworkReceptor	74
4.3.1.9.5.	org.openecomp.nodes.VRFEntry	75
4.3.1.9.6.	org.openecomp.nodes.VRFObject	76
4.3.1.9.7.	org.openecomp.nodes.FabricConfiguration	77
4.3.1.10.	SDC Allotted Resource Node Type Definitions	77
4.3.1.10.1.	org.openecomp.resource.vfc.AllottedResource	78
4.3.2.	ONAP Data Type	80
4.3.2.1.	Tosca Data Type Definitions	80
4.3.2.1.1.	Keynames	80
4.3.2.1.2.	Grammar	80
4.3.2.2.	SDC Data Type Definitions	81
4.3.2.2.1.	org.openecomp.datatypes.ONAPHoming	83
4.3.2.2.2.	org.openecomp.datatypes.ONAPNaming	84
4.3.2.2.3.	org.openecomp.datatypes.network.SubnetAssignments	84
4.3.2.2.4.	org.openecomp.datatypes.network.IPv4SubnetAssignments	86
4.3.2.2.5.	org.openecomp.datatypes.network.IPv6SubnetAssignments	86
4.3.2.2.6.	org.openecomp.datatypes.network.NetworkAssignments	87
4.3.2.2.7.	org.openecomp.datatypes.network.NetworkFlows	89
4.3.2.2.8.	org.openecomp.datatypes.network.ProviderNetwork	90
4.3.2.2.9.	org.openecomp.datatypes.Naming	92
4.3.2.2.10.	org.openecomp.datatypes.network.MacAssignments	93
4.3.2.2.11.	org.openecomp.datatypes.network.VlanRequirements	94
4.3.2.2.12.	org.openecomp.datatypes.network.IpRequirements	95
4.3.2.2.13.	org.openecomp.datatypes.AssignmentRequirements	96
4.3.2.2.14.	org.openecomp.datatypes.flavors.DeploymentFlavor	97
4.3.2.2.15.	org.openecomp.datatypes.flavors.ComputeFlavor	98
4.3.2.2.16.	org.openecomp.datatypes.flavors.LicenseFlavor	99
4.3.2.2.17.	org.openecomp.datatypes.flavors.VendorInfo	99
4.3.2.2.18.	org.openecomp.datatypes.ImageInfo	99
4.3.2.2.19.	org.openecomp.datatypes.PortMirroringConnectionPointDescription	100
4.3.2.2.20.	org.openecomp.datatypes.RelatedNetworksAssignments	101
4.3.2.2.21.	tosca.datatypes.nfv.NsProfile	101
4.3.2.2.22.	tosca.datatypes.nfv.NsVlProfile	102
4.3.2.2.23.	tosca.datatypes.nfv.ConnectivityType	103
4.3.2.2.24.	tosca.datatypes.nfv.LinkBitrateRequirements	104
4.3.2.2.25.	tosca.datatypes.nfv. Qos	105
4.3.2.2.26.	tosca.datatypes.nfv.NsVirtualLinkQos	106
4.3.2.2.27.	tosca.datatypes.nfv.ServiceAvailability	106
4.3.3.	ONAP Capability Types	108
4.3.3.1.	Tosca Capability Type Definitions	108
4.3.3.1.1.	Keynames	108
4.3.3.1.2.	Grammar	108
4.3.3.2.	SDC Capability Type Definitions	108
4.3.3.2.1.	org.openecomp.capabilities.AllottedResource	109
4.3.3.2.2.	org.openecomp.capabilities.PortMirroring	109
4.3.3.2.3.	org.openecomp.capabilities.Forwarder	110
4.3.3.2.4.	org.openecomp.capabilities.VLANAssignment	110
4.3.3.2.5.	org.openecomp.capabilities.RoutingConfiguration	110
4.3.3.2.6.	org.openecomp.capabilities.FabricConfiguration	111
4.3.3.2.1.	tosca.capabilities.nfv.VirtualLinkable	111
4.3.4.	ONAP Group Types	111
4.3.4.1.	Tosca Group Type Definitions	111
4.3.4.1.1.	Keynames	112
4.3.4.1.2.	Grammar	113
4.3.4.2.	SDC Group Type Metadata	113
4.3.4.3.	SDC Group Type Definitions	114
4.3.4.4.	115
4.3.4.4.1.	org.openecomp. groups.VFModule	115
4.3.4.4.1.1.	Syntax	117
4.3.4.4.1.2.	Usage	118
4.3.4.4.1.3.	VF Module in Service Level and vfModuleCustomizationUUID	119
4.3.4.4.1.3.1. Syntax	119
4.3.4.4.1.3.2. Usage	120
4.3.4.4.2.	org.openecomp. groups.NetworkCollection	120
4.3.4.4.3.	org.openecomp.groups.VfcInstanceGroup	120
4.3.4.4.4.	org.openecomp.groups.Group	124
4.3.4.4.5.	124
4.3.4.4.1.	org.openecomp.groups.ResourceInstanceGroup	125
4.3.4.4.2.	125
4.3.5.	ONAP Policy Types	125
4.3.5.1.	Tosca Policy Type Definitions	125
4.3.5.1.1.	Keynames	125
4.3.5.1.2.	Grammar	126
4.3.5.2.	SDC Policy Type Metadata	127
4.3.5.3.	SDC Policy Type Definitions	128
4.3.5.4.	128
4.3.5.4.1.	org.openecomp.policies.scaling.Fixed	128
4.3.5.4.2.	org.openecomp.policies.External	128
4.3.5.4.3.	org.openecomp.policies.scaling.Variable	129
4.3.6.	ONAP Relationships Types	130
4.3.6.1.	Tosca Group Type Definitions	130
4.3.6.1.1.	Keynames	130
4.3.6.1.2.	Grammar	131
4.3.6.1.3.	org.openecomp. relationships.AssignsTo	131
4.3.6.1.4.	org.openecomp.relationships.RoutesTo	132
4.3.7.	ONAP Annotation Type	132
4.3.7.1.	Tosca Extension Annotation Type Definition	133
4.3.7.1.1.	Keynames	133
4.3.7.1.2.	Grammar	133
4.3.7.1.3.	Examples	134
4.3.7.2.	SDC Annotation Type Definition	134
4.3.7.2.1.	keynames	134
4.3.7.2.2.	135
4.3.7.2.2.	Grammar	135
4.3.7.2.3.	Example	135
4.3.7.3.	Extending TOSCA Service Template and Parameter Definition	136
4.3.7.3.1.	Service Template	136
4.3.7.3.2.	Parameter Definition	136
4.3.7.3.3.	Annotation Type – org.openecomp.annotations.Source	137
4.3.7.3.3.1.	Example	137
4.3.8.	ONAP Interfaces Type	138
4.3.8.1.	tosca.interfaces.nfv.Nslcm	138
4.3.8.1.1.	Syntax	139
4.4.	Template definitions	140
4.4.1.	Tosca Node Template definition	140
4.4.1.2.	Proxy Nodes	141
4.4.1.2.	Port Mirroring Configuration Nodes	143
4.4.1.3.	Configuration Node (example)	144
4.4.2.	Capability Template definition	146
5.	Appendix A – SDC Resource / Service Categories	146
5.1.	Resource Categories	146
5.2.	148
5.2.	Service Categories	148
5.3.	149
6.	Appendix B – SDC Artifact Types	150
7.	Appendix C – Model Driven VID	151
8.	Appendix D – TOSCA Parser	154
Document Properties
[bookmark: _Toc54868824]Revision History
	Date
	Release
	Author
	Description

	2020.10.5
	7 (Guilin)
	Byung-Woo Jun
	· Added tosca.nodes.nfv.NS and tosca.nodes.nfv.NsVirtualLink for ETSI SOL007 NS onboarding or design
· Added tosca.interfaces.nfv.NsLcm
· Added tosca.datatypes.nfv.NsVlProfile, tosca.datatypes.nfv.ConnectivityType, tosca.datatypes.nfv.LinkBitrateRequirements,
tosca.datatypes.nfv.Qos,
tosca.datatypes.nfv.nsVirtualLinkQos, tosca.datatypes.nfv.ServiceAvailability
· Added tosca.capabilities.nfv.VirtualLinkable

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

[bookmark: _References_and_Applicable][bookmark: _Toc54868825]References and Applicable Documents
	Ref. Code
	Name
	Description

	1
	TOSCA Simple Profile in YAML Version 1.0
	TOSCA definition

	2
	TOSCA Simple Profile in YAML Version 1.1
	TOSCA Definition 1.1

[bookmark: _Toc54868826]Overview
This document defines the CSAR structure and TOSCA definitions supported by SDC. ONAP is using TOSCA models to represent ONAP Services. The goal of creating these TOSCA models is to drive automated instantiation and lifecycle capabilities in the AT&T network. This document focuses on TOSCA modeling used for instantiation, and its purpose is to help consumers of these models to interpret them to drive automated processing. Companion documents may be created to provide more detailed explanation on how TOSCA models are being used to drive automation in monitoring, control loops, and product-level processing.
[bookmark: _Toc54868827]TOSCA Modeling for Instantiation in ONAP

To support model-driven instantiation, ONAP modeling involves defining TOSCA models for ONAP Services and the resources that make them up. Modeling is done independent of the location where an instance of the service will be instantiated so the same model can used over and over to instantiate multiple instances instance across a provider’s network and in different cloud environments. At instantiation time, instance-specific information is obtained/determined and used in conjunction with the non-instance-specific information in the model.

Service – a collection of one or more resources that are connected together and are connected to other services to provide functional capabilities that, when deployed in a service provider’s network, can be packaged into a Product/Offer.
Resource – an individual functional capability that can be combined/connected with other individual capabilities to form a Service. This is a basic building block that is modeled generically, and when included in a service, can be customized to meet the needs of the service. Several different resource types are defined in ONAP:
Virtual Function (VF) / Virtual Network Function (VNF) – A virtualized functional capability that can be included in any number of services to provide specific functions. It can be developed by an external vendor or developed internally, it can be deployed using Openstack, and it can have one or more HEAT templates and related files for instantiation. It typically will be subject to the terms of a license agreement when it is deployed in a cloud environment using ONAP. Example: Application Server, Router.
Virtual Function Component (a subcomponent of a VNF) – A VNF will require the use of one or more Virtual Machines (VMs) on which the VNF images will be deployed. The image deployed and particular function performed by each VM represents the VFC. Example: Backend server, OAM Server, Proxy Server that are part of a VNF.
Connection Point – represents an internal or external point on a VNF; can be customized when the VNF is used in a Service. Examples: OAM external CP, internal CP that is used to connect to an internal network within the VNF to allow the VFCs of VNF to communicate with each other.
Virtual Link (VL) – represents a virtual network to which a VNF or its VFCs connects via one of its Connection Points. Internal VLs are used by the VFCs in a VNF to communicate with each other. External VLs are used by the VNF to communicate with other VNFs/Services. Virtual Links can be customized when used in a Service. Example: Tenant OAM Network, SRIOV Provider Network, internal networks defined in the base HEAT Template.
Allotted Resource (AR) – represents a portion of a VNF that has been defined as sharable; it is used to configure/reserve use of an already-deployed VNF when a Service is instantiated for use by a customer of the Service. Example: vVIG is an infrastructure VNF that can be set up to support multiple services or multiple customers of the same service on a single deployed instance. vVIG would be included in a service that indicates it can be shared, like “vVIGaaS” [vVIG As A Service], and then when a Service wants to use a part of a deployed instance of vVIGaaS, the designer would create an Allotted Resource that refers back to the vVIGaaS model. Additional examples: For SD-WAN Service, Allotted Resources are modeled for HNGWaaS and HNPortalaaS because the HNGW and HNPortal are shared VNFs across SD-WAN customers.
Collectors and other Resource types - to be described in more detail in future versions

The diagram below illustrates the Service/Resource model in ONAP for an example service. It shows that Services can include one or more resources of the various resource types. For a VNF, one or more VFCs are modeled, its internal and external CPs are modeled, and the internal and external networks to which the VNF and its VFCs can connect via the CPs are modeled.
[image: Picture 2]
Additional modeling is done for the VNF resource type because of its complexity. ONAP requires the definition of HEAT Templates in accordance with specified HEAT Guidelines (provide reference here). Each of the HEAT Templates that together make up a VNF, is referred to as a VF Module. VF Modules are also modeled in TOSCA.

TOSCA spec defines how the TOSCA language can be used to describe cloud applications. In ONAP, SDC generates TOSCA models to describe different levels of the application: Service, VF, VF Module, VFC, their properties and composition. You can find general explanation and simple examples in the TOSCA v1.1 Spec (section 2.1, 2.2). SDC Component which has composition inside (e.g. Service) is described as “topology_template” and the elements composing it are referenced in “node_templates” section. The relations between the elements (e.g. link between port and network) are described by “requirements” and “capabilities” relations. A topology_template can also have “groups” which logically group together several elements of the component (a VF Module is described as group). Please refer to the TOSCA spec for more clarifications about the TOSCA Entities and structure. A diagram is also provided below (source: Kazi Farooqui)
[image: Picture 6]

[bookmark: _Toc54868828]Current Use of TOSCA Models in ONAP
ONAP development started before the decision to use TOSCA to drive automation in each component was made. For this reason, ONAP components are not all using TOSCA yet, and each ONAP component’s use of TOSCA will evolve/expand over time. The table that follows provides a summary of where and how TOSCA is being used in ONAP.

	ONAP Component
	How TOSCA is Used in 1707
	TOSCA Enhancements for 1710+

	SDC
	SDC is generating the TOSCA models for Services and Resources available to other ONAP Components
	SDC will be enhancing TOSCA models with every release based on the needs of the components consuming it.

	VID
	VID accesses TOSCA from SDC:
· for all versions of a Service
· to determine service parameters that require user input during run time
· to determine if homing should be done by SNIRO
	VID accesses TOSCA from SDC:
· to determine if “a la carte” or “macro” style instantiation should be done for the service

	SDN-C
	SDN-C accesses TOSCA from SDC for Tenant OAM, SRIOV Provider and Landing Network Services and select VNF-based Services (VIPR-ATM VNF) for which SDN-C is able to assign names and determine IP addresses in run time.
	SDN-C accesses TOSCA from SDC:
· for more VNF-based services
· for more Network Services
· to support a more generic approach to IP address assignment

	A&AI
	A&AI access TOSCA from SDC to identify what information it will need to determine/store for instances of the Service that are spun up.
	tbd

	App-C
	App-C accesses TOSCA from SDC to identify dependency model information for VFCs in a VNF to support automation of lifecycle activities.
	tbd

	MSO
	MSO accesses TOSCA from SDC to identify workflows in MSO that should used during instantiation for a service.
	tbd

	DCAE
	
	tbd

	Policy
	
	tbd

	Other components
	
	tbd

As ONAP components try to use or expand their use of the TOSCA models to drive their processing, additional information will be added to TOSCA. The table above is expected to be updated with each release.
[bookmark: _Toc54868829]High Level Overview of Service Level TOSCA Model
In the diagram below and the table that follows, a high level overview of a Service-level TOSCA model is provided.
[image: Picture 11]
Main sections in Service-level TOSCA model:

	Section of Service-level TOSCA Model
	Description of Contents
	Source of Value
	Interpretation of Value

	“tosca_definitions_version”
	TOSCA version that the model is based on
	SDC generates this value
	

	“metadata”
	Information fields defined by AT&T that provide specific information about the service
	Input from Service Designer while doing service design on SDC
	See more details in following table

	“imports”
	Identifies the resource-level TOSCA model(s) from which information in this TOSCA model was imported.
	SDC generates this value based on the resources included in the Service Model (Composition tab – canvas)
	Go into the listed resource-level TOSCA models for more detailed information on each resource in the Service TOSCA

	“topology_template” – see subsections (indented) below:
	
	
	

	 - “inputs”
	(Optional) Provides the list of properties that should be displayed to a VID user during instantiation request time that require a value to be input
	Designated by Service Designer while doing service design on SDC. (Service model – Inputs tab)
	These values will be mapped into the node_templates parameters using get-inputs functions.

	 - “node_templates”
	Describes the resources in the service. Nodes can be VNFs, VLs, CPs, ARs. For each node identified in this section, “type”, “metadata”, “properties” values are provided. More details about subfields are defined in the next table.
	SDC generates the content of this section based on data imported from the resource-level TOSCA from each node and any customization changes made on the service design screens.
	These section contains the resources that are included in the service and some of the detailed information associated with each node.

	 - “workflows”
	(Optional) Provides the list of workflows associated with the service.
In 1707, this section to include information about MSO workflows in 1707 (not finalized– and lowest development priority; being reviewed now by dev team. Network models for vIPR for macro only in 1707? Can they just put in Service Recipe, just Create? Only currently have Service and VF module BPMN flows.). For each workflow in this section, “url”, “description”, “version” and “type” values are provided. More details about subfields are defined in the next table. Note: If there are no workflows for the service, this section is empty.
	Service Designer while doing service design on SDC. (new UX capability in 1707 – new tab or new view). For each Action, workflow is selected and values are set.)
	Provides a list of workflows (and URL, description, version and type for each) associated with this service for MSO. (Needed to eliminate manual work being done in MSO to associate workflows with service models.) Can also be used to eliminate the table in VID that indicates whether macro/alacarte instantiation should done. Being evaluated by SDC dev team for 1707.

	 - “groups”
	Provides the list of all the VF Modules for the Nodes identified in the node-template. For each VF Module in this section, “type”, “metadata”, “properties” values are provided. More details about subfields are defined in the next table.
Note: If there are no VF Modules for the Nodes, this section is empty.
	SDC generates the content for this section.
	These section provides a summary of the VF Modules (and type, metadata and property values for each) that are associated with the resources that are part of this service.

	“substitution_mappings” – see subsections (indented) below:
	Declaration that exports the topology template as an implementation of a Node type
	SDC generates the content for this section.
	

