Policy Lifecycle API

Pamela Dragosh — AT&T
December 13, 2017

Abstract

This presentation will be an introduction to the upcoming release of the Policy Lifecycle API for Beijing. The Policy
Lifecycle APl is being introduced to support a richer lifecycle for creating, updating, deleting, querying and deploying
policy during design-time and runtime. In addition, the APl will be designed and developed using ONAP RESTful API
best practices.

For design-time, new features will be added to support a lifecycle that mirrors current SDC functionality such as:
check-in/check-out, submission for certification, and lastly submission for distribution. These new features will move
the policy APl one step closer to: 1) integration into the SDC Design-time environment, 2) ability to develop and
integrate a Policy Testing/Certification platform that can support flexible environment for doing conflict
detection/resolution.

For run-time, new features will be added to support runtime deployment of policies that support different modes of
operation such as deploying policies in different modes: active, inactive, and safe mode. Platform operations team
will have the ability to easily deploy and un-deploy policies to/from the desired mode. In addition, functionality will
be added to give the ability for an operations team to retire selected policies at a given date.

We would like to use this session to present an overview of the Lifecycle APl and garner feedback from the
community on the design.

C1 THELINUXFOUNDATION :.: DMNAP 2

Disclaimer

* Policy Lifecycle APl is a draft, work-in-progress feature

C1 THELINUXFOUNDATION

Goals and Motivation

» Goal for the Policy Lifecycle API is gets the Policy Framework
Platform a step closer to support Policy Driven self-serve needs of
running instance(s) of the ONAP Platform.

* Motivation is to better utilize Models to assist the Policy Framework in
driving the ONAP Platform.

» A clear and concise API can go a long way towards implementing a
zero-touch platform.

C1 THELINUXFOUNDATION

Current State

« Current API supports policies using config, decision and brms models.
- Models for Control Loop Config and Operational Policies
- Models to support Optimization, generic Drools rules, etc.

* Does not conform to RESTful best practices
* Not optimally a model-driven platform

* Not integrated with SDC

- Eg: Want the ability to express and capture VNF homing and placement
policies during Service Design

* Deployment “mode” is not supported
- Active, Inactive, Safe

C1 THELINUXFOUNDATION

ONAP Target Architecture for R2 and Beyond

(High-Level Functional View)

External Gateway 0SS / BSS m ONAP Portal
NAP External APIs

Dashboard OA&M RUN-TIME

Resource Onboarding Policy Data Collection,

Analytics, and Events

—

—

Active & Available Common

Orchestration .
Inventory Services

Framework

o
(<T1)
©
c
©
. =
. (7]
£ Event Correlation External Registry Application S
T Authorization 'g
g N — Framework o
-g nalytic Application Design Micro Services Bus / Data Movement (see Note 1) <)
[:) ptimization o
w | < éiosed Loop Design S 3 \ 4 \ 3 \ Framework =
a [e Generic NF Controllers (L4-L7) Logai o
=) . . lti-Cloud =
w : e Multi-Clou SDN Controller : :
§ Design Test & Certification Adaptation (L0-13) Life Cycle Management & Config

J (see Note 1) P - (see Note 1))
catalog i I_—_—_—_—__ _____

Recipe/Eng Rules & Policy Distribution Network Function Layer e | _i o §
ONAP Optimization Framework i- Hypervisor / OS Layer [OpenStack] [VMware] [Azure] [AMZ] [RackSpace] E :é: 5
Note 1 — Consistent APIs between Orchestration layer and Con-tr-o-ll;_r-s- o -i- - . < - ‘ = E
Private MPLS Private IP : zublic ; w

1 THE LINUX FOUNDATION — ‘:)C Sloud ONIAP ¢

User Experience

» User experience is important, the Policy Lifecycle APl should adhere
to RESTful best practices as recommended by the ONAP Developer
Best Practices.

« RESTful Path Design is important to allow ONAP Operators be able to
rapidly perform CRUD on Policies for different domains, models, etc.

« AP| can be developed in a way such that a Policy Design GUI can
easily be built to drive the API, as well as other components in ONAP

(eg. CLAMP)

C1 THELINUXFOUNDATION

User Experience - Day O

 Starting from an initial minimal instance of an ONAP Platform, an
ONAP Operator must be able to easily create and administer policies
BEFORE any virtual resource/service is on-boarded.
- Infrastructure Policies
- Platform component Policies
- Identity Policies
- Guard Policies

 How should the user experience for this be?

C1 THELINUXFOUNDATION

User Experience - Day O

 Policy UX has 2 options:
- Policy GUI via Portal

- Interactive Command Line
Interface

 Either UX use the same Policy
Lifecycle API

C1 THELINUXFOUNDATION

Sequence Diagram for Day O

X

‘ Policy UX l @
ONAPOperator : Pollcy B
|

|
I 1 Access via Portal or CLI

|
>

|
| alt ' lmport New Model] !
loop / [import Models] :
' I
2 Import a Model
=k >|

| 3 Store Model

|
|
|
|
|
|
|
|
|
|
|
-

... Lo emommmemmemmemmemmaann

loop / I[Create Policies]
' 4 Create Policy from a Model

>

5 Store Policy

? >

ONAPOperator | Policy UX l PoIic;DB

API| path design options

Start from the perspective of models, in which the goal is for the Policy
Framework to be dynamically model-driven.

/models
/models/{model-id}
/models/{model-id}/policies
/models/{model-id}/policies/{policy-id}

Storage would be directly into the Policy Platform Database itself.

C1 THELINUXFOUNDATION

API| path design options

Start from the perspective of domains: governance, ONAP component,
identity. Models are already defined and developed per ONAP Release,
but the flexibility remains to dynamically create new domain models.

/domain

/C
/C
/C

/C

omain/{domain-id}

omain/{domain-id}/mode
omain/{domain-id}/mode
omain/{domain-id}/mode

/domain/{domain-id}/mode

S
s/{mode
s/{mode
s/{mode

-id}
-id}/policies
-id}/policies/{policy-id}

Storage would be directly into the Policy Platform Database itself.

C1 THELINUXFOUNDATION

Lifecycle Flow Diagram

* For Policies NOT
created during SDC
Design, there may be
governance required to
ensure policies injected
into the platform meet
certification/testing
standards.

* Open for discussion as
to whether this level of
functionality would be
necessary for the Policy
Framework

C1 THELINUXFOUNDATION

This is the flow for Policy Lifecycle API

Design Time User Editing

?

(Checkéd out

A single user edits policy

Policy version remain the same

As users check infout a revision

level will be bumped and recorded.

Eg. 1.0.0 R1 would bump to 1.0.0 R2 etc.

When a user creates a new policy
it is automatically checked out.

Only one user can check out
a policy at a time.

Check In|Check Out

(Checked In

No user is editing the policy
when it is checked in

Submit for Certification)Fail or Cancel

(Ready For Certification

User moves it as ready for certification

Certification may be a formal procedure

beyond testing that ensures the service as a whole
functions as desired.

Governance procedures as to who can initiate
this can be setup as desired.

(Certified

Policy is now ready for formal distribution.
This may only apply to service specific policies.

For initial implementation this could also be a
simple check of a button until formal certification
process has been built.

Runtime Policy Deployment

* Policy Lifecycle API should support Deployment of Policy to Groups
of PDP’s

* Day 0 there would be an initial deployment of Policy PDP engines to
support Platform Level Policies

* Policy Lifecycle APl would support the ability to group the PDP
engines to support desired subsets of policies

C1 THELINUXFOUNDATION

Policy Deployment

Runtime Policy Deployment

. | PolicyUX l PAP : | PolicyGroup1 '
e A PO|I0y PDP Group ONAPOperator Pollcy B

could be a | 1 Access via Portal or CLI)E
combination of
different PDP

|

' 2 Organize PDP Groups ;

i
|
|
|

| |

loop / [Organize PDPs into Groups] !
|

|

|

|

|
' 5 Push policies

Engines or could - > |

. ' ' 3 Store Group Information
consist of a set of j ! ; >
the same PDP loop) [For Each PDP Group]
engines. ' 4 Select policies > :

>

|
|
|
|
|
|
:
: |°°E / [Policy Distribution]
|
|
|
|
|
|
|
|
|

6 Pull Group Information

7 Distribute Policies

>

|
|
|
|
|
|
|
|
|
|
|
|
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
1 |
| |
' 8 Pull Policies !
f(J

| |
ONAPOperator ; PolicyDB .
R | PolicyUX l PAP | PolicyGroup1 '

C1 THELINUXFOUNDATION

APl Path design options

/groups/

/groups/{group-id}

/groups/{group-id}/policies
/groups/{group-id}/policies/{policy-id}
/groups/{group-id}/pdps
/groups/{group-id}/pdps/{pdp-id}
/groups/{group-id}/pdps/{pdp-id}/policies
/groups/{group-id}/pdps/{pdp-id}/policies/{policy-id}

C1 THELINUXFOUNDATION

Next steps

* ONAP Operator has done the following:

- Instantiated a minimal ONAP Platform that had at least the Policy Platform
loaded (Portal, AAF, Dmaap, an initial set of PDPs, etc.)

- Uploaded any desired Policy Models
- Created desired Policies
- Deployed Policies to PDP Engines

* Ready to start Onboarding VNFs and Designing Services

C1 THELINUXFOUNDATION

Resource Onboarding via SDC

* Vendor VNF Policies already defined, packaged and uploaded into the
SDC Catalog

- Some policies should not be changed, whereas other policies are
“Recommended”

* Provide Policy Lifecycle API to translate some Vendor Policies

- Eg. Vendor recommended self-serve policies need to be translated into
Operational Policies. Optimization can be performed

* Provide ability to provide additional policies for the VNF
« Storage would be in the SDC Catalog, follow SDC design governance

C1 THELINUXFOUNDATION

Resource Onboarding Flow

 Policy artifacts may simply be
models, not actual runtime
policies
- Affinity and Anti-Affinity
- Homing and Placement sDC PAP
- Operational Policies Designer VNFPalckage SDC_Catalog