	 - “node-type”
	Declares the node as derived from the base node
	SDC generates this value.
	

	 - “capabilities”
	For each instance of node, defines the list of capabilities defined.
	SDC generates the values based on HEAT and VSP-level inputs during design time.
	

	 - “requirements”
	For each instance of node, defines the list of requirements and their values.
	SDC generates the values based on HEAT and VSP-level inputs during design time.
	

[bookmark: _Toc54868830]High Level Overview of VNF Level TOSCA Model
In the diagram below and the table that follows, a high level overview of a VNF-level TOSCA model is provided.
[image: Picture 7]

Main sections in VF-level TOSCA model:

	Section of VF-level TOSCA Model
	Description of Contents
	Source of Value
	Interpretation of Value

	“tosca_definitions_version”
	TOSCA version that the model is based on
	SDC generates this value
	

	“metadata”
	Information fields defined by AT&T that provide specific information about the VNF
	Input from Service Designer while doing resource design on SDC
	

	“imports”
	Identifies the lower level models (VFC, CP, VL, heat) TOSCA model(s) from which information in this TOSCA model was imported.
	SDC generates this value based on the resources included in the Service Model (Composition tab – canvas)
	Points you to the listed resource-level TOSCA models for more detailed information on each l-level resource in the VNF TOSCA

	“topology_template” – see subsections (indented) below:
	
	
	

	 - “inputs”
	Provides the list of input parameters that require values during instantiation request time; values can be assigned during design time, collected from VID at instantiation request time, or derived by ONAP during instantiation run time.
	Derived from HEAT templates.
Defined by designer on SDC during design time.
Determined from VID inputs during instantiation request time.
	The values will be mapped into the node_templates parameters using get-inputs functions.

	 - “node_templates”
	Describes the lower-level resources in the VF. Nodes can be VFCs, VLs, CPs, ARs. For each node identified in this section, “type”, “metadata”, “properties” and “requirements” parameters and values are provided.
	SDC generates the content of this section based on data imported from the VNF HEAT files, CP TOSCA, VL TOSCA, and AR TOSCA from each node and any customization changes made on the resource design screens.
	The section contains the lower-level resources that are included in the resource and some of the detailed information associated with each node.

	 - “workflows”
	(Optional) Provides the list of workflows associated with the VNF.
In 1707, this section to include information about MSO workflows in 1707 (not finalized). For each workflow in this section, “url”, “description”, “version” and “type” values are provided. Note: If there are no workflows for the service, this section is empty.
	Resource Designer while doing resource-level design on SDC. (new UX capability in 1707 – new tab or new view). For each Action, workflow is selected, and values are set.)
	Provides a list of workflows (and URL, description, version and type for each) associated with this service for MSO. (Needed to eliminate manual work being done in MSO to associate workflows with resource models.)

	 - “groups”
	Provides the list of all the VF Modules for the Nodes identified in the node-template. For each VF Module in this section, “type”, CP/VL/VFC “members”,“metadata”, “properties” values are provided. Note: If there are no VF Modules for the Nodes, this section is empty.
	SDC generates the content for this section.
	The section provides a summary of the VF Modules (and type, members, metadata and property values for each) that are associated with the lower level resources that are part of this resource.

	 - “policies”
	Provides the list of all the policies for the Nodes identified in the node-template. For each VF Module in this section, additional information is provided.
Note: If there are no policies for the Nodes, this section is empty.
	SDC generates the content for this section.
	The section provides a summary of policies that are associated with the lower level resources that are part of this resource.

	“substitution_mappings” – see subsections (indented) below:
	Declaration that exports the topology template as an implementation of a Node type
	SDC generates the content for this section.
	

	 - “node-type”
	Declares the node as derived from the base node
	SDC generates this value.
	

	 - “capabilities”
	For each instance of node, defines the list of capabilities defined.
	SDC generates the values based on info in HEAT and CP/VL/VSP-level inputs during design time.
	

	 - “requirements”
	For each instance of node, defines the list of requirements and their values.
	SDC generates the values based on info in HEAT and CP/VL/VSP-level inputs during design time.
	

[bookmark: _Toc54868831]Organization of this Document
The sections of this documents are divided ONAP Type Definitions with indication about conformance levels when specific type was defined or updated. The Conformance Level feature is planned for 1707 and aims to give the TOSCA recipient an indication of the version of the TOSCA format (note that this might not be tightly aligned to SDC version but to the TOSCA changes). The Conformance level indication will be provided in the TOSCA – the exact location and format is under discussion (TBD) and will be added to this document and published. Currently in this document you will find what are the new / changed features of with indication of the conformance level.

[bookmark: _Toc54868832]Summary of key TOSCA concepts
The TOSCA metamodel uses the concept of service templates to describe cloud workloads as a topology template, which is a graph of node templates modeling the components a workload is made up of and as relationship templates modeling the relations between those components. TOSCA further provides a type system of node types to describe the possible building blocks for constructing a service template, as well as relationship type to describe possible kinds of relations. Both node and relationship types may define lifecycle operations to implement the behavior an orchestration engine can invoke when instantiating a service template. For example, a node type for some software product might provide a ‘create’ operation to handle the creation of an instance of a component at runtime, or a ‘start’ or ‘stop’ operation to handle a start or stop event triggered by an orchestration engine. Those lifecycle operations are backed by implementation artifacts such as scripts or Chef recipes that implement the actual behavior.
An orchestration engine processing a TOSCA service template uses the mentioned lifecycle operations to instantiate single components at runtime, and it uses the relationship between components to derive the order of component instantiation. For example, during the instantiation of a two-tier application that includes a web application that depends on a database, an orchestration engine would first invoke the ‘create’ operation on the database component to install and configure the database, and it would then invoke the ‘create’ operation of the web application to install and configure the application (which includes configuration of the database connection).
The TOSCA simple profile assumes a number of base types (node types and relationship types) to be supported by each compliant environment such as a ‘Compute’ node type, a ‘Network’ node type or a generic ‘Database’ node type. Furthermore, it is envisioned that a large number of additional types for use in service templates will be defined by a community over time. Therefore, template authors in many cases will not have to define types themselves but can simply start writing service templates that use existing types. In addition, the simple profile will provide means for easily customizing existing types, for example by providing a customized ‘create’ script for some software.
[bookmark: _Toc54868833]Substitution Mapping

When a topology template is instantiated by a TOSCA Orchestrator, the orchestrator has to look for realizations of the single node templates according to the node types specified for each node template. Such realizations can either be node types that include the appropriate implementation artifacts and deployment artifacts that can be used by the orchestrator to bring to life the real-world resource modeled by a node template. Alternatively, separate topology templates may be annotated as being suitable for realizing a node template in the top-level topology template.
In the latter case, a TOSCA Orchestrator will use additional substitution mapping information provided as part of the substituting topology templates to derive how the substituted part get “wired” into the overall deployment, for example, how capabilities of a node template in the top-level topology template get bound to capabilities of node templates in the substituting topology template.
Thus, in cases where no “normal” node type implementation is available, or the node type corresponds to a whole subsystem that cannot be implemented as a single node, additional topology templates can be used for filling in more abstract placeholders in top level application templates.
In SDC, services are composed from VFs. Those VFs are being abstracted in order to be represented as node_template in the topology template of the service. The VF topology template will have “substitution_mappings” part in order to map the internal characteristics to those defined in the substitutioned node_type. See more info and example in section 6.7 (Interface representation and substitution_mappings)
[bookmark: _Toc54868834]Inputs
The inputs section defines the set of input parameters for the template. The parameters should be mapped to properties defines in the template or in the base node. Input parameter can have constraints to restrict possible user input.
Input parameter has the following grammer:
<parameter name>:
 type: <parameter_type>
 description: <parameter_description>
 required: <parameter_required>
 default: <parameter_default_value>
 constraints:
 - <parameter_constraints>
In the above grammar, the pseudo values that appear in angle brackets have the following meaning:
	Keyname
	Required
	Description

	parameter_name
	Yes
	The symbolic name (string) of the parameter

	parameter_type
	Yes
	Represents the optional data type of the parameter.

	parameter_description
	No
	Optional description of the parameter.

	parameter_required
	No
	Optional boolean value (true or false) indicating whether or not the parameter is required. If this keyname is not present the parameter shall be considered required (i.e., true) by default.

	parameter_default_value
	No
	Contains a type-compatible value that may be used as default.

	parameter_constraints
	No
	Optional sequenced list of one or more constraint clauses on the parameter definition.

 The following table lists the primitive types:
	TOSCA Type
	Description

	string
	<input type=text>

	integer
	<input type=number>

	boolean
	<input type=radio>

	range
	The range type can be used to define numeric ranges with a lower and upper boundary

	list
	The list type allows for specifying multiple values for a parameter of property.

	map
	TOSCA maps are normal YAML dictionaries with following grammar:
Single-line:
 { <entry_key_1>: <entry_value_1>, … , <entry_key_n>: <entry_value_n> }
Multi-line:
 <entry_key_1>: <entry_value_1>
 …
 <entry_key_n>: <entry_value_n> }

The following is the list of recognized operators (keynames) when defining constraint clauses:
Comment: Which ones will be in 1707? Is there a priority? Depends on what vendor uses in HEAT – SDC just passes them through to inputs. Capacity of VID dev team will be limiting factor for 1707. Lack of support means lack of enforcement, not that the function won’t work if value entered properly – manual enforcement of constraints.
	Constraint
	Description

	equal
	Constrains a property or parameter to a value equal to (‘=’) the value declared.

	greater_than
	Constrains a property or parameter to a value greater than (‘>’) the value declared.

	greater_or_equal
	Constrains a property or parameter to a value greater than or equal to (‘>=’) the value declared.

	less_than
	Constrains a property or parameter to a value less than (‘<’) the value declared.

	less_or_equal
	Constrains a property or parameter to a value less than or equal to (‘<=’) the value declared.

	in_range
	Constrains a property or parameter to a value in range of (inclusive) the two values declared.

	valid_values
	Constrains a property or parameter to a value that is in the list of declared values.

	length
	Constrains the property or parameter to a value of a given length.

	min_length
	Constrains the property or parameter to a value to a minimum length.

	max_length
	Constrains the property or parameter to a value to a maximum length.

	pattern
	Constrains the property or parameter to a value that is allowed by the provided regular expression.

[bookmark: _Toc54868835]get_inputs function
The get_input function is used to retrieve the values of properties declared within the inputs section of the TOSCA Template.
[bookmark: _Toc54868836]Relationships
[bookmark: _Toc54868837]ONAP TOSCA Modeling and Data Model
[bookmark: _Toc54868838]Introduction
[bookmark: _Toc54868839]Version Management
[bookmark: com.att.d2.datatypes.network.NetworkAss_][bookmark: _Toc54868840]ONAP Type Definitions
[bookmark: _Toc54868841]ONAP Node Types
[bookmark: _Toc54868842]Tosca Node Type Definitions
[bookmark: _Toc54868843]Keynames

	Keyname
	Required
	Type
	Description

	attributes
	no
	list of
attribute definitions
	An optional list of attribute definitions for the Node Type.

	properties
	no
	list of
property definitions
	An optional list of property definitions for the Node Type.

	requirements
	no
	list of
requirement definitions
	An optional sequenced list of requirement definitions for the Node Type.

	capabilities
	no
	list of
capability definitions
	An optional list of capability definitions for the Node Type.

	interfaces
	no
	list of
interface definitions
	An optional list of interface definitions supported by the Node Type.

	artifacts
	no
	list of
artifact definitions
	An optional list of named artifact definitions for the Node Type.

	Keyname
	Required
	Type
	Description

	attributes
	no
	list of
attribute definitions
	An optional list of attribute definitions for the Node Type.

	properties
	no
	list of
property definitions
	An optional list of property definitions for the Node Type.

	requirements
	no
	list of
requirement definitions
	An optional sequenced list of requirement definitions for the Node Type.

	capabilities
	no
	list of
capability definitions
	An optional list of capability definitions for the Node Type.

	interfaces
	no
	list of
interface definitions
	An optional list of interface definitions supported by the Node Type.

	artifacts
	no
	list of
artifact definitions
	An optional list of named artifact definitions for the Node Type.

[bookmark: _Toc54868844]Grammar
Node Types have following grammar:

<node_type_name>:
 derived_from: <parent_node_type_name>
 version: <version_number>
 metadata:
 <map of string>
 description: <node_type_description>
 attributes:
 <attribute_definitions>
 properties:
 <property_definitions>
 requirements:
 - <requirement_definitions>
 capabilities:
 <capability_definitions>
 interfaces:
 <interface_definitions>
 artifacts:
 <artifact_definitions>

[bookmark: _Toc54868845]SDC Node Type Metadata

	conformance level 2.0
	invariantUUID:
	
type: string
description: Constant identifier of the resource model.
Ex.: AA97B177-9383-4934-8543-0F91A7A02836

	conformance level 2.0
	uuid:
	type: string
description: Versioned identifier of the resource model (this uuid is changed for every major version of the resource)
Ex.: b8ff69ca-786d-479e-9f9c-217a90ee0ebc

	conformance level 2.0
	customizationUUID
	Identifier of the resource instance (uuid of the specific use of the resource model in this service). This identifier is regenerated whenever a user makes a change on the resource instance.
Ex.: 38e5fb81-5e8c-479b-9140-38786db19967

	conformance level 2.0 conformance level 2.0
	version:
	type: string
description: The resource version in SDC catalog. Two- digit blocks separated by a dot (“.”).
Ex. : “2.0”

	conformance level 2.0
	name:
	type: string
description: The name of the resource.
Ex. “vMME”

	conformance level 2.0
	description:
	type: string
description: Description of the resource

	conformance level 2.0
	type:
	type: string
description: The type of resource. Resource type can be either VF, VFC, VFCMT, CP or VL.
Ex. “VF”

	conformance level 2.0
	category:
	type: string
description: Category of the resource.
Ex. “Application L4+”

	conformance level 2.0
	subcategory:
	type: string
description: Sub-category of the resource.
Ex. “Load Balancer”

	conformance level 3.0
	resourceVendor:
	type: string
description: String value that specifies the vendor providing this asset

	conformance level 3.0
	resourceVendorRelease:
	type: string
description: String value that specifies the release version given by the vendor (no exact correlation to the version of the asset in the SDC catalog)

	conformance level 4.0
relevant for VFs, VFCs, PNF
	resourceVendorModelNumber:
	type: string
description: The value for this field is the part number defined by the vendor, e.g. “MX960”

	conformance level 4.0
relevant for Service
	serviceType:
	type: string
optional string field defining a generic type (like category) of the service. E.g. this field can be used for defining the service as “TRANSPORT”

	conformance level 4.0
relevant for Service
	serviceRole:
	type: string
optional string field for short code that defines the function that the service is providing. E.g. “MISVPN” or “AIM”

	conformance level 5.0
relevant for Service Proxy
	sourceModelUuid:
	type: string
the UUID of the source service model

	conformance level 5.0
relevant for Service Proxy
	sourceModelInvariant:
	type: string
the invariantUUID of the source service mode

	conformance level 5.0
relevant for Service Proxy
	sourceModelName:
	type: string
the name of the source service model

	conformance level 5.0
relevant for Service
	environmentContext:
	type: string
optional string field defining the environment context of the deployed model.
Valid Values:
• Critical_Revenue-Bearing
• Vital_Revenue-Bearing
• Essential_Revenue-Bearing
• Important_Revenue-Bearing
• Needed_Revenue-Bearing
• Useful_Revenue-Bearing
• General_Revenue-Bearing
• Critical_Non-Revenue
• Vital_Non-Revenue
• Essential_Non-Revenue
• Important_Non-Revenue
• Needed_Non-Revenue
• Useful_Non-Revenue
• General_Non-Revenue

	conformance level 8.0
relevant for Service
	instantiationType
	type: string
optional string field defining the instantiationType.
Valid Values:
· A-la-carte (default)
· Macro

Note: Customization UUID.
Each node template in the SDC TOSCA represents an instance of resource in the container (VF / Service) represented in this TOSCA template.
In 1610, the metadata for the node template gave information about the resource and not about the instance of the resource. The differentiation between the resource instances of the same model (i.e. 2 instances of compute) was only by name of the instance (key of the node template). In 1702, we add customizationUUID for every node template.
This customizationUUID is unique per resource instance in the container.
The customizationUUID is re-generated as a result of any change in the resource instance (name change, resource version change, properties update, artifact uploaded to this resource instance)

[bookmark: _Toc54868846]SDC NS Node Type Definitions
From the Guilin release, SDC uses the ETSI SOL001 tosca.nodes.nfv.NS node type for representing the NS node during ETSI SOL007 NS onboarding or design, instead of the pervious org.openecomp.resource.vfc.NSD.
The tosca.nodes.nfv.NS node type will be referenced from the org.openecomp.resource.abstract.nodes.service. The relationship between the service and NS nodes is 1:M.
Additional Requirements:
For a given NSD, a new VNF node type shall be defined following the below requirements:
The node type shall be derived from: tosca.nodes.nfv.NS.
All properties listed in tosca.nodes.nfv.NS where the "required:" field is set to "true" shall be included with their values indicated as constraints.
Properties listed in in tosca.nodes.nfv.NS where the "required:" field is set to "false" may be included.
The capabilities, requirements, interfaces of tosca.nodes.nfv.VNF shall be preserved.
Depending on the number of SAPs of the NS, additional requirements for VirtualLinkable capability shall be defined. In this case, it is the NSD author's choice to use the requirement for VirtualLinkable capability defined in the tosca.nodes.nfv.NS node type or use only the additional requirements defined in the derived NS specific node type. In the latter case, the virtual_link requirement should be included in the node type definition with occurrences [0, 0].

	TOSCA type: tosca.nodes.nfv.NS
derived from: tosca.nodes.Root
description: TOSCA NS node type
properties:

	descriptor_id
	type: string
required: yes
description: Identifier of the NS descriptor

	designer
	type: string
required: yes
description: Identities the designer of the NSD

	version
	type: string
required: yes
description: Identifies the version of the NSD

	name
	type: string
required: yes
description: Provides the human readable name of the NSD

	invariant_id
	type: string
required: yes
description: Identifies an NSD in a version independent manner. This attribute is invariant across versions of NSD
note: The value of the descriptor_id string shall comply with an UUID format as specified in section 3 of IETF RFC 4122 [9].

	flavour_id
	type: string
required: yes
description: Identifier of this NS DF within the NSD
“Additional Requirements” in SOL001 ed251 Clause 7.8.1.8. In Clause 7.8.1.8, there is a list of requirements (a to e) when implementing and validating this node type. Requirement a to c are pretty straight forward. However, d and e requirements a bit complicated in ONAP because ONAP may not using the way SOL001 is defining. Since this is NS node type defined in SOL001, the validation tools are expecting c and d requirements.

	ns_profile
	type: tosca.datatypes.nfv.NsProfile
required: no
description: Specifies a profile of an NS, when this NS is used as nested NS within another NS.
note: This property is only used in an NS node template, when it is representing a nested NS within another NS.

	Interfaces:

	Nslcm
	type: tosca.interfaces.nfv.NsLcm
required: no
description: The tosca.interfaces.nfv.Nslcm interface type contains a set of TOSCA operations corresponding to the following NS
LCM operations defined in ETSI GS NFV-IFA 013 [i.8]:
· Instantiate NS
· Scale NS
· Update NS
· Heal NS
· Terminate NS

[bookmark: _Toc54868847]SDC VL Node Type Definitions
From the Guilin release, SDC uses the ETSI SOL001 tosca.nodes.nfv.NsVirtualLink node type for representing the NS VirtualLink node during ETSI SOL007 NS onboarding or design, instead of the pervious org.openecomp.resource.vl.extVL.

[bookmark: _Toc54868848]tosca.nodes.nfv.NsVirtualLink

	TOSCA type: tosca.nodes.nfv.NsVirtualLink
derived from: tosca.nodes.Root
description: node definition of Virtual Links between VFs
properties:

	vl_profile
	type: tosca.datatype.nfv.NsVlProfile

required: yes

description: Specifies instantiation parameters for a virtual link of a particular NS deployment flavour.

	connectivity_type
	type: tosca.datatypes.nfv.ConnectivityType
required: yes
description: Network service virtual link connectivity type.

	test_access
	type: list of string
required: no
constraints: Valid values:
passive_monitoring, active_loopback
description: Test access facilities available on the VL.

	description
	type: string
required: no
description: Human readable information on the purpose of the virtual link (e.g. VL for control plane traffic).

	Capabilities
	

	virtual_linkable
	type: tosca.capabilities.nfv.VirtualLinkable
required: yes
description: VirtualLinkable capability

[bookmark: _Toc54868849]org.openecomp.resource.V1.extVL
Note: the existing org.openecomp.resource.v1.extVL continues to be part of the SDC model for backward compatibility purposes, but it will not be used for ETSI SOL007 NS onboarding or design.
	Tosca Type
	Conformance level
	Status

	org.openecomp.resource.vl.extVL
	3.0
	2.0 Defined
3.0 Updated – new properties

[bookmark: _Toc54868850]org.openecomp.resource.vl.extVL

	org.openecomp.resource.vl.extVL
 derived_from: tosca.nodes.Root
 description: VF Tenant oam protected network
 properties:

	network_type:
	type: string
required: true
description: ONAP supported network types.

	network_role:
	type: string
required: true
description: |
Unique label that defines the role that this network performs. example: vce oam network, vnat sr-iov1 network

	network_scope:
	type: string
constraints:
 valid_values:
 - VF
 - SERVICE
 - GLOBAL
description: |
Uniquely identifies the network scope. Valid values for the network scope includes: VF - VF-level network. Intra-VF network which connects the VFCs (VMs) inside the VF. SERVICE - Service-level network. Intra-Service network which connects the VFs within the service GLOBAL - Global network which can be shared by multiple services

	network_technology:
	type: string
required: true
description: ONAP supported network technology

	exVL_naming:
	type: org.openecomp.datatypes.Naming
required: true

	network_homing:
	type: org.openecomp.datatypes.ONAPHoming
required: true

	network_assignments:
	type: org.openecomp.datatypes.network.NetworkAssignments
required: true

	provider_network:
	type: org.openecomp.datatypes.network.ProviderNetwork
required: true

	network_flows:
	type: org.openecomp.datatypes.network.NetworkFlows
required: false

[bookmark: _Toc54868851]SDC CP Node Type Definitions

	Tosca Type
	Conformance level
	Status

	org.openecomp.resource.cp.extCP
	3.0
	Defined

	org.openecomp.resource.cp.v2.extCP
	5.0
	Defined

	org.openecomp.resource.cp.v2.extNeutronCP
	5.0
	5.0 Defined
8.0 Updated (removed binding capability)

	org.openecomp.resource.cp.v2.extContrailCP
	5.0
	Defined

	org.openecomp.resource.cp.v2.extVirtualMachineInterfaceCP
	8.0
	8.0 Defined
8.0 Updated (removed binding capability)

	org.openecomp.resource.cp.nodes.network.Port
	9.0
	8.0 Updated
8.0 Updated – new binding capability
9.0 Updated

	org.openecomp.resource.cp.nodes.network.v2.SubInterface
	8.0
	8.0 Defined
8.0 Updated (binding requirement with limitation to node and occurrences)

	org.openecomp.resource.cp.nodes.heat.network.v2.contrailV2.VLANSubInterface
	8.0
	8.0 Defined
8.0 Updated (removed binding requirement)

[image:]

[bookmark: _Toc54868852]org.openecomp.resource.cp.extCP

	org.openecomp.resource.cp.extCP:
 derived_from: tosca.nodes.Root
 description: The SDC Connection Point base type all other CP derive from
 properties:

	
	network_role:
	type: string
required: true
description: identical to VL network_role

	
	order:
	type: integer
required: true
description: The order of the CP on the compute instance (e.g. eth2).

	
	network_role_tag:
	type: string
required: true
description: Must correlate to the set of defined “network-role” tag identifiers from the associated HEAT template

	
	mac_requirements:
	type: org.openecomp.datatypes.network.MacRequirements
required: false
description: identifies MAC address assignments to the CP

	
	vlan_requirements:
	type: list
entry_schema:
 type: org.openecomp.datatypes.network.VlanRequirements
required: false
description: identifies vlan address assignments to the CP

	
	ip_requirements:
	type: list
entry_schema:
 type: org.openecomp.datatypes.network.IpRequirements
required: true
description: identifies IP requirements to the CP

	
	exCP_naming:
	type: org.openecomp.datatypes.Naming

	
	subnetpoolid:
	type: string

requirements:

	- virtualLink:
 capability: tosca.capabilities.network.Linkable
 relationship: tosca.relationships.network.LinksTo
- virtualBinding:
 capability: tosca.capabilities.network.Bindable
 relationship: tosca.relationships.network.BindsTo
- external_virtualLink:
 capability: tosca.capabilities.network.Linkable
 relationship: tosca.relationships.network.LinksTo
 node: org.openecomp.resource.vl.VL

capabilities:
	internal_connectionPoint:
 type: tosca.capabilities.Node
 valid_source_type:
 - tosca.nodes.network.Port

[bookmark: _Toc54868853] org.openecomp.resource.cp.v2.extCP
This node type serves as a base of the hierarchy of external connection points. An external CP is a CP exposed by a VFC or a VNF for connectivity with other VNFs and VFCs in a higher-level aggregation.

	org.openecomp.resource.cp.v2.extCP:
 derived_from: org.openecomp.resource.cp.nodes.network.Port
 description: The SDC External Connection Point base type
 capabilities:
 port_mirroring:
 type: org.openecomp.capabilities.PortMirroring

The external CP hierarchy currently includes two “concrete” sub-types: org.openecomp.resource.cp.v2.extNeutronCP and org.openecomp.resource.cp.v2.extContrailCP.
These sub-types inherit the port_mirroring capability of type org.openecomp.capabilities.PortMirroring.
[bookmark: _Toc54868854] org.openecomp.resource.cp.v2.extNeutronCP

During onboarding of a HEAT template, a Contrail port resource that has not been linked to an internal network is translated into a TOSCA node of this type.

	org.openecomp.resource.cp.v2.extNeutronCP:
 derived_from: org.openecomp.resource.cp.v2.extCP
 properties:

	port_security_enabled:
	type: boolean
description: Flag to enable/disable port security on the network
 required: false
 status: SUPPORTED

	device_id:
	type: string
description: Device ID of this port
required: false
status: SUPPORTED

	qos_policy:
	type: string
description: The name or ID of QoS policy to attach to this network
required: false
status: SUPPORTED

	allowed_address_pairs:
	type: list
description: Additional MAC/IP address pairs allowed to pass through the port
required: false
status: SUPPORTED
entry_schema:
 type: org.openecomp.datatypes.heat.network.AddressPair

	binding:vnic_type:
	type: string
description: The vnic type to be bound on the neutron port
required: false
status: SUPPORTED
constraints:
- valid_values:
 - macvtap
 - direct
 - normal

	value_specs:
	type: map
description: Extra parameters to include in the request
required: false
default: {}
status: SUPPORTED
entry_schema:
type: string

	device_owner:
	type: string
description: Name of the network owning the port
required: false
status: SUPPORTED

	network:
	type: string
description: Network this port belongs to
required: false
status: SUPPORTED

	replacement_policy:
	type: string
description: Policy on how to respond to a stack-update for this resource
required: false
default: AUTO
status: SUPPORTED
constraints:
- valid_values:
 - REPLACE_ALWAYS
 - AUTO

	security_groups:
	type: list
description: List of security group names or IDs
required: false
status: SUPPORTED
entry_schema:
 type: string

	fixed_ips:
	type: list
description: Desired IPs for this port
required: false
status: SUPPORTED
entry_schema:
 type: org.openecomp.datatypes.heat.neutron.port.FixedIps

	mac_address:
	type: string
description: MAC address to give to this port
required: false
status: SUPPORTED

	admin_state_up:
	type: boolean
description: A boolean value specifying the administrative status of the network
required: false
default: true
status: SUPPORTED

	name:
	type: string
description: A symbolic name for this port
required: false
status: SUPPORTED

 attributes:

	tenant_id:
	type: string
description: Tenant owning the port
status: SUPPORTED

	network_id:
	type: string
description: Unique identifier for the network owning the port
status: SUPPORTED

	qos_policy_id:
	type: string
description: The QoS policy ID attached to this network
status: SUPPORTED

	show:
	type: string
description: Detailed information about resource
status: SUPPORTED

	subnets:
	type: list
description: Subnets of this network
status: SUPPORTED
entry_schema:
 type: string

	status:
	type: string
description: The status of the network
status: SUPPORTED

capabilities:

	attachment:
 type: tosca.capabilities.Attachment
 occurrences:
- 1
- UNBOUNDED
binding:
 type: tosca.capabilities.network.Bindable
 valid_source_types:
 - org.openecomp.resource.cp.nodes.heat.network.contrailV2.VLANSubInterface
 - org.openecomp.resource.cp.nodes.heat.network.v2.contrailV2.VLANSubInterface
 occurrences:
 - 0
 - UNBOUNDED

The numerous properties of this type are copied from the source HEAT Contrail port. It also inherits the port_mirroring capability of type org.openecomp.nodes.PortMirroringConfiguration.

[bookmark: _Toc54868855] org.openecomp.resource.cp.v2.extContrailCP

During onboarding of a HEAT template, a Neutron port resource that has not been linked to an internal network is translated into a TOSCA node of this type.
The numerous properties of this type are copied from the source HEAT Neutron port. It also inherits the port_mirroring capability of type org.openecomp.nodes.PortMirroringConfiguration.

	org.openecomp.resource.cp.v2.extContrailCP:
 derived_from: org.openecomp.resource.cp.v2.extCP
 properties:

	static_routes:
	type: list
description: An ordered list of static routes to be added to this interface
required: false
status: SUPPORTED
entry_schema:
 type: org.openecomp.datatypes.heat.network.contrail.port.StaticRoute

	virtual_network:
	type: string
description: Virtual Network for this interface
required: true
status: SUPPORTED

	static_route:
	type: boolean
description: Static route enabled
required: false
default: false
status: SUPPORTED

	allowed_address_pairs:
	type: list
description: List of allowed address pair for this interface
required: false
status: SUPPORTED
entry_schema:
 type: org.openecomp.datatypes.heat.network.contrail.AddressPair

	shared_ip:
	type: boolean
description: Shared ip enabled
required: false
default: false
status: SUPPORTED

	ip_address:
	type: string
description: IP for this interface
required: false
status: SUPPORTED

	interface_type:
	type: string
description: Interface type
required: true
status: SUPPORTED
constraints:
- valid_values:
 - management
 - left
 - right
 - other

 attributes:
	fq_name:
	type: string
description: fq_name
status: SUPPORTED

[bookmark: _Toc54868856]org.openecomp.resource.cp.v2.extVirtualMachineInterfaceCP

	node_types:
 org.openecomp.resource.cp.v2.extVirtualMachineInterfaceCP
 derived_from: org.openecomp.resource.cp.v2.extCP
 properties:
 name:
 description: Virtual Machine Interface name
 type: string
 status: SUPPORTED
 required: false
 security_group_refs:
 description: List of security groups.
 type: list
 status: SUPPORTED
 entry_schema:
 type: string
 required: false
 virtual_network_refs:
 description: List of virtual networks.
 type: list
 status: SUPPORTED
 entry_schema:
 type: string
 required: false
 virtual_machine_interface_properties:
 description: virtual machine interface properties.
 type: org.openecomp.datatypes.heat.contrailV2.virtual.machine.interface.Properties
 status: SUPPORTED
 required: false
 port_tuple_refs:
 description: List of port tuples.
 type: list
 status: SUPPORTED
 entry_schema:
 type: string
 required: false
 virtual_machine_interface_mac_addresses:
 description: List of mac addresses.
 type: list
 status: SUPPORTED
 entry_schema:
 type: string
 required: false
 virtual_machine_interface_allowed_address_pairs:
 description: Virtual Machine Interface allowed address pairs.
 type: org.openecomp.datatypes.heat.contrailV2.virtual.machine.subInterface.AddressPairs
 status: SUPPORTED
 required: false
 attributes:
 fq_name:
 description: The FQ name of the Virtual Network.
 type: string
 status: SUPPORTED
 show:
 description: All attributes.
 type: string
 status: SUPPORTED
 capabilities:
 binding:
 type: tosca.capabilities.network.Bindable
 occurrences:
 - 0
 - UNBOUNDED
 valid_source_types:
 - org.openecomp.resource.cp.nodes.heat.network.contrailV2.VLANSubInterface

[bookmark: _Toc54868857] org.openecomp.resource.cp.nodes.network.Port

	org.openecomp.resource.cp.nodes.network.Port:
 derived_from: tosca.nodes.network.Port
 properties:
	

	
	network_role:
	type: string
required: true
description: identical to VL network_role

	
	order:
	type: integer
required: true
description: The order of the CP on the compute instance (e.g. eth2).

	
	network_role_tag:
	type: string
required: true
description: Must correlate to the set of defined “network-role” tag identifiers from the associated HEAT template

	
	mac_requirements:
	type: org.openecomp.datatypes.network.MacRequirements
required: false
description: identifies MAC address assignments to the CP

	
	vlan_requirements:
	type: list
entry_schema:
 type: org.openecomp.datatypes.network.VlanRequirements
required: false
description: identifies vlan address assignments to the CP

	
	ip_requirements:
	type: list
entry_schema:
 type: org.openecomp.datatypes.network.IpRequirements
required: true
description: identifies IP requirements to the CP

	
	exCP_naming:
	type: org.openecomp.datatypes.Naming

	
	subnetpoolid:
	type: string

	
	subinterface_indicator:
	description: identifies if Port is having Sub Interface
type: boolean
required: false
default: false

	
	related_networks:
Comment: Defined in Conformance level 9.0
	type: list
description: Related Networks List.
required: false
entry_schema:
 type: org.openecomp.datatypes.network.RelatedNetworksAssignments

capabilities:
	network.incoming.packets.rate:
	type: org.openecomp.capabilities.metric.Ceilometer
description: A node type that includes the Metric capability indicates that it can be monitored using ceilometer.
properties:
 unit:
 type: string
 description: Unit of the metric value
 required: true
 default: packet/s
 status: SUPPORTED
 name:
 type: string
 description: Ceilometer metric type name to monitor. (The name ceilometer is using)
 required: true
 default: network.incoming.packets.rate
 status: SUPPORTED
 description:
 type: string
 description: Description of the metric
 required: false
 default: Average rate of incoming packets
 status: SUPPORTED
 type:
 type: string
 description: Type of the metric value, for an example, Cumulative, Delta, Gauge and etc.
 required: true
 default: Gauge
 status: SUPPORTED
 category:
 type: string
 description: Category of the metric, for an example, compute, disk, network, storage and etc.
 required: false
 default: network
 status: SUPPORTED
 occurrences:
 - 1
 - UNBOUNDED

	network.outgoing.bytes:
	Same type, description, properties as above

	network.outgoing.packets.rate:

	Same type, description, properties as above

	network.outpoing.packets:

	Same type, description, properties as above

	network.incoming.bytes.rate:

	Same type, description, properties as above

	network.incoming.bytes:

	Same type, description, properties as above

	network.outgoing.bytes.rate:

	Same type, description, properties as above

	network.incoming.packets:
	Same type, description, properties as above

	forwarder:
	type: org.openecomp.capabilities.Forwarder

	binding
	type: tosca.capabilities.network.Bindable
occurrences:
- 0
 - UNBOUNDED
valid_source_types:
- org.openecomp.resource.cp.nodes.heat.network.contrailV2.VLANSubInterface
- org.openecomp.resource.cp.nodes.network.v2.SubInterface