Policy Lifecycle - Resource

|
1 Logs into SDC UX

>

2 Upload VNF

>
3 Stores VINF Package CSAR
|

|
|
|
1
|
|
I
|
|
|

b o - e e e e - - - -

|
|
I
|
| >
loop / [Policy Administration] l |

|
Y | | | |
' 4 Create Policy based'on Vendor Recommendations | |
|
l

| i u » 5 Stores Policy artlfacts

| |
Designer a VNFPackage SDC_Catalog PAP

C1 THELINUXFOUNDATION

APl Path design options

* Policy Lifecycle API could provide a simple interface to the SDC Catalog
to present list of Vendor Policies

/resources

/resources/{resource-id}
/resources/{resource-id}/vendor-policies
/resources/{resource-id}/vendor-policies/{policy-id}

 Policy Lifecycle API add ability to add Policies and/or update policies.
Open question as to what the design for this would be.

/resources/{resource-id}/policies
/resources/{resource-id}/policies/{policy-id}

C1 THELINUXFOUNDATION

Service Design via SDC

 Service Designers would be utilizing the Policy Lifecycle API to
CRUD Service Level policies.

* Policy Lifecycle APl will be able to take into account all the Policies
for the VNF’s and Service

 Stored in the SDC Catalog as artifacts
- Control Loop Config and Operational Policies
- Homing and Placement Policies

C1 THELINUXFOUNDATION

Service Onboarding Flow

* Policy artifacts may simply be
models, not actual runtime
policies

- Homing and Placement Policies
- Control Loop Policies (via CLAMP)

 Stored in the Service CSAR Designer Service SDC_Catalog
| 1 Logs into SDC UX

Policy Lifecycle - Service

 NOTE: Service design would also :
include composition of certified |
VNF Resources. Not shown. :

>
2 Create Service

3 Stores the Service
T >

loop / [Policy Administration] |
|

PENR R . JE—

|
K I
' 4 Create Service Level Policy ! ! |
|
|

| | |
Designer Service SDC_Catalog PAP

C1 THELINUXFOUNDATION

Resource and Service Policy Distribution and Deployment

* Policy Platform would require integration with SDC Distribution API

* Policy Lifecycle API will provide the ability to translate Policy artifacts
In a service into runtime policy (if necessary)

* Policy Lifecycle APl would deploy Resource and Service policies to
PDP Groups

- 2 Options for PDP Groups (open for discussion)
1. May be deployed before the Service is distributed
2. Deployed as part of Service distribution

C1 THELINUXFOUNDATION

Policy Deployment

Runtime Flow

)) SDC PAP - PolicyGroupli ONAPOperator PolicyUX
ServiceDesigner SDC_Catalog Pollcy B

| U I | U U U
I | | I I I I I
1 1 Access SDC via Portal _1 I [| | | |
r Vol | I I I I I
| —_— . | | | | | | |
1 2 Distribute Service ! i | | | | |
T Cal] | I I I I I
: 1 3 Pull Service _ | | : | | |
I | I I I I I
\ | 4 Notification Service Distribution \: \ \ : |
| i] El] | | | |
: : loop) [iterate Policy Artifacts] | : : :
I | T I I I I I
! I 1 _ 5 Pull Policy Artifact I | | |
| | i 4 | | | |
: : | | 6 Translate to Runtime | \ | |
I | l | l | \
I | | I I I I I
: ! ! ' 7 Store Runtime Policy ! : ! :
I | I I I
: | | | 8 Initiate Policy Deployment : : : :
I | | I I I I
I | | I I I I . I
! ! ! ! ! ! 1 9 Access via Portal or CLI 1
I |] | 1 1 | |
: : : I°°E / [Organize PDPs into Glh'oups] : : :
| X X \ | | ! 10 Organize PDP Groups >:
I | | I I I I I
! ! ' I 11 Store Group Information _ ! [I |
I | | L ;' I I I
l | | 1 : . . :
! ! ! loop / [ForEach PDP Group] ! ! ! :
! ! ! ! ! ! ''12 Select policies !
I | | I I I L ;l
I | | I I I I I
! ! ! ' _ 13 Push policies ! ! ! !
I | | I‘ | | I I
| X X loop / [Policy Distribution] | : \ |
| \ \ 1 14 pull Group Information _ | | | !
| | | | 7 [| |
\ X X { 15 Distribute Policies ! o : |
I | | I I ’l I I
! ! ! ! :(16 Pull Policies ! ! !
I | | I I
I | |

, I . 1 |] . I]] [}

ServiceDesigner SDC SDC_Catalog PAP PolicyDB PolicyGroup1 ONAPOperator PolicyUxX
. B B

C1 THELINUXFOUNDA

Thank You!

 Pamela Dragosh has 27 years experience in designing and building
software platforms in AT&T Research. Her projects have ranged from
speech recognition, text-to-speech, digital rights management, music
encryption, big data, location-based services, software defined
networking, and policy platform. Pam has open sourced several
projects including XACML 3.0 Policy Engine, OpenAZ Apache, and is

currently the Project Technical Lead in ONAP for the Policy
Framework Project.

C1 THELINUXFOUNDATION