[bookmark: _Toc54868858] org.openecomp.resource.cp.nodes.network.v2.SubInterface

	org.openecomp.resource.cp.nodes.network.v2.SubInterface:
 derived_from: tosca.nodes.Root
 properties:

	ip_address:
	description: Allow the user to set a fixed IP address. Note that this address is a request to the provider which they will attempt to fulfill but may not be able to dependent on the network the port is associated with.
 type: string
 required: false

	order:
	description: 'The order of the NIC on the compute instance (e.g. eth2). Note: when binding more than one port to a single compute (aka multi vNICs) and ordering is desired, it is *mandatory* that all ports will be set with an order value and. The order values must represent a positive, arithmetic progression that starts with 0 (e.g. 0, 1, 2, ..., n).'
type: integer
default: 0
required: false
constraints:
 - greater_or_equal: 0

	is_default:
	description: Set is_default=true to apply a default gateway route on the running compute instance to the associated network gateway. Only one port that is associated to single compute node can set as default=true.
 type: boolean
default: false
required: false

	ip_range_start:
	description: Defines the starting IP of a range to be allocated for the compute instances that are associated by this Port. Without setting this property the IP allocation is done from the entire CIDR block of the network.
type: string
required: false

	ip_range_end:
	description: Defines the ending IP of a range to be allocated for the compute instances that are associated by this Port. Without setting this property the IP allocation is done from the entire CIDR block of the network.
type: string
required: false

	attributes:
 ip_address:
 description: The IP address would be assigned to the associated compute instance.
 type: string
requirements:
 - subinterface_link:
 capability: tosca.capabilities.network.Linkable
 relationship: tosca.relationships.network.LinksTo
 - binding:
 capability: tosca.capabilities.network.Bindable
 node: org.openecomp.resource.cp.nodes.network.Port
 relationship: tosca.relationships.network.BindsTo
 occurrences:
 - 1
 - 1

[bookmark: _Toc54868859]org.openecomp.resource.cp.nodes.heat.network.v2.contrailV2.VLANSubInterface
	org.openecomp.resource.cp.nodes.heat.network.v2.contrailV2.VLANSubInterface:
 derived_from: org.openecomp.resource.cp.nodes.network.v2.SubInterface
 properties:
 virtual_machine_interface_refs:
 description: List of virtual machine interface.
 type: list
 status: SUPPORTED
 entry_schema:
 type: string
 required: false
 name:
 description: Virtual Machine Sub Interface VLAN name
 type: string
 status: SUPPORTED
 required: false
 virtual_network_refs:
 description: List of virtual networks.
 type: list
 status: SUPPORTED
 entry_schema:
 type: string
 required: false
 virtual_machine_interface_properties:
 description: virtual machine interface properties.
 type: org.openecomp.datatypes.heat.contrailV2.virtual.machine.subInterface.Properties
 status: SUPPORTED
 required: false
 virtual_machine_interface_allowed_address_pairs:
 description: Virtual Machine Sub Interface allowed address pairs.
 type: org.openecomp.datatypes.heat.contrailV2.virtual.machine.subInterface.AddressPairs
 status: SUPPORTED
 required: false
 virtual_machine_interface_mac_addresses:
 description: List of mac addresses.
 type: org.openecomp.datatypes.heat.contrailV2.virtual.machine.subInterface.MacAddress
 status: SUPPORTED
 required: false
 security_group_refs:
 description: List of security groups.
 type: list
 status: SUPPORTED
 entry_schema:
 type: string
 required: false
 port_tuple_refs:
 description: List of port tuples.
 type: list
 status: SUPPORTED
 entry_schema:
 type: string
 required: false
 attributes:
 fq_name:
 description: The FQ name of the Virtual Network.
 type: string
 status: SUPPORTED
 show:
 description: All attributes.
 type: string
 status: SUPPORTED
 requirements:
 - binding:
 capability: tosca.capabilities.network.Bindable
 node: org.openecomp.resource.cp.nodes.network.Port
 relationship: tosca.relationships.network.BindsTo
 occurrences:
 - 1
 - 1

[bookmark: _Toc54868860]
[bookmark: _Toc54868861]SDC VFC Node Type Definitions

	Tosca Type
	Conformance level
	Status

	org.openecomp.nodes.VnfConfiguration
	4.0
	Defined

	org.openecomp.resource.abstract.nodes.MultiFlavorVFC
	4.0
	Defined

[bookmark: _Toc54868862] org.openecomp.nodes.VnfConfiguration

	node_types:
 org.openecomp.nodes.VnfConfiguration:
 properties:
 allowed_flavors:
 type: map
 entry_schema: {type: DeploymentFlavor}

This node type will serve as a base type for the VNF configuration node within the model. The allowed_flavors map uses the value of the flavor’s sp_part_number property as a key to access the flavor entry.
[bookmark: _Toc54868863] org.openecomp.resource.abstract.nodes.MultiFlavorVFC
The image info records should be kept with the flavored VFCs level, while non-flavored VFCs don’t have this information. For this reason, 1710 puts the new images info property into a new abstract node type:
	 Node_types:
	 org.openecomp.resource.abstract.nodes.MultiFlavorVFC:
		 derived_from: org.openecomp.resource.abstract.nodes.VFC:
 		properties:
 			images:
 				type: map
 				entry_schema: {type: org.openecomp.datatypes.ImageInfo}
 				required: false

The VFC node templates generated for the multi-flavor VFCs will be based on this new type.
The images map uses the image software_version for the access key.
[bookmark: _Toc54868864]SDC Abstract (VFC, VF, CR, PNF, Service) Type Definitions

	Tosca Type
	Conformance level
	Status

	org.openecomp.resource.abstract.nodes.VFC
	2.0
	Defined

	org.openecomp.resource.abstract.nodes.VF
	4.0
	Defined

	org.openecomp.resource.abstract.nodes.PNF
	4.0
	Defined

	org.openecomp.resource.abstract.nodes.CR
	6.0
	Defined

	org.openecomp.resource.abstract.nodes.service
	3.0
	Defined

	org.openecomp.nodes.ForwardingPath
	5.0
	Defined

[bookmark: _Toc54868865]org.openecomp.resource.abstract.nodes.VFC

	org.openecomp.resource.abstract.nodes.VFC:
 derived_from: org.openecomp.resource.abstract.nodes.AbstractSubstitute
 properties:
	

	
	nfc_function:
	type: string

	
	high_availablity:
	type: string
description: high_availablity
required: false
status: SUPPORTED

	
	vm_image_name:
	type: string
description: Master image_name volume id required: true
status: SUPPORTED

	
	vm_flavor_name:
	type: string
description: Master image_name volume id
required: true
status: SUPPORTED

	
	nfc_naming_code:
	type: string
description: nfc code for instance naming
required: false
status: SUPPORTED

	
	vm_type_tag:
	type: string
description: vm type based on naming Convention
required: false
status: SUPPORTED

	
	nfc_naming:
	type: org.openecomp.datatypes.Naming
description: vfc naming

	
	min_instances:
	type: integer
description: Minimum number of VFC Instances
required: false
default: 0
status: SUPPORTED
constraints:
- greater_or_equal: 0

[bookmark: _Toc54868866]org.openecomp.resource.abstract.nodes.VF

	org.openecomp.resource.abstract.nodes.VF:
 derived_from: tosca.nodes.Root
 properties:

	
	nf_function:
	type: string

String property defining a generic type (like category) of the PNF.
	

	
	nf_role:
	type: string

String property for short code that defines a Network function that the Vendor Software or PNF is providing. E.g. vCE, vARM
	

	
	nf_type:
	type: string
String property that provides English description of the functionality of the PNF in the Service context
	

	
	nf_naming_code:
	type: string
	

	
	nf_naming:
	type: org.openecomp.datatypes.Naming
default: true
	

	
	availability_zone_max_count:
	type: integer
default: 1
constraints:
- valid_values:
 - 0
 - 1
 - 2
	

	
	min_instances:
	type: integer
	

	
	max_instances:
	type: integer
	

	
	multi_stage_design:
	type: boolean
default: false
	

[bookmark: _Toc54868867]org.openecomp.resource.abstract.nodes.PNF

	org.openecomp.resource.abstract.nodes.PNF:
 derived_from: tosca.nodes.Root
 properties:

	
	nf_function:
	type: string

String property defining a generic type (like category) of the PNF.
	

	
	nf_role:
	type: string

String property for short code that defines a Network function that the Vendor Software or PNF is providing. E.g. vCE, vARM
	

	
	nf_type:
	type: string
String property that provides English description of the functionality of the PNF in the Service context
	

[bookmark: _Toc54868868]org.openecomp.resource.abstract.nodes.CR
Node of this type allows new resource to have generic properties (same as in VNF).
TOSCA definition:
	node_types:
 org.openecomp.resource.abstract.nodes.CR:
 derived_from: tosca.nodes.Root
 properties:
 cr_function:
type: string
 cr_role:
type: string
 cr_type:
 type: string

[bookmark: _Toc54868869] org.openecomp.resource.abstract.nodes.service:

	org.openecomp.resource.abstract.nodes.service:
 derived_from: tosca.nodes.Root

[bookmark: _Toc54868870] org.openecomp.nodes.ForwardingPath
Node templates of this node type help represent a Path. The type is defined as following:
	org.openecomp.nodes.ForwardingPath:
 derived_from: tosca.nodes.Root
 properties:
 target_range:
 type: list
 description: List of receiver ports of the VNF or the Service
 status: SUPPORTED
 entry_schema:
 type: string
 protocol:
 type: string
 description: Protocol of the traffic
 status: SUPPORTED
 requirements:
 - forwarder:
 capability: org.openecomp.capabilities.Forwarder
 relationship: org.openecomp.relationships.ForwardsTo
 - 2
 - UNBOUNDED

[bookmark: _Toc54868871] SDC ServiceProxy Node Type Definitions

	Tosca Type
	Conformance level
	Status

	org.openecomp.nodes.ServiceProxy
	3.0
	Defined

[bookmark: _Toc54868872] org.openecomp.nodes.ServiceProxy
Node templates of this node type represent an external service. The type is defined as following:
	node_types:
 org.openecomp.nodes.ServiceProxy:
 derived_from: tosca.nodes.Root

The ServiceProxy type itself does not carry any properties or capabilities; its only purpose is to serve as a base for further type derivation (see Local node types derived).
[bookmark: _Toc54868873]from org.openecomp.nodes.ServiceProxy
For each external service being “proxied”, SDC generates a special node type, which is derived from the base ServiceProxy type. The new node type augments the base ServiceProxy type with the capability definitions, which are copied by SDC from the source service.
For example, when the designer choses the Service X in the catalog and instructs SDC to create a proxy of this service, SDC generates a special proxy node type that looks approximately like this:
	node_types:
	 ServiceX_Proxy: # the proxy type name is generated by SDC in design time
	 	derived_from: org.openecomp.nodes.ServiceProxy
		 capabilities:
			 ServiceX_capability_01:
 			 # capability definition copied from the Service X model
			 ServiceX_capability_0N:
 			 # capability definition copied from the Service X model

Please note that on the TOSCA code sample above, the names of the node type (ServiceX_Proxy) and its capabilities (ServiceX_capability_0**) are artificial strings generated by SDC based on the source service details, such as name, UUID, version, etc. The actual names will vary.
Based on these new node types, SDC also generates a proxy node template for each external service being “proxied” within the Port Mirroring service. See service proxy template for more details about the proxy nodes.

[bookmark: _Toc54868874] SDC Configuration Node Type Definitions

	Tosca Type
	Conformance level
	Status

	org.openecomp.nodes.PortMirroringConfiguration
	5.0
	Defined

	org.openecomp.nodes.VLANNetworkReceptor
	8.0
	Defined

	org.openecomp.nodes.VRFEntry
	8.0
	Defined

	org.openecomp.nodes.VRFObject
	8.0
	8.0 Defined and Changed type to be consistent with other configuration node types

	org.openecomp.nodes.Configuration
	9.0
	Defined

	org.openecomp.nodes.FabricConfiguration
	9.0
	Defined

[bookmark: _Toc54868875]org.openecomp.nodes.Configuration

	 org.openecomp.nodes.Configuration:
 derived_from: tosca.nodes.Root
 properties:

	type:
	
type: string
description: The configuration object type
required: false
	

	role:
	
type: string
description: The configuration object role
required: false
	

	function:
	
type: string
description: The configuration object function
required: false
	

[bookmark: _Toc54868876] org.openecomp.nodes.PortMirroringConfiguration
Node templates of this type define port mirroring “links” between the logical interfaces of the source service (modeled as capabilities on the source service proxy) and the logical interfaces of the collector service (modeled as capabilities on the collector service proxy).
TOSCA definition:
	node_types:
 org.openecomp.nodes.PortMirroringConfiguration:
derived_from: tosca.nodes.Root
requirements:
 - source:
 capability: org.openecomp.capabilities.PortMirroring
 occurrences: [1,UNBOUNDED]
 - collector:
 capability: org.openecomp.capabilities.PortMirroring
 occurrences: [1,1]

A Port Mirroring service model contains one or PortMirroringConfiguration nodes.
A port mirroring configuration node can refer to one or more interfaces on the source side and to exactly one interface on the collector side.
[bookmark: _Toc54868877]	 org.openecomp.nodes.PortMirroringConfigurationByPolicy
Node templates of this type define port mirroring configuration between the logical interfaces of the source service (modeled as capabilities on the source service proxy) and the collector service (modeled as a collector proxy and the policy name for the selection of the collector interfaces).
TOSCA definition:
	node_types:
org.openecomp.nodes.PortMirroringConfigurationByPolicy:
derived_from: tosca.nodes.Root
properties:
collector_node:
type: string
description: The name of the Collector Proxy Node
required: true
policy_name:
type: string
description: The name of the policy for selection of the collector interfaces
required: true
equip_model:
type: string
description: The name of the equipment type of the collector, i.e. 4500x
required: true
equip_vendor:
type: string
description: The name of the equipment vendor of the collector, i.e. Cisco
required: true
requirements:
- source:
capability: org.openecomp.capabilities.PortMirroring
occurrences: [1,UNBOUNDED]

A Port Mirroring service model contains one or more PortMirroringConfigurationByPolicy nodes.
A port mirroring configuration by policy node can refer to one or more interfaces on the source side and to exactly one collector service (via proxy) on the collector side in addition the configuration node holds the name of the policy which defined which of the collector interfaces should be selected for mirroring.

[bookmark: _Toc54868878] org.openecomp.nodes.VLANNetworkReceptor
Node templates of this type allows configuration of subinterfaces, exposed by VNF Infrastructure service (modeled as capabilities on the VNF Infrastructure service proxy). Subinterfaces configuration is based on assignment them internal network routing information and providing this configuration to VRF Entry or to the Transport service (modeled as capabilities on the Transport service proxy) in order to complete the configuration by external network routing information.
Nodes of this type are categorized as Configuration. This means that a VLANNetworkReceptor-typed node should be interpreted as a mere structured informational record rather than a prototype of a deployable entity.
It is assumed that run-time lifecycle of VLANNetworkReceptor node includes operations start and stop, which respectively activate and deactivate the Subinterface and internal network “association”. The run-time components should also maintain the state attribute with the VLANNetworkReceptor instances to keep track of the actual state of the instance (active or inactive).

	org.openecomp.nodes.VLANNetworkReceptor:
 derived_from: tosca.nodes.Root
 capabilities:
 routing_configuration_internal:
 type: org.openecomp.capabilities.RoutingConfiguration
 requirements:
 - vlan_assignment:
 occurrences:
 - 1
 - UNBOUNDED
 capability: org.openecomp.capabilities.VLANAssignment
 relationship: org.openecomp.relationships.AssignsTo

[bookmark: _Toc54868879] org.openecomp.nodes.VRFEntry
Node templates of this type allows VPN configuration by coupling routing information of internal network (provided by Network Receptor) and external network.
Nodes of this type are categorized as Configuration. This means that a VRFEntry-typed node should be interpreted as a mere structured informational record rather than a prototype of a deployable entity.
It is assumed that run-time lifecycle of VRFEntry node includes operations start and stop, which respectively activate and deactivate internal network and external network “association”. The run-time components should also maintain the state attribute with the VRFEntry instances to keep track of the actual state of the instance (active or inactive).
	org.openecomp.nodes.VRFEntry:
 derived_from: tosca.nodes.Root
 requirements:
 - routing_configuration_internal:
 occurrences:
- 1
- UNBOUNDED
capability: org.openecomp.capabilities.RoutingConfiguration
relationship: org.openecomp.relationships.RoutesTo
 - routing_configuration_external:
occurrences:
 - 1
 - UNBOUNDED
capability: org.openecomp.capabilities.RoutingConfiguration
 relationship: org.openecomp.relationships.RoutesTo

[bookmark: _Toc54868880] org.openecomp.nodes.VRFObject
Node of this type provides routing information of external network to the VLAN Network Receptor
Node of this type is categorized as Configuration. This means that a VRFObject-typed node should be interpreted as a mere structured informational record rather than a prototype of a deployable entity.

	org.openecomp.nodes.VRFObject
 derived_from: tosca.nodes.Root
 description: provides capability to connect WAN Transport Service Proxy to VRF Entry
 capabilities:
 routing_configuration_external:
 type: org.openecomp.capabilities.RoutingConfiguration

[bookmark: _Toc54868881] org.openecomp.nodes.FabricConfiguration

	 org.openecomp.nodes.FabricConfiguration:
 derived_from: org.openecomp.nodes.Configuration
 requirements:
 - fabric_configuration_monitoring:
 capability:org.openecomp.capabilities.FabricConfiguration
 occurrences:
 - 1
 - UNBOUNDED

[bookmark: _Toc54868882] SDC Allotted Resource Node Type Definitions

	Tosca Type
	Conformance level
	Status

	org.openecomp.resource.vfc.AllottedResource
	3.0
	2.0 Defined
3.0 Updated

[bookmark: _Toc54868883]org.openecomp.resource.vfc.AllottedResource

	org.openecomp.resource.vfc.AllottedResource:
 derived_from: tosca.nodes.Root
 description: ONAP Allotted Resource base type all other allotted resources node types derive from.

	 properties:

	depending_service_uuid:
	
type: string
required: true
description: The depending service uuid in order to map the allotted resource to the specific service version

	providing_service_uuid:
	
type: string
required: true
description: String property that with the providing service uuid in order to map the allotted resource to the specific providing service version

	providing_service_invariant_uuid:
	
type: string
required: true
description: String property that with the providing service invariant uuid (the invariant uuid is constant and same for all versions of the providing service)

	providing_service_name:
	
type: string
required: true
description: String property that with the providing service name

	target_network_role:
	
type: string
required: true
description:

	role:
	
type: string
required: true
description: Unique label that defines the role that this allotted resource performs

	ONAP_homing:
	
type: org.openecomp.datatypes.ONAPHoming
required: true

	ONAP_naming:
	
type: org.openecomp.datatypes.ONAPNaming

	min_instances:
	
type: integer
default: 1

	max_instances:
	
type: integer
default: 1

	requirements:

	- service_dependency:
 capability: org.openecomp.capabilities.AllottedResource
 relationship: tosca.relationships.DependsOn
 node: tosca.services.Root

[bookmark: _Toc54868884]ONAP Data Type
[bookmark: _Toc54868885]Tosca Data Type Definitions
[bookmark: _Toc54868886]Keynames

	Keyname
	Required
	Type
	Description

	constraints
	no
	list of
constraint clauses
	The optional list of sequenced constraint clauses for the Data Type.

	properties
	no
	list of
property definitions
	The optional list property definitions that comprise the schema for a complex Data Type in TOSCA.

[bookmark: _Toc54868887]Grammar
Data Types have the following grammar:
	<data_type_name>:
 derived_from: <existing_type_name>
 version: <version_number>
 metadata:
 <map of string>
 description: <datatype_description>
 constraints:
 - <type_constraints>
 properties:
 <property_definitions>

[bookmark: _Toc54868888] SDC Data Type Definitions

	Tosca Type
	Conformance level
	Status

	org.openecomp.datatypes.ONAPHoming
	2.0
	Defined

	org.openecomp.datatypes.ONAPNaming
	2.0
	Defined

	org.openecomp.datatypes.network.SubnetAssignments
	2.0
	Defined

	org.openecomp.datatypes.network.IPv4SubnetAssignments
	2.0
	Defined

	org.openecomp.datatypes.network.IPv6SubnetAssignments
	2.0
	Defined

	org.openecomp.datatypes.network.NetworkAssignments
	9.0
	2.0 Defined
9.0 Updated

	org.openecomp.datatypes.network.NetworkFlows
	2.0
	Defined

	org.openecomp.datatypes.network.ProviderNetwork
	2.0
	Defined

	org.openecomp.datatypes.Naming
	3.0
	Defined

	org.openecomp.datatypes.network.MacAssignments
	3.0
	Defined

	org.openecomp.datatypes.network.VlanRequirements
	3.0
	Defined

	org.openecomp.datatypes.network.IpRequirements
	4.0
	3.0 Defined
4.0 Updated

	org.openecomp.datatypes.AssignmentRequirements
	4.0
	Defined

	org.openecomp.datatypes.flavors.DeploymentFlavor
	4.0
	Defined

	org.openecomp.datatypes.flavors.ComputeFlavor
	4.0
	Defined

	org.openecomp.datatypes.flavors.LicenseFlavor
	4.0
	Defined

	org.openecomp.datatypes.flavors.VendorInfo
	4.0
	Defined

	org.openecomp.datatypes.ImageInfo
	4.0
	Defined

	org.openecomp.datatypes.PortMirroringConnectionPointDescription
	8.0
	5.0 Defined
8.0 Updated

	org.openecomp.datatypes.RelatedNetworksAssignments
	9.0
	9.0 Defined

[bookmark: _Toc54868889] org.openecomp.datatypes.ONAPHoming

	org.openecomp.datatypes.ONAPHoming:
 derived_from: org.openecomp.datatypes.Root
 properties:
	

	
	ONAP_selected_instance_node_target:
	type: boolean
required: true
default: false
description: |
\"true\" indicates that the target deployment node for this instance will be auto-selected by ONAP
\"false\" indicates operator-supplied instance target deployment node required (e.g. VID will present a prompt to operator and collect the operator-selected target node for the deployment of this Network instance).

	
	homing_policy:
	type: string
required: false
description: Reference to a service level homing policy that ONAP will use for instance deployment target node

	
	instance_node_target:
	type: string
required: false
description: Instance target deployment node

[bookmark: _Toc54868890] org.openecomp.datatypes.ONAPNaming

	org.openecomp.datatypes.ONAPNaming:
 derived_from: org.openecomp.datatypes.Root
 properties:
	

	
	ONAP_generated_naming:
	type: boolean
required: true
default: true
description: |
\"true\" indicates that the name for the instance will be auto-generated by ONAP. \"false\" indicates operator-supplied name required (e.g. VID will present prompt to operator and collect the operator-supplied instance name).

	
	naming_policy:
	type: string
required: false
 description: Reference to naming policy that ONAP will use when the name is auto-generated

[bookmark: _Toc54868891] org.openecomp.datatypes.network.SubnetAssignments

	org.openecomp.datatypes.network.SubnetAssignments:
 derived_from: org.openecomp.datatypes.Root
 properties:

	
	ip_network_address_plan:
	type: string
required: false
description: Reference to EIPAM, VLAN or other address plan ID used to assign subnets to this network

	
	dhcp_enabled:
	type: boolean
required: false
description: \"true\" indicates the network has 1 or more policies

	
	ip_version:
	type: integer
constraints:
- valid_values:
 - 4
 - 6
required: true
description: The IP version of the subnet

	
	cidr_mask:
	type: integer
required: true
description: The default subnet CIDR mask

	
	min_subnets_count:
	type: integer
default: 1
required: true
description: Quantity of subnets that must be initially assigned

[bookmark: _Toc54868892] org.openecomp.datatypes.network.IPv4SubnetAssignments

	org.openecomp.datatypes.network.IPv4SubnetAssignments:
 derived_from: org.openecomp.datatypes.network.SubnetAssignments
 properties:

	
	use_ipv4:
	type: boolean
required: true
description: Indicates IPv4 subnet assignments

[bookmark: _Toc54868893] org.openecomp.datatypes.network.IPv6SubnetAssignments

	org.openecomp.datatypes.network.IPv6SubnetAssignments:
 derived_from: org.openecomp.datatypes.network.SubnetAssignments
 properties:

	
	use_ipv6:
	type: boolean
required: true
description: Indicates IPv6 subnet assignments

[bookmark: _Toc54868894] org.openecomp.datatypes.network.NetworkAssignments

	org.openecomp.datatypes.network.NetworkAssignments:
 derived_from: org.openecomp.datatypes.Root
 properties:

	ONAP_generated_network_assignment:
	type: boolean
required: true
default: false
description: |
\"true\" indicates that the network assignments will be auto-generated by ONAP \"false\" indicates operator-supplied Network assignments file upload is required (e.g. VID will present prompt to operator to upload operator-supplied Network assignments file).

	is_shared_network:
	type: boolean
required: true
description: \"true\" means this network is shared by multiple Openstack tenants

	is_external_network:
	type: boolean
required: true
default: false
description: |
\"true\" means this Contrail external network

	ipv4_subnet_default_assignment:
	type: org.openecomp.datatypes.network.IPv4SubnetAssignments
required: true
description: IPv4 defualt subnet assignments

	ipv6_subnet_default_assignment:
	type: org.openecomp.datatypes.network.IPv6SubnetAssignments
required: true
description: IPv6 defualt subnet assignments

	related_networks:
Comment: Defined in Conformance level 9.0
	type: list
description: Related Networks List.
required: false
entry_schema:
 type: org.openecomp.datatypes.network.RelatedNetworksAssignments

Comment: Defined in Conformance level 9.0

	is_trunked:

Comment: Defined in Conformance level 9.0
	type: boolean
required: true
description: \"true\" indicates that network is trunked
default: false

[bookmark: _Toc54868895] org.openecomp.datatypes.network.NetworkFlows

	org.openecomp.datatypes.network.NetworkFlows:
 derived_from: org.openecomp.datatypes.Root
 properties:

	
	is_network_policy:
	type: boolean
required: false
default: false
description: \"true\" indicates the network has 1 or more policies

	
	network_policy:
	type: string
required: false
description: 'Identifies the specific Cloud network policy that must be applied to this network (source: from Policy Manager).'

	
	is_bound_to_vpn:
	type: boolean
required: false
default: false
description: \"true\" indicates the network has 1 or more vpn bindings

	
	vpn_binding:
	type: string
required: false
description: 'Identifies the specific VPN Binding entry in A&AI that must be applied when creating this network (source: A&AI)'

[bookmark: _Toc54868896] org.openecomp.datatypes.network.ProviderNetwork

	org.openecomp.datatypes.network.ProviderNetwork:
 derived_from: org.openecomp.datatypes.Root
 properties:

	is_provider_network:
	type: boolean
required: true
description: \"true\" indicates that this a Neutron provider type of network

	physical_network_name:
	type: string
required: false
constraints:
- valid_values:
 - Physnet41
 - Physnet42
 - Physnet43
 - Physnet44
 - Physnet21
 - Physnet22
 - sriovnet1
 - sriovnet2
 - oam
description: |
Identifies the NUMA processor cluster to which this physical network interface belongs. NUMA instance correlates to the first digit of the Physical Network Name suffix (e.g. \"01\" = NUMA 0, \"11\" = NUMA 1)

	numa:
	type: string
required: false
constraints:
- valid_values:
 - NUMA 0
 - NUMA 1
description: |
PNIC instance within the NUMA processor cluster PNIC Instance correlates to the second digit of the Physical Network Name suffix (e.g. "01" = PNIC 1, "02" = "PNIC 2)

	pnic_instance:
	type: integer
required: false
description: PNIC instance within the NUMA processor cluster

[bookmark: _Toc54868897] org.openecomp.datatypes.Naming

	org.openecomp.datatypes.Naming:
 derived_from: org.openecomp.datatypes.Root
 properties:
	

	
	ONAP_generated_naming:
	type: boolean
required: true
default: true
description: |
"true" indicates that the name for the instance will be auto-generated by ONAP.
"false" indicates operator-supplied name required (e.g. VID will present prompt to operator and collect the operator-supplied instance name).

	
	naming_policy:
	type: string
required: false
 description: Reference to naming policy that ONAP will use when the name is auto-generated

	
	instance_name:
	description: indicates operator-supplied name required (e.g. VID will present prompt to operator and collect the operator-supplied instance name).
type: string
required: false

[bookmark: _Toc54868898] org.openecomp.datatypes.network.MacAssignments

	org.openecomp.datatypes.network.MacAssignments
 derived_from: org.openecomp.datatypes.Root
 properties:

	
	mac_range_plan:
	type: string
required: true
description: reference to a MAC address range plan

	
	mac_count:
	type: integer
required: true
 description: identifies the number of MAC addresses to assign to the CP from the plan

[bookmark: _Toc54868899] org.openecomp.datatypes.network.VlanRequirements

	org.openecomp.datatypes.network.VlanRequirements
 derived_from: org.openecomp.datatypes.Root
 properties:

	
	vlan_range_plan:
	type: string
required: true
description: reference to a vlan range plan

	
	vlan_type:
	type: string
required: true
constraints:
- valid_values:
 - c-tag
 - s-tag
description: identifies the vlan type (e.g., c-tag)

	
	vl	an_count:
	type: integer
required: true
 description: identifies the number of vlan tags to assign to the CP from the plan

[bookmark: _Toc54868900] org.openecomp.datatypes.network.IpRequirements

	org.openecomp.datatypes.network.IpRequirements
 derived_from: org.openecomp.datatypes.Root
 properties:
	

	
	ip_version:
	type: integer
required: true
constraints:
- valid_values:
 - 4
 - 6

	
	ip_count:
	description: identifies the number of ip address to assign to the CP from the plan
type: integer
required: false

	
	floating_ip_count:
	type: integer
required: false

	
	subnet_role:
	type: string
required: false

	
	assingment_method:
	type: string
required: true
constraints:
- valid_values:
 - fixed
 - dhcp

	
	dhcp_enabled:
	type: boolean
required: false

	
	ip_count_required:
	description: identifies the number of ip address to assign to the CP from the plan
type: org.openecomp.datatypes.AssignmentRequirements
required: false

	
	floating_ip_count_required:
	type: org.openecomp.datatypes.AssignmentRequirements
required: false

	
	ip_address_plan_name:
	type: string
required: false

	
	vrf_name:
	type: string
required: false

[bookmark: _Toc54868901] org.openecomp.datatypes.AssignmentRequirements

	org.openecomp.datatypes.AssignmentRequirements:
 derived_from: org.openecomp.datatypes.Root
 properties:

	
	is_required:
	is_required:
description: |
"true" indicates that assignment is required
type: boolean
default: false
required: true

	
	count:
	description: number of assignments required
type: integer
required: false

[bookmark: _Toc54868902] org.openecomp.datatypes.flavors.DeploymentFlavor
This is data type contains the definitions of all properties that make a deployment flavor. It directly includes two properties:
name –intended to keep a human-readable name of the flavor
ONAP_part_number – an ONAP alias for the AT&T part number (used to be <att_part_number> in the pre-load XMLs)
All other properties are enclosed into complex-typed sub-properties. The auxiliary data types used for them are ComputeFlavor, LicenseFlavor, and VendorInfo.

	data_types:
 org.openecomp.datatypes.flavors.DeploymentFlavor:
 properties:

	
	sp_part_number:
	type: string

	
	vendor_info:
	type: org.opencomp.datatypes.VendorInfo

	
	compute_flavor:
	type: org.opencomp.datatypes.flavors.ComputeFlavor

	
	license_flavor:
	type: org.opencomp.datatypes.flavors.LicenseFlavor, required: false
if this property is missing, then the flavor does not have a license

[bookmark: _Toc54868903] org.openecomp.datatypes.flavors.ComputeFlavor
This data type gathers all deployment flavor properties related to capacity.
	data_types:
 org.openecomp.datatypes.flavors.ComputeFlavor:
 properties:

	
	num_cpus:
	type: integer

	
	disk_size:
	type: scalar-unit.size

	
	mem_size:
	type: scalar-unit.size

Please note that the data type of the disk_size and the mem_size properties is scalar-unit.size. This is the TOSCA way to say that the orchestrator expects their values to come with a size qualifier – 16 GB, 512MB, etc.
[bookmark: _Toc54868904] org.openecomp.datatypes.flavors.LicenseFlavor
This LicenseFlavor data type groups the flavor properties related to licensing. Currently it contains only one property, feature_group_uuid, which is a reference to a group of licensed features within an external document. In the future, more properties can be added.

	data_types:
 org.openecomp.datatypes.flavors.LicenseFlavor:
 properties:
 feature_group_uuid: {type: string}

[bookmark: _Toc54868905] org.openecomp.datatypes.flavors.VendorInfo
The VNF node template already contains metadata parameters resourceVendor and resourceVendorRelease to descript the vendor-specific details common for the whole VNF. The VendorInfo data type serves to define vendor details that vary in different deployment flavors.
	data_types:
 org.openecomp.datatypes.flavors.VendorInfo:
 properties:

	
	manufacturer_reference_number:
	type: string

	
	vendor_model:
	type: string

[bookmark: _Toc54868906] org.openecomp.datatypes.ImageInfo
A flavored VFC comes with one or more images. The properties of the ImageInfo data type describe such an image.
	data_types:
 org.openecomp.datatypes.ImageInfo:
 properties:

	
	software_version:
	type: string

	
	file_name:
	type: string

	
	file_hash:
	type: string
description: checksum/signature

	
	file_hash_type:
	type: string
required: false
default: md5

[bookmark: _Toc54868907] org.openecomp.datatypes.PortMirroringConnectionPointDescription
This complex TOSCA data type gathers and conveys information about a connection point participating in port mirroring. The same type is used to describe connection points on both the source and collector sides on the Port Mirroring service.
	data_types:
 org.openecomp.datatypes.PortMirroringConnectionPointDescription:
 properties:

	
	nf_naming_code:
	type: string

	
	nfc_naming_code:
	type: string

	
	nf_type:
	type: string
Deprecated; Conf Level 8.0

	
	nfc_type:
	type: string
Deprecated; Conf Level 8.0

	
	network_role:
	type: string

	
	pps_capacity:
	type: string

[bookmark: _Toc54868908]org.openecomp.datatypes.RelatedNetworksAssignments

	data_types:
 org.openecomp.datatypes.RelatedNetworksAssignments:
 derived_from: org.openecomp.datatypes.Root
 properties:

	
	related_network_role:
	type: string
description: The network role of the related network, sharing provider network
required: false

[bookmark: _Toc54868909]tosca.datatypes.nfv.NsProfile
The NsProfile data type describes a profile for instantiating nested NSs which are constituents of an NS with a particular NS DF.
	TOSCA type: tosca.datatypes.nfv.NsProfile
derived from: tosca.datatypes.Root
description: describes a profile for instantiating NSs of a particular NS DF according to a specific NSD and NS DF
properties:

	ns_instantiation_level
	type: string
required: no
description: Identifier of the instantiation level of the NS DF to be used for instantiation. If not present, the default instantiation level as declared in the NSD shall be used.

	min_number_of_instances
	type: integer
required: yes
constraints: greater_or_equal: 0
description: Minimum number of instances of the NS based on this NSD that is permitted to exist for this NsProfile.

	max_number_of_instances
	type: integer
required: yes
constraints: greater_or_equal: 0
description: Maximum number of instances of the NS based on this NSD that is permitted to exist for this NsProfile.

	flavour_id
	type: string
required: yes
description: Identifies the applicable network service DF within the scope of the NSD.

[bookmark: _Toc54868910]tosca.datatypes.nfv.NsVlProfile
The NsProfile data type describes additional instantiation data for a given NsVirtualLink used in a specific NS deployment flavour.
	TOSCA type: tosca.datatypes.nfv.NsVlProfile
derived from: tosca.datatypes.Root
description: describes additional instantiation data for a given NsVirtualLink used in a specific NS deployment flavour
properties:

	max_bitrate_requirements
	type: tosca.datatypes.nfv.LinkBitrateRequirements
required: yes
description: Specifies the maximum bitrate
requirements for a VL instantiated
according to this profile.

	min_bitrate_requirements
	type: tosca.datatypes.nfv.LinkBitrateRequirements
required: yes
description: Specifies the minimum bitrate
requirements for a VL instantiated
according to this profile.

	qos
	type: tosca.datatypes.nfv.NsVirtualLinkQos
required: no
description: Specifies the QoS requirements of a VL instantiated according to this profile.

	service_availability
	type: tosca.datatypes.nfv.ServiceAvailability
required: no
description: Network service virtual link service availability levels, as described in ETSI GS NFV-REL 001 [i.3].

	Note: A virtualLinkDescId property, is not needed, as the NsVlProfile is contained in the NsVirtualLink node.

[bookmark: _Toc54868911]tosca.datatypes.nfv.ConnectivityType
The ConnectivityType data type describes the protocol exposed by a virtual link and the flow pattern supported by the virtual link.

	TOSCA type: tosca.datatypes.nfv.ConnectivityType
derived from: tosca.datatypes.Root
description: describes the protocol exposed by a virtual link and the flow pattern supported by the virtual link
properties:

	layer_protocols
	type: list of string
required: yes
constraints: Valid values: ethernet, mpls, odu2, ipv4, ipv6, pseudo-wire

description: Identifies the protocol a virtualLink gives access to (ethernet, mpls, odu2, ipv4, ipv6, pseudowire).
The top layer protocol of the virtualLink protocol stack shall always be provided. The lower layer protocols may be included when there are specific requirements on these layers.

	flow_pattern
	type: string
required: no
constraints: Valid values: line, tree, mesh

description: Identifies the flow pattern of the connectivity.

[bookmark: _Toc54868912]tosca.datatypes.nfv.LinkBitrateRequirements
The LinkBitrateRequirements data type describes the requirements in terms of bitrate for a virtual link.

	TOSCA type: tosca.datatypes.nfv.LinkBitrateRequirements
derived from: tosca.datatypes.Root
description: describes the requirements in terms of bitrate for a virtual link
properties:

	root
	type: integer
required: yes
constraints: greater_or_equal: 0

description: Specifies the throughput requirement in bits per second of the link
(e.g. bitrate of E-Line, root bitrate of E-Tree,
aggregate capacity of E-LAN)

	leaf
	type: integer
required: no
constraints: greater_or_equal: 0

description: Specifies the throughput requirement in bits per second of leaf connections to the link when applicable to the connectivity type (e.g. for E-Tree and E-LAN branches)

[bookmark: _Toc54868913]tosca.datatypes.nfv. Qos
The QoS describes QoS data type a given VL used in a VNF deployment flavour.
	TOSCA type: tosca.datatypes.nfv. Qos
derived from: tosca.datatypes.Root
description: describes QoS data type a given VL used in a VNF deployment flavour
properties:

	latency
	type: scalar.unit.time
required: yes
constraints: greater_than: 0 s

description: Specifies the maximum latency

	packet_delay_variation
	type: scalar.unit.time
required: yes
description: Specifies the maximum jitter

	packet_loss_ratio
	type: float
required: no
constraints: in_range: [0,1]

description: Specifies the maximum packet loss ratio

[bookmark: _Toc54868914]tosca.datatypes.nfv.NsVirtualLinkQos
The NsVirtualLinkQoS describes QoS data type a given NsVirtualLink used in an NS deployment flavour.
	TOSCA type: tosca.datatypes.nfv.NsVirtualLinkQos
derived from: tosca.datatypes.nfv.Qos
description: describes QoS data type a given NsVirtualLink used in an NS deployment flavour
properties:

	priority
	type: integer
required: no
constraints: greater_or_equal: 0

description: Specifies the priority level in case of congestion on the underlying physical links

[bookmark: _Toc54868915]tosca.datatypes.nfv.ServiceAvailability
ServiceAvailability describes the information on the Service Availability Level for a particular virtual link flavour.
	TOSCA type: tosca.datatypes.nfv.ServiceAvailability
derived from: tosca.datatypes.Root
description: describes the information on the Service Availability Level for a particular virtual link flavour
properties:

	level
	type: string
required: yes
constraints: valid_values: [level1, level2,
level3]
description: Service available level that is defined in the note below.

	Note:
[image:]

[bookmark: _Toc54868916]ONAP Capability Types
[bookmark: _Toc54868917]Tosca Capability Type Definitions
[bookmark: _Toc54868918]Keynames

	Keyname
	Required
	Type
	Description

	properties
	no
	list of
property definitions
	An optional list of property definitions for the Capability Type.

	attributes
	no
	list of
attribute definitions
	An optional list of attribute definitions for the Capability Type.

	valid_source_types
	no
	string[]
	An optional list of one or more valid names of Node Types that are supported as valid sources of any relationship established to the declared Capability Type.

[bookmark: _Toc54868919]Grammar
Capability Types have following grammar:
	<capability_type_name>:
 derived_from: <parent_capability_type_name>
 version: <version_number>
 description: <capability_description>
 properties:
 <property_definitions>
 attributes:
 <attribute_definitions>
 valid_source_types: [<node type_names>]

[bookmark: _Toc54868920] SDC Capability Type Definitions

	Tosca Type
	Conformance level
	Status

	org.openecomp.capabilities.AllottedResource
	2.0
	Defined

	org.openecomp.capabilities.PortMirroring
	5.0
	Defined

	org.openecomp.capabilities.Forwarder
	5.0
	Defined

	org.openecomp.capabilities.VLANAssignment
	8.0
	Defined

	org.openecomp.capabilities.RoutingConfiguration
	8.0
	Defined

	org.openecomp.capabilities.FabricConfiguration
	9.0
	Defined

[bookmark: _Toc54868921] org.openecomp.capabilities.AllottedResource

	org.openecomp.capabilities.AllottedResource:
 derived_from: tosca.capabilities.Root

[bookmark: _Toc54868922] org.openecomp.capabilities.PortMirroring

Capabilities of this type, when assigned to a proxy node, represent readiness of a service for port mirroring, either as a source or on the collector side.

	org.openecomp.capabilities.PortMirroring
 derived_from: tosca.capabilities.Root
 properties:
 connection_point:
 type: org.openecomp.datatypes.PortMirroringConnectionPointDescription

[bookmark: _Toc54868923] org.openecomp.capabilities.Forwarder

	org.openecomp.capabilities.Forwarder:
 derived_from: tosca.capabilities.Root

[bookmark: _Toc54868924] org.openecomp.capabilities.VLANAssignment

	org.openecomp.capabilities.VLANAssignment
 derived_from: tosca.capabilities.Root
 description: ability to expose routing information of the internal network
 properties:
 vfc_instance_group_reference
 type: string
 description: Ability to recognize capability per vfc instance group on vnf instance
 required: true

[bookmark: _Toc54868925] org.openecomp.capabilities.RoutingConfiguration

	org.openecomp.capabilities.RoutingConfiguration:
 derived_from: tosca.capabilities.Root

[bookmark: _Toc54868926] org.openecomp.capabilities.FabricConfiguration

	 org.openecomp.capabilities.FabricConfiguration:
 derived_from: tosca.capabilities.Root

[bookmark: _Toc54868927]tosca.capabilities.nfv.VirtualLinkable

	tosca.capabilities.nfv.VirtualLinkable:
 derived_from: tosca.capabilities.Root
properties: none

[bookmark: _Toc54868928]ONAP Group Types
[bookmark: _Toc54868929]Tosca Group Type Definitions
A Group Type defines logical grouping types for nodes, typically for different management purposes. Groups can effectively be viewed as logical nodes that are not part of the physical deployment topology of an application, yet can have capabilities and the ability to attach policies and interfaces that can be applied (depending on the group type) to its member nodes.

Conceptually, group definitions allow the creation of logical “membership” relationships to nodes in a service template that are not a part of the application’s explicit requirement dependencies in the topology template (i.e. those required to actually get the application deployed and running). Instead, such logical membership allows for the introduction of things such as group management and uniform application of policies (i.e., requirements that are also not bound to the application itself) to the group’s members.
[bookmark: _Toc54868930]Keynames
The Group Type is a TOSCA Entity and has the common keynames listed in section Error! Reference source not found. TOSCA Entity Schema.
In addition, the Group Type has the following recognized keynames:
	Keyname
	Required
	Type
	Description

	attributes
	no
	list of
attribute definitions
	An optional list of attribute definitions for the Group Type.

	properties
	no
	list of
property definitions
	An optional list of property definitions for the Group Type.

	members
	no
	string[]
	An optional list of one or more names of Node Types that are valid (allowed) as members of the Group Type.

Note: This can be viewed by TOSCA Orchestrators as an implied relationship from the listed members nodes to the group, but one that does not have operational lifecycle considerations. For example, if we were to name this as an explicit Relationship Type we might call this “MemberOf” (group).

	requirements
	no
	list of
requirement definitions
	An optional sequenced list of requirement definitions for the Group Type.

	capabilities
	no
	list of
capability definitions
	An optional list of capability definitions for the Group Type.

	interfaces
	no
	list of
interface definitions
	An optional list of interface definitions supported by the Group Type.

[bookmark: _Toc54868931]Grammar
Group Types have one the following grammars:
	<group_type_name>:
 derived_from: <parent_group_type_name>
 version: <version_number>
 metadata:
 <map of string>
 description: <group_description>
 properties:
 <property_definitions>
 members: [<list_of_valid_member_types>]
 requirements:
 - <requirement_definitions>
 capabilities:
 <capability_definitions>
 interfaces:
 <interface_definitions>

[bookmark: _Toc54868932]SDC Group Type Metadata

	conformance level 8.0
	invariantUUID:
	
type: string
description: Constant identifier of the resource model.
Ex.: AA97B177-9383-4934-8543-0F91A7A02836

	conformance level 8.0
	uuid:
	type: string
description: Versioned identifier of the resource model (this uuid is changed for every major version of the resource)
Ex.: b8ff69ca-786d-479e-9f9c-217a90ee0ebc

	conformance level 8.0
	version:
	type: string
description: The resource version in SDC catalog. Two- digit blocks separated by a dot (“.”).
Ex.: “2.0”

	conformance level 8.0
	name:
	type: string
description: The name of the group.

[bookmark: _Toc54868933]SDC Group Type Definitions
	Tosca Type
	Conformance level
	Status

	org.openecomp. groups.VFModule
	2.0
	Defined

	org.openecomp. groups.NetworkCollection
	8.0
	Defined

	org.openecomp.groups.VfcInstanceGroup
	8.0
	Defined

	org.openecomp.groups.Group
	Future
	Defined

	org.openecomp.groups.ResourceInstanceGroup
	Future
	Defined

[bookmark: _Toc54868934]
[bookmark: _Toc54868935]org.openecomp. groups.VFModule
A VF can be divided to several modules. There will be a base module, which consists the essential part of the VF. There might also be expansion modules associated with that base module.
The Expansion modules can give additional functionality that can be deployed or not.
The VF or Service Designer defines the module by assigning values to its properties.
The module properties are (note that these properties will be available only for VFs / Services creaed / modified in SDC 1702 and above):
	Field name
	Type
	Mandatory
	Description

	vf_module_type
	String
	Yes
	Whether this is base module or expansion.
Valid values: [Base, Expansion]
Ex: “Base”

	vf_module_label
	String
	Yes
	The label is the middle part (the free text) of the module name. the default value for this field is the HEAT filename of theVF Module’s HeatStack
Ex: “base_ adtran_pmaa_heat_04”

	min_vf_module_instances
	integer
	Yes
	The minimum number of orchestrated instances allowed of this VF-Module.
Default value: for base is 1, for non-base is 0
Ex. “2”

	max_vf_module_instances
	integer
	No
	The maximum number of orchestrated instances allowed of this VF-Module.
Default value: for base is 1
Ex. “3”

	initial_count
	integer
	Yes
	The initial count of orchestrated instances of the VF-Module. The value must be in the
 range between min_vf_module_instances and max_vf_module_instances.
Default value: for base is 1, for non-base is 0
Ex. “1”

	vf_module_description
	String
	No
	Description of the VF-modules contents and purpose
This value is provided by user. Might be empty.
Ex. “Base module for vADTRAN”

	volume_group
	Boolean
	Yes
	An indication whether this VF Module includes a volume definition

	group_naming
	org.openecomp.datatypes.Naming
	No
	The naming policy (name in policy engine) to be used in runtime for generating the instance name of the vf_module

Note: This property is supported only from conformance level 8.0
(Release 1806)

[bookmark: _Toc54868936]Syntax
The VF Module information can be found in the “groups” section in the VF TOSCA. The group type of the VF Module is “org.openecomp.groups.VfModule”
Note that in the “groups” section there might be other groups as well that do not represent VF Module.
Example:
groups:
 vadtran_Demo..base_adtran_pmaa_heat_04..module-0:
 type: org.openecomp.groups.VfModule
 metadata:
 vfModuleModelName: vadtran_Demo..base_adtran_pmaa_heat_04..module-0
 vfModuleModelInvariantUUID: d84f61c9-160a-44b6-a008-6caadbb6c612
 vfModuleModelUUID: fbf41c77-a7ee-4203-ad6c-eeb8a4ad7178
 vfModuleModelVersion: '1'
 properties:
 vf_module_type: Base
 vf_module_description: This is a base module for vADTRAN
 volume_group: false
 vf_module_label: base_adtran_pmaa_heat_04
 min_vf_module_instances: 1
 max_vf_module_instances: 1
 initial_count: 1
[bookmark: _Toc54868937]Usage

The properties defined above are added by default for every VF Module created. The default values for the properties are defined in the table above.
In the SDC Catalog, the properties can be viewed in the “Deployment” view. The designer can update the values of these properties.
Once the TOSCA of the VF is generated, the values will be provided in the specific vf module in the “groups” section.

[bookmark: _Toc54868938]VF Module in Service Level and vfModuleCustomizationUUID
As described in 3.4, a VF can be composed from VF Modules. Those VF Modules have some properties that can also be updated in the service level.
When making a change to the VF module in the service Level, the changes do not apply on the VF model. The changes apply only in the service level.
Since the changes apply only in the service level, the VF Modules must be reflected in the service TOSCA (in 1610, the VF Modules were described in the VF TOSCA only).
Since there might be more than one VF of same type in the service, every VF Module in the service level will have vfModuleCustomizationUUID. The vfModuleCustomizationUUID is regenerated for every change in the property values or the ENV file that is attached to it.
The key of the VF Module in the service level will be the VF instance name appended to the VF Module name: <VF instance name>..<VF Module name>
[bookmark: _Toc54868939]Syntax
The VF Module information can be found in the “groups” section in the Service TOSCA. The group type of the VF Module is “org.openecomp.groups.VfModule”. The vfModuleCustomizationUUID is one of the vf module metadata fields.
Note that in the “groups” section there might be other groups as well that do not represent VF Module.
Example:
groups:
 myVadtran..vadtran_Demo..base_adtran_pmaa_heat_04..module-0:
 type: org.openecomp.groups.VfModule
 metadata:
 vfModuleModelName: vadtran_Demo..base_adtran_pmaa_heat_04..module-0
 vfModuleModelInvariantUUID: d84f61c9-160a-44b6-a008-6caadbb6c612
 vfModuleCustomizationUUID: b020ed1e-4bc7-4fc0-ba7e-cc7af6da7ffc
 vfModuleModelUUID: fbf41c77-a7ee-4203-ad6c-eeb8a4ad7178
 vfModuleModelVersion: '1'
 properties:
 vf_module_type: Base
 vf_module_description: This is a base module for vADTRAN
 volume_group: false
 vf_module_label: base_adtran_pmaa_heat_04
 min_vf_module_instances: 1
 max_vf_module_instances: 1
 initial_count: 1
[bookmark: _Toc54868940]Usage
The vfModuleCustomizationUUID can be used to identify a specific VF Module in the service and send MSO the specific configuration for it.

[bookmark: _Toc54868941] org.openecomp. groups.NetworkCollection
Group with type NetworkCollection allows a designer to specify collection of a tenant l3- networks (N instances) with the identical attributes along with a quantity value. MSO will obtain unique network name and VPN Binding assignments for each l3-network in the collection.

TOSCA definition:
	group_types:
 org.openecomp.groups.NetworkCollection:
 derived_from: tosca.groups.Root
 description: groups l3-networks in network collection
 properties:
 network_collection_function:
type: string
required: true
description: network collection function
 network_collection_description:
type: string
required: true
description: network collection description, free format text

[bookmark: _Toc54868942] org.openecomp.groups.VfcInstanceGroup
generated by Heat-To-Tosca

Depending on the particular VNF design, every VM may require attachment to the same set of virtual networks, or it is possible that some of the VMs may be designated to attach to different groups of virtual networks.
To manage the relationships of VMs to specific sub-interfaces, such as a VLAN Network Receptor, VNFC Instance Groups will be defined as part of the parent infrastructure service model that provides a VLAN Assignment capability. When VMs are instantiated, it will be necessary to identify the VNFC type that is associated with the VM, along with the VNFC Instance Group that the VNFC belongs to.
VFC Instance Group is based on Subinterface capable VFC(s) connected to same set of subinterface networks.
VFC port, to which the sub-interfaces are to be created will have boolean property (subinterface_indicator) to indicate this ability.
Subinterface capable VFC should be indicated by new capability or requirement type, that may be exposed on VNF level.
subinterface_link:
 capability: tosca.capabilities.network.Linkable
 relationship: tosca.relationships.network.LinksTo

VFCs, defined as a members in the VFC Instance Group may be with different naming-codes (e.g. “SSC” and “MSC”) on same group.
VFCs, defined as a members in the VFC Instance Group have same
parent port network role (18.06 release restriction, there are no use cases with a number of parent port network roles on same VFC Instance Group)
subinterface network role (criteria VFC Group is generated)
network collection function (defined by designer)
VFC instance group function (defined by designer)
VF Module (group) and VFC instance group may have same VFC as a member
	group_types:
 org.openecomp.groups.VfcInstanceGroup
 derived_from: tosca.groups.Root
 description: groups VFCs with same subinterface role
 properties:
 vfc_instance_group_function:
 type: string
 required: true
 description: function of this VFC group

 vfc_parent_port_role
 type: string
 required: true
 description: common role of parent ports of VFCs in this group

 network_collection_function:
 type: string
 required: true
 description: network collection function assigned to this group

 subinterface_role:
 type: string
 required: true
 description: common role of subinterfaces of VFCs in this group, criteria the group is created

 capabilities:
 vlan_assignment:
 type: org.openecomp.capabilities.VLANAssignment
 properties:
 vfc_instance_group_reference:
 type:string

[bookmark: _Toc54868943] org.openecomp.groups.Group
	 org.openecomp.groups.Group:
 derived_from: tosca.groups.Root
 properties:

	type:
	
type: string
description: The type of the nodes supported by group. Ex. “VNF”, “VNFC”
required: false
	

	role:
	
type: string
description: The role of the group. Ex.” Highly Available”, “Cluster”, “GEOR”, “Quorum”, ”Scaling”, “Deployment”
required: false
	

	function:
	
type: string
description: The function of the groups. Ex. “GEO-ACTIVE-ACTIVE”, GEO-ACTIVE-STANDBY”, “SITE-RESILIENT”, “ROUND-ROBIN-QUORUM”
required: false
	

[bookmark: _Toc54868944]

[bookmark: _Toc54868945] org.openecomp.groups.ResourceInstanceGroup
	 org.openecomp.groups.ResourceInstanceGroup:
 derived_from: org.openecomp.groups.Group
 properties:

	description:
	
type: string
description: Description of the group. Ex. “VE FLEX”, “BVoIP ASR cluster”
required: false
	

	level:
	
type: string
description: The level of the resources grouping for the redundancy or resiliency. Ex. “Location”, “Zone”, “Cloud-region”
required: false
	

[bookmark: _Toc54868946]

[bookmark: _Toc54868947]ONAP Policy Types
[bookmark: _Toc54868948]Tosca Policy Type Definitions
A Policy Type defines a type of requirement that affects or governs an application or service’s topology at some stage of its lifecycle, but is not explicitly part of the topology itself (i.e., it does not prevent the application or service from being deployed or run if it did not exist).
[bookmark: _Toc54868949]Keynames
The Policy Type is a TOSCA Entity and has the common keynames listed in section Error! Reference source not found. TOSCA Entity Schema.
In addition, the Policy Type has the following recognized keynames:
	Keyname
	Required
	Type
	Description

	properties
	no
	list of
property definitions
	An optional list of property definitions for the Policy Type.

	targets
	no
	string[]
	An optional list of valid Node Types or Group Types the Policy Type can be applied to.

Note: This can be viewed by TOSCA Orchestrators as an implied relationship to the target nodes, but one that does not have operational lifecycle considerations. For example, if we were to name this as an explicit Relationship Type we might call this “AppliesTo” (node or group).

	triggers
	no
	list of trigger
	An optional list of policy triggers for the Policy Type.

[bookmark: _Toc54868950]Grammar
Policy Types have the following grammar:
	<policy_type_name>:
 derived_from: <parent_policy_type_name>
 version: <version_number>
 metadata:
 <map of string>
 description: <policy_description>
 properties:
 <property_definitions>
 targets: [<list_of_valid_target_types>]
 triggers:
 <list_of_trigger_definitions>

[bookmark: _Toc54868951]SDC Policy Type Metadata

	conformance level 8.0
	invariantUUID:
	
type: string
description: Constant identifier of the resource model.
Ex.: AA97B177-9383-4934-8543-0F91A7A02836

	conformance level 8.0
	uuid:
	type: string
description: Versioned identifier of the resource model (this uuid is changed for every major version of the resource)
Ex.: b8ff69ca-786d-479e-9f9c-217a90ee0ebc

	conformance level 8.0
	version:
	type: string
description: The resource version in SDC catalog. Two digit blocks separated by a dot (“.”).
Ex. : “2.0”

	conformance level 8.0
	name:
	type: string
description: The name of the policy.

[bookmark: _Toc54868952]SDC Policy Type Definitions
	Tosca Type
	Conformance level
	Status

	org.openecomp.policies.scaling.Fixed
	8.0
	Defined

	org.openecomp.policies.External
	8.0
	Defined

	org.openecomp.policies.scaling.Variable
	future
	Defined

[bookmark: _Toc54868953]
[bookmark: _Toc54868954]org.openecomp.policies.scaling.Fixed
Policy with this type allows a designer to specify resource quantity for the instances in policy targets.
In case the policy target includes group, recourse quantity addresses group members.
TOSCA definition:
	policy_types:
 org.openecomp.policies.scaling.Fixed:
 derived_from: tosca.policies.Scaling
 properties:
 quantity:
 description: the exact number of instances to keep up
 type: integer
 required: true

[bookmark: _Toc54868955]org.openecomp.policies.External
Policy with type External allows a designer to specify resource specific assignments.
TOSCA definition:
	policy_types:
 org.openecomp.policies.External:
 derived_from: tosca.policies.Root
 description: externally managed policy (for example, type="network assignment", source="Policy Manager", name="route target")
 properties:
 source:
 type: string
 description: The name of the server that exposes the policy with predefined type and name.
 required: false
 type:
 type: string
 description: The type (category) of the policy same as it is defined in the source.
 required: false
 name:
 type: string
 description: The name of the policy, that related to specific type, same as it is defined in the source.
 required: false

[bookmark: _Toc54868956]org.openecomp.policies.scaling.Variable

	org.openecomp.policies.scaling.Variable:
 derived_from: tosca.policies.Scaling
 description: Maintain the number of instances within the specified range
 properties:
 init_quantity:
 description: the number of instances to start with
 type: integer
 required: true
 min_quantity:
 description: the max. number of instances
 type: integer
 required: true
 max_quantity:
 description: the min. number of instances
 type: integer
 required: true

[bookmark: _Toc54868957]ONAP Relationships Types
[bookmark: _Toc54868958]Tosca Group Type Definitions

A Relationship Type is a reusable entity that defines the type of one or more relationships between Node Types or Node Templates.
[bookmark: _Toc54868959]Keynames
The Relationship Type is a TOSCA Entity and has the common keynames listed in section Error! Reference source not found. TOSCA Entity Schema.
In addition, the Relationship Type has the following recognized keynames:
	Keyname
	Required
	Definition/Type
	Description

	properties
	no
	list of
property definitions
	An optional list of property definitions for the Relationship Type.

	attributes
	no
	list of
attribute definitions
	An optional list of attribute definitions for the Relationship Type.

	interfaces
	no
	list of
interface definitions
	An optional list of interface definitions interfaces supported by the Relationship Type.

	valid_target_types
	no
	string[]
	An optional list of one or more names of Capability Types that are valid targets for this relationship.

[bookmark: _Toc54868960]Grammar
Relationship Types have following grammar:
	<relationship_type_name>:
 derived_from: <parent_relationship_type_name>
 version: <version_number>
 metadata:
 <map of string>
 description: <relationship_description>
 properties:
 <property_definitions>
 attributes:
 <attribute_definitions>
 interfaces:
 <interface_definitions>
 valid_target_types: [<capability_type_names>]

[bookmark: _Toc54868961]org.openecomp. relationships.AssignsTo

Relationship of this type, when assigned to
VLAN Network Receptor on Customer Orderable Service, represent readiness of VLAN Network Receptor to provide internal network routing information (like route target, network id and other routing information) to the node with requirement of this capability.
Here is the TOSCA definition of this relationship type:
	relationship_types:
 org.openecomp.relationships.AssignsTo:
 derived_from: tosca. relationships.Root

[bookmark: _Toc54868962]org.openecomp.relationships.RoutesTo

Relationship of this type, when assigned to
VRFEntry on Customer Orderable Service, represent readiness of VLAN Network Receptor to provide internal network routing information (like route target, network id and other routing information) to the node with requirement of this capability.
Here is the TOSCA definition of this relationship type:
	relationship_types:
 org.openecomp.relationships.RoutesTo:
 derived_from: tosca. relationships.RoutesTo
 description: This type represents an intentional network routing between internal and external network

[bookmark: _Toc54868963]ONAP Annotation Type
Annotation is an extension to the standard TOSCA spec (assumed that standard parsers will ignore the annotations). The Annotations allows putting some extra information on an input value. The information could be various: UI visualization, assignment responsibility (role), uniqueness information, input origin etc. one input value may have a list of annotation definitions.
In order to use annotation, the annotation type should first be defined. The annotation type and annotation definition are described below.

[bookmark: _Toc54868964]Tosca Extension Annotation Type Definition
The Annotation Type has the following recognized keynames:
[bookmark: _Toc54868965]Keynames

	Keyname
	Required
	Type
	Constraints
	Description

	version
	No
	version
	N/A
	An optional version for the annotation type definition.

	description
	No
	description
	N/A
	An optional description for the annotation type.

	properties
	No (An annotation can indicate something by the very fact of its presence. Even without properties)
	list of
property definitions
	N/A
	The list property definitions that comprise the schema for an annotation type in TOSCA.

[bookmark: _Toc54868966] Grammar
<annotation_type_name>:
 version: <version_number>
 description: <annotation_type_description>
 properties:
 <property_definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:
annotation_type_name: represents the required symbolic name of the Annotation Type as a string. This type should include full namespace to avoid collisions in annotation types.
version_number: represents the optional TOSCA version number for the Annotation Type.
annotation_type_description: represents the optional description for the Annotation Type.
property_definitions: represents the optional list of one or more property definitions that provide the schema for the Annotation Type. If a properties keyname is provided, it must contain one or more valid property definitions
[bookmark: _Toc54868967]Examples
The below are examples only and not supported in SDC.
Annotation without properties
define a new annotation type
org.myapp.runtime_value:
 description: indicates whether this input should be populated during runtime

Annotation with properties
define annotation with properties
org.myapp.visual:
 description: visualization flags
 properties:
 editable:
 type: boolean
 visible:
 type: boolean

[bookmark: _Toc54868968]SDC Annotation Type Definition
An annotation definition defines a named, typed value and related data that can be associated with an input (parameter definition) defined in the TOSCA spec. Annotations are used by template authors to provide some extra information about the input, which is not a constraint. The annotations on the input can help the template consumer to decide on actions regarding this input.
[bookmark: _Toc54868969]keynames
	Keyname
	Required
	Type
	Description

	type
	yes
	string
	The required name of the annotation type the annotation definition is based upon.

	properties
	no
	list of
property assignments
	An optional list of property value assignments for the annotation definition.

	
	
	
	

[bookmark: _Toc54868970]

[bookmark: _Toc54868971] Grammar
<annotation_name>:
 type: <annotation_type>
 properties:
 <property_assignments>

annotation_name: represents the required symbolic name of the annotation as a string.
annotation_type: represents the full name of the annotation type it is based upon.
property_assignments: represents the optional list of property assignments for the annotation definition that provide values for properties defined in its declared Annotation Type.

[bookmark: _Toc54868972] Example
				
 ui_info:
	 type: org.myapp.visual
 properties:
 visible: false
 editable: false

 responsibility:
 type: org.myapp.runtime_value

[bookmark: _Toc54868973] Extending TOSCA Service Template and Parameter Definition
[bookmark: _Toc54868974]Service Template
TOSCA spec defines the Service Template as a yaml document containing element definitions of building blocks. The spec lists the recognized keynames by the service template. To that list, we add the annotation types definition
	Keyname
	Required
	Type
	Description

	annotation_types
	no
	List of Annotation Types
	An optional list of annotation types definition.

[bookmark: _Toc54868975]Parameter Definition
TOSCA spec defines Parameter with the several keynames. In order to support the annotations, we extend the Parameter definition with additional keyname:
	Keyname
	Required
	Type
	Description

	annotations
	no
	List of Annotation Definition
	An optional list of annotations

Example:
inputs:
 cpus:
 type: integer
 description: Number of CPUs for the server.
 constraints:
 - valid_values: [1, 2, 4, 8]
 annotations:
				 ui_info:
	 type: org.myapp.visual
 properties:
 visible: false
 editable: false
 responsibility:
 type: org.myapp.runtime_value

[bookmark: _Toc54868976]Annotation Type – org.openecomp.annotations.Source
The first use in annotations in SDC is for identifying the source of the parameter. Inputs in the TOSCA template created by SDC can be originated either from HEAT parameters provided by vendor or it can be added during design. The runtime components downstream would like to identify the origin of the parameter as well as the original name of it.
keynames:
	Name
	Required
	Type
	Constraints
	Description

	source_type
	yes
	string
	None
	The origin of the parameter (e.g. HEAT).

	vf_module_label
	no
	list of string
	None
	List of HEAT file name this input was originated from.

	param_name
	no
	string
	None
	Parameter name as appear in the origin source

Definition:
annotation_types:
 org.openecomp.annotations.Source:
 description: Indicates the origin source of an input
 properties:
 source_type:
 type: String
 vf_module_label:
 type: list
 description: List of HEAT file name this input was originated from
 entry_schema:
 type: String
 param_name:
 type: String
 description: Source parameter name

[bookmark: _Toc54868977] Example
tosca_definitions_version: tosca_simple_yaml_1_1
metadata:
 invariantUUID: ef6c5433-8eb0-4bb3-b900-4ONAPd05bea60f
 UUID: a32eefb5-fa54-4934-96ee-90d1eafa56c5
 name: Service Groups 1
 description: test
 type: Service
inputs:
 vfgroups10_mmn_data_volume_1_nfc_naming_code: #input without annotations
 type: string
 vfgroups10_mmn_data_volume_1_volume_id: #input with annotations
 type: string
 default: volume1_new
 annotations:
 source:
 type: org.openecomp.annotations.Source
 properties:
 source_type: HEAT
 	vf_module_label: pxmc_mmn
 	param_name: mmn_data_volume_id_1

[bookmark: _Toc54868978]ONAP Interfaces Type
[bookmark: _Toc54868979]tosca.interfaces.nfv.Nslcm
The tosca.interfaces.nfv.Nslcm interface type contains a set of TOSCA operations corresponding to the following NS
LCM operations:
Instantiate NS
Scale NS
Update NS
Heal NS
Terminate NS
[bookmark: _Toc54868980]Syntax
It conforms the syntax defined in the ETSI SOL001.
Note: not all sub datatypes are listed here.
	tosca.interfaces.nfv.Nslcm:		
				 derived_from: tosca.interfaces.Root
	 description: This interface encompasses a set of TOSCA operations corresponding to
NS LCM operations as well as to preamble and postamble procedures to the execution of the NS LCM operations.
instantiate_start:
	 description: Preamble to execution of the instantiate operation
instantiate:
 description: Base procedure for instantiating an NS, corresponding to the
Instantiate NS operation.
inputs:
additional_parameters:
type: tosca.datatypes.nfv.NsOperationAdditionalParameters
required: false
instantiate_end:
description: Postamble to the execution of the instantiate operation
terminate_start:
description: Preamble to execution of the terminate operation
terminate:
description: Base procedure for terminating an NS, corresponding to the
Terminate NS operation.
terminate_end:
description: Postamble to the execution of the terminate operation
update_start:
description: Preamble to execution of the update operation
update:
description: Base procedure for updating an NS, corresponding to the Update NS
operation.
update_end:
description: Postamble to the execution of the update operation
scale_start:
description: Preamble to execution of the scale operation
scale:
description: Base procedure for scaling an NS, corresponding to the Scale NS
operation.
inputs:
additional_parameters:
type: tosca.datatypes.nfv.NsOperationAdditionalParameters
required: false
scale_end:
description: Postamble to the execution of the scale operation
heal_start:
description: Preamble to execution of the heal operation
heal:
description: Base procedure for healing an NS, corresponding to the Heal NS
operation.
inputs:
additional_parameters:
type: tosca.datatypes.nfv.NsOperationAdditionalParameters
required: false
heal_end:
description: Postamble to the execution of the heal operation

[bookmark: _Toc54868981]Template definitions
[bookmark: _Toc54868982]Tosca Node Template definition

	Keyname
	Required
	Type
	Description

	type
	yes
	string
	The required name of the Node Type the Node Template is based upon.

	description
	no
	description
	An optional description for the Node Template.

	metadata
	no
	map of string
	Defines a section used to declare additional metadata information.

	directives
	no
	string[]
	An optional list of directive values to provide processing instructions to orchestrators and tooling.

	properties
	no
	list of
property assignments
	An optional list of property value assignments for the Node Template.

	attributes
	no
	list of
attribute assignments
	An optional list of attribute value assignments for the Node Template.

	requirements
	no
	list of
requirement assignments
	An optional sequenced list of requirement assignments for the Node Template.

	capabilities
	no
	list of
capability assignments
	An optional list of capability assignments for the Node Template.

	interfaces
	no
	list of
interface definitions
	An optional list of named interface definitions for the Node Template.

	artifacts
	no
	list of
artifact definitions
	An optional list of named artifact definitions for the Node Template.

	node_filter
	no
	node filter
	The optional filter definition that TOSCA orchestrators would use to select the correct target node. This keyname is only valid if the directive has the value of “selectable” set.

	copy
	no
	string
	The optional (symbolic) name of another node template to copy into (all keynames and values) and use as a basis for this node template.

[bookmark: _Toc54868983]Proxy Nodes
Every time the designer choses an external service to “proxy” it, SDC generates a special node type derived from org.openecomp.nodes.ServiceProxy as described in Error! Reference source not found. and a node template of this new type, like shown below:
	 node_templates:
 abc99af4-0a3f-42ec-af20-bf1455343345_0_proxy:
 # node template name generated by SDC of the source service identifying details
 # possible convention: <sourceModelUuid> + <running number> + '_proxy'
 type: org.openecomp.nodes.abc99af4-0a3f-42ec-af20-bf1455343345_Proxy
 metadata:
 invariantUUID: a13c5af4-0a3f-42ec-af20-bf1455343215
 UUID: a1919a6f-802b-4c9d-bb7a-7f8ff36be29c
 customizationUUID: 5c56d0a3-267c-4825-b52f-5199692864e2
 version: '4.0' # the version of the source service
 name: vMME Service Proxy
 description: A Proxy for Service vMME
 type: Service Proxy
 category: Generic
 subcategory: Abstract
 resourceVendor: # copied from the source service
 resourceVendorRelease: # copied from the source service
 sourceModelUuid: abc99af4-0a3f-42ec-af20-bf1455343345 # the UUID of the source service model
 sourceModelInvariant: ff3c5af4-0a3f-42ec-af20-bf1455343157 # the invariantUUID of the source service model
 sourceModelName: vMME # the name of the source service model
 capabilities:
 source_01:
 properties:
 connection_point:
 nf_type: VNF22
 nfc_type: VLC
 network_role: ZZZ
 pps_capacity: 10 Kpps
 source_02:
 source_03:
 source_04:

Note that the TOSCA template name (abc99af4-0a3f-42ec-af20-bf1455343345_0_proxy) and the capability names (e.g., source_01) here is an artificial string made by SDC of the source service details, such as name, UUID, version, etc. The actual names may be different.
[bookmark: _Toc54868984]Port Mirroring Configuration Nodes
Based on the org.openecomp.nodes.PortMirroringConfiguration node type, SDC generates a node template for each external service instance being “proxied”, for example:
	node_templates:
 port_mirroring_group_01: # node name generated by SDC
 type: org.openecomp.nodes.PortMirroringConfiguration
 metadata:
 invariantUUID: a13c5af4-0a3f-42ec-af20-bf1455343215
 UUID: a1919a6f-802b-4c9d-bb7a-7f8ff36be29c
 customizationUUID: 5c56d0a3-267c-4825-b52f-5199692864e2
 version: '1.0'
 name: Port Mirroring Configiration
 description: A port mirroring configuration object
 type: Configuration
 category: Configuration
 subcategory: Configuration
 resourceVendor: AT&T
 resourceVendorRelease: 1.0

 requirements:
 - source:
 node: abc99af4-0a3f-42ec-af20-bf1455343345_0_proxy
 # reference to a proxy node
 capability: source_01
 # reference to a capability of the proxy node
 - source:
 node: abc99af4-0a3f-42ec-af20-bf1455343345_0_proxy
 capability: source_02
 - source:
 node: abc99af4-0a3f-42ec-af20-bf1455343345_0_proxy
 capability: source_03
 - collector:
 node: abc99af4-0a3f-42ec-af20-bf1455343399_0_proxy
 capability: collector_01

Nodes of this type are categorized as Configuration. This means that a PortMirroringConfiguration-typed node should be interpreted as a mere structured informational record rather than a prototype of a deployable entity.
It is assumed that run-time lifecycle of PortMirroringConfiguration node includes operations start and stop, which respectively activate and deactivate the port mirroring “association”. The run-time components should also maintain the state attribute with the PortMirroringConfiguration instances to keep track of the actual state of the instance (active or inactive).
[bookmark: _Toc54868985]Configuration Node (example)

	VRF Entry Configuration 0:
 type: org.openecomp.nodes.VRFEntry
 metadata:
 invariantUUID: 3c2b12ad-85a7-4284-b409-b068a7a0aedb
 UUID: 8d00460e-9612-456b-b585-cf676c78ec7c
 customizationUUID: 99e10f54-54b9-4e6c-a937-900a091b8438
 version: '2.0'
 name: VRF Entry Configuration
 description: VRF Entry configuration object
 type: Configuration
 category: Configuration
 subcategory: Configuration
 resourceVendor: ATT (Tosca)
 resourceVendorRelease: 1.0.0.wd03
 resourceVendorModelNumber: ''
 properties:
 type: TTT
 role: RRR
 function: FFF
 requirements:
 - routing_configuration_external:
 capability: vrfobjectconfiguration0.routing_configuration_external
 node: transport_srv_proxy 0

[bookmark: _Toc54868986]Capability Template definition

[bookmark: _Toc54868987]Appendix A – SDC Resource / Service Categories
[bookmark: _Resource_Categories][bookmark: _Toc54868988]Resource Categories
	Category
	Sub Category
	

	Network L2-3
	LAN Connectors,
WAN Connectors,
Router,
Gateway,
Infrastructure
	

	Network L4+
	Common Network Resources
	

	Application L4+
	Border Element,
Database,
Application Server,
Web Server,
Call Control,
Media Servers,
Load Balancer,
Firewall
	

	Generic
	Infrastructure,
Database,
Abstract,
Rules,
Network Elements
	

	Network Connectivity
	Connection Points,
Virtual Links
	

	DCAE Component
	Analytics,
Policy,
Utility,
Collector,
Source,
Microservice,
Database
	

	Template
	Monitoring Template
	

	Allotted Resource
	Tunnel XConnect,
IP Mux Demux,
Allotted Resource,
Security Zone,
Contrail Route,
Service Admin
	

	Category
	Sub Category
	

	Network L2-3
	LAN Connectors,
WAN Connectors,
Router,
Gateway,
Infrastructure
	

	Network L4+
	Common Network Resources
	

	Application L4+
	Border Element,
Database,
Application Server,
Web Server,
Call Control,
Media Servers,
Load Balancer,
Firewall
	

	Generic
	Infrastructure,
Database,
Abstract,
Rules,
Network Elements
	

	Network Connectivity
	Connection Points,
Virtual Links
	

	DCAE Component
	Analytics,
Policy,
Utility,
Collector,
Source,
Microservice,
Database
	

	Template
	Monitoring Template
	

	Allotted Resource
	Tunnel XConnect,
IP Mux Demux,
Allotted Resource,
Security Zone,
Contrail Route,
Service Admin
	

[bookmark: _Toc54868989]

[bookmark: _Toc54868990]Service Categories
	Category

	Mobility

	Network L1-3

	Network L4+

	VoIP Call Control

[bookmark: _Toc54868991]

[bookmark: _Appendix_B_][bookmark: _Toc54868992]Appendix B – SDC Artifact Types
The following list defines the artifact types that are supported in SDC:
“HEAT” - HEAT Base template
“HEAT_VOL” – Volume HEAT Base template
“HEAT_NET” – Network HEAT Base template
“HEAT_NESTED” - Nested HEAT template
“HEAT_ARTIFACT” – Supplimentary artifact referenced in HEAT* template (“get_file”)
“HEAT_ENV” - HEAT Environment asrtifact
“YANG_XML” - YANG asset based XML
“VNF_CATALOG” - YANG asset based XML
“VF_LICENSE” - VF License Asset
“VENDOR_LICENSE” - Vendor License Asset
“MODEL_INVENTORY_PROFILE” – Inventiry Asset
“MODEL_QUERY_SPEC” – Inventory Asset Named Query Specification
“APPC_CONFIG” - XML/JSON configuration artifact
“VF_MODULES_METADATA” – json artifact that describes the vfModules of the resource
“DCAE_TOSCA” – TOSCA template used by DCAE
“DCAE_JSON”- DCAE JSON template
“DCAE_POLICY”- DCAE Policy template
“DCAE_DOC” – DCAE Doc (manual) for the VF
 “DCAE_EVENT” – VF event file to be used by DCAE
“DCAE_INVENTORY_TOSCA” – DCAE TOSCA file specifically configured for the instance
“DCAE_ INVENTORY _JSON”- DCAE configuration file specifically configured for the instance
“DCAE_ INVENTORY _POLICY”- DCAE Policy specifically configured for the instance
“DCAE_ INVENTORY _DOC”- DCAE manual for the instance
“DCAE INVENTORY _BLUEPRINT”- DCAE blueprint specifically designed for the instance
“DCAE_ INVENTORY _EVENT”- DCAE EVENT file for the instance
“AAI_SERVICE_MODEL” – service dictionary for A&AI
“AAI_VF_MODEL” – VF dictionary for A&AI
“AAI_VF_MODULE_MODEL” – VF Module dictionary for A&AI
“AAI_VF_INSTANCE_MODEL”,
“SNMP_TRAP” – MIB file to be used by DCAE for monitoring the asset,
“SNMP_POLL”- MIB file to be used by DCAE for monitoring the asset,
“TOSCA_TEMPLATE” – Tosca yaml with representation of the asset,
“TOSCA_CSAR” – TOSCA CSAR package with all information (including artifacts of the asset,
“OTHER” - Unspecified artifact type (expected to be used for early integration phase only)

[bookmark: _Toc54868993]Appendix C – Model Driven VID
Comment: The HTML examples here are conceptual, and can be implemented other ways. (VID is using Angular JS not HTML).
It is suggested that VID screens would be generated based on the Network Service (NS) inputs section.
HTML input type controls are being generated based on the inputs types. The following table lists some of the common TOSCA types and sample HTML control that can be used:

	TOSCA Type
	HTML control

	string
	<input type=text>

	integer
	<input type=number>

	boolean
	<input type=radio>

	range
	<input type=number min= max= >
<input type=range min= mac= >

	list
	<select>

	map
	<fieldset></fieldset>
note: input type based on entry_schema type

 Note: In 1707 SDC might support only subset of these type.

TOSCA also support complex data types. Data types have the following grammar:
<data type name>:
 derived_from: <existing data type>
 description: <data type description>
 properties:
 <property definition>

When input parameter is of complex data type, the service template include a ‘data_types:’ section with the data type definition.
VID should use the data type definition to display the inputs to collect from the user.

Note: it is possible for a data type to include a property of a complex data type.

Display parameter description if exist.
VID should use the parameter_required value to indicate to the user what inputs are mandatories. VID should enforce all mandatory fields has valid values.
Display parameter default value and allow user to override.
Restrict user input based on parameter constraints. The following table lists the common TOSCA constraints and the suggest VID behavior:

	Constraint
	Description
	Suggest

	equal
	Constrains a property or parameter to a value equal to (‘=’) the value declared.
	Use the <input> element ‘readonly’ attribute <input readonly>

	greater_than
	Constrains a property or parameter to a value greater than (‘>’) the value declared.
	Use the <input> element with ‘min’ attribute set to the value declared+1

	greater_or_equal
	Constrains a property or parameter to a value greater than or equal to (‘>=’) the value declared.
	Use the <input> element with ‘min’ attribute set to the value declared

	less_than
	Constrains a property or parameter to a value less than (‘<’) the value declared.
	Use the <input> element with ‘max’ attribute set to the value declared-1

	less_or_equal
	Constrains a property or parameter to a value less than or equal to (‘<=’) the value declared.
	Use the <input> element with ‘max’ attribute set to the value declared

	in_range
	Constrains a property or parameter to a value in range of (inclusive) the two values declared.
	Use the <input> element with ‘min’ and ‘max’ attributes

	valid_values
	Constrains a property or parameter to a value that is in the list of declared values.
	Use the <select> element

	length
	Constrains the property or parameter to a value of a given length.
	Use the <input> element with ‘minlength’ and ‘maxlength’ attributes

	min_length
	Constrains the property or parameter to a value to a minimum length.
	Use the <input> element with ‘minlength’ attribute

	max_length
	Constrains the property or parameter to a value to a maximum length.
	Use the <input> element with ‘maxlength’ attribute

	pattern
	Constrains the property or parameter to a value that is allowed by the provided regular expression.
	Use the <input> element with ‘pattern’ attribute

[bookmark: _Toc54868994]Appendix D – TOSCA Parser
The new 1707 Distribution client will include TOSCA Parser.

The TOSCA Parser takes service CSAR file as an input. It parses and reads the TOSCA templates and creates an in-memory graph of TOSCA nodes and their relationship.

The TOSCA Parser provides call functions to retrieve the information from the parsed in memory TOSCA model.

	Page 2
	Page 3
image2.png
Intra-VF network.
VIPR ATM VF has 4
internal networks

VvIPR ATM Service

Internal Connection Point.

VIPR ATM VF has 5 internal
connection points (4 for the 4
internal network and 1 for oam).

VIPR ATM
VF

VIPR ATM VF

left net

VIPR ATM
OAM Net

VFC

External Connection Point.

VvIPR ATM VF has 1 external
connection points which include
the information

image3.png
TOSCA Template Overview

Service Template

Topology Template
Description of application topology and dependency
between components

Capabilities Scripts

Shell Scripts
Python Scripts

Relationship

Create()
Requirements Start()
Stop()

Node Images Installables

Relationship Types
: Scripts
lode Template :

YANG Files

<
5>
o 2
=z O
o o
a 3
o a
5 T
%m
g3
7w
2 S
-]
[
7 2
Lo
o o
> g
g8
S &
(=A%
S s
v o~
-~

selpadold
saoepaly|

Connect()
Configure()
Disconnect()

Deployment Orchestration Plans

<>

ﬂ ORCHESTRATION SEQUENCE IMPLIED BY RELATIONSHIP TEMPLATES

connected_to: Create the “To” Node followed by “From” Node

contained_in: Create the “container” Node followed by “contained” Node, e.g.,
Create VM and then install VNF Image.
depends_on: Create the “depends on” Node followed by “dependent” Node.

image4.png
Service TOSCA Template

tosca_definitions_version: tosca simple profile for_ ecomp 1 0

description: Generic Service Template
metadata:
imports:

node type:
org.openecomp.services.<service name>:

derived from: org.openecomp.services.Service

data_types:
topology template:
inputs:
node templates:

vE:
type: org.openecomp.resources.vf.<>

vl:
type: org.openecomp.resources.vl.<>

cp:
type: org.openecomp.resources.cp.<>

h

groups:
service groupl:

subsititution mappings:

node type: org.openecomp.services.<service name>

P P Ly

Declaring the substituted node as derived from base node

Definition of datatypes used with in the TOSCA template

Optional — Inputs section lists properties for which user input should
be requested when an instance of the service will be spun up. These
parameters are mapped to the node_templates parameters using
get_inputs functions.

Describes the nodes (i.e., resources) of a service.
The nodes can be VFs, VLs, CPs, ARs.
Use type keyname to identify the resource type.

Optional - Workflows associated with the service (for MSO)

Optional - Service-level groups (VF Modules of the VFs in the Service)

Optional - declaration that exports the topology template as an
implementation of a Node type.

image5.png
VF TOSCA Template

tosca definitions_version: tosca_simple profile for ecomp 1 0

description: Generic VF Template
metadata:
imports:
node_type:
org.openecomp . resources.vf .<vf name>:

derived from: org.openecomp.resources.VF

topology template:

\

v

inputs:

node_templates:

vic:
type: org.openecomp.resources.vfc.<>
extCP:
type: org.openecomp.resources.cp.<>
groups:
VEModule Base:

v

type: org.openecomp.groups.VfModule

VFModule Expansion:

v

type: org.openecomp.groups.VfModule
>
workflows:
policies: >
- anti collocated az_policy:
subsititution mappings: >

node_type: org.openecomp.resources.vf.<vf name>

L L

Declares the substituted node as derived from “generic VF”

inputs — List of properties which get values when the VF is used
within a service . These parameters are mapped to the
node_templates parameters using get_inputs functions.

In node_template section: Describes the nodes (resources) of a VF.
The nodes can be VFCs, CPs, VLs and other HEAT resources
Use type keyname to identify the resource type.

groups — Lists the VF Modules associated with the VF and
their metadata and properties.

Optional list of workflows associated with the VF

Optional list of policies

An optional declaration that exports the topology template as an
implementation of a Node type

image6.png
C

org.openecomp.
1O resource.cp.

v2.extCP

p. nodes.network.Port

—p
gg.openecomp.resource.

A

tosca.nodes.network.

Cl Port
18

tosca.nodes.
Root

le—A—

D=

8

org.openecomp.
resource.cp.
extCP

image7.png
Service
Availability Levels

Service Recovery Time
Threshold

Notes

1
(see Table 3 for
Level 1 Customer
and Service Types)

Level 1 of Service Recovery
Time (e.g. 5 - 6 seconds)
Real-time Services require the
fastest recovery time. Data
services can tolerate longer
recovery times.

Recommendation: Redundant
resources to be made available
on-site to ensure fast recovery.

2
(see Table 3 for
Level 2 Customer
and Service Types)

Level 2 of Service Recovery
Time (e.g. 10 - 15 seconds)
Real-time Services require the
fastest recovery time. Data
services can tolerate longer
recovery times.

Recommendation: Redundant
resources to be available as a mix of
on-site and off-site as appropriate.
On-site resources to be utilized for
recovery of real-time services. Off-site
resources to be utilized for recovery of
data services.

3
(see Table 3 for
Level 3 Customer
and Service Types)

Level 3 of Service Recovery
Time (e.g. 20 - 25 seconds)
Real-time Services require the
fastest recovery time. Data
services can tolerate longer
recovery times.

Recommendation: Redundant
resources to be mostly available
off-site.

Real-time services should be
recovered before data services.

image1.png

