
How to Setup a Development 
Environment for ONAP

Victor Morales

December	12th,	2017



Agenda

• Problem statement
• Proposed solution
• ONAP on Vagrant
- Installation process

• Key features
-Why Vagrant?
- Synced Folders
- Plugins
- Shell Provisioning

• Architecture
• Usage
• Benefits



Problem Statement – Multiple Developer Guides

• Every project has their own methods and/or guides for creation a 
Development Environment
- A&AI Developer Environment Setup 

(https://wiki.onap.org/pages/viewpage.action?pageId=10782088) 
- Building & Testing APP-C Component Locally 

(https://wiki.onap.org/pages/viewpage.action?pageId=6590586)
- DCAE Controller Development Guide 

(https://wiki.onap.org/display/DW/DCAE+Controller+Development+Guide)
- Development Environment for SO (https://wiki.onap.org/display/DW/Development+Environment)
- Portal Build Instructions (https://wiki.onap.org/display/DW/Portal+Build+Instructions)
- OpenECOMP SDC Developer Guide 

(https://wiki.onap.org/download/attachments/1015849/OpenECOMP_SDC_Developer_Guide.pdf?v
ersion=1&modificationDate=1499061898000&api=v2)



Problem Statement – Heterogeneous deployments

• Dependencies and instructions omitted or assumed in development 
guides

• Unable to quickly replicate a fresh environment for validation of latest 
changes on the project

• Documentation requires a separate task to be synchronized with any 
latest addition on the project



Proposed solution

Host	Machine

Portal

portal-db

portal-wms

portal-apps

Policy

policy-pe

policy-drools

policy-db

policy-nexus

Cloud	Provider

AAI

APPC

DCAE

MSO

MSB

SDC
Virtual	
Machine

Container

Policy Portal



ONAP on Vagrant

Automated provisioning tool for ONAP 
development environments, through 
common development tasks such as: 

• Clones a group of repositories associated to 
specific component.

• Compilation of java artifacts per component.
• Builds Docker images of specific component.
• Deals with networking configuration behind 

corporate proxy.
• Manage dependencies required by 

component.



Installation process - VirtualBox

http://onap.readthedocs.io/en/latest/submodules/integration.git/bootstrap/vagrant-onap/doc/source/install/index.html



Installation process – Libvirt & OpenStack

http://onap.readthedocs.io/en/latest/submodules/integration.git/bootstrap/vagrant-onap/doc/source/features/openstack.html



Key Features



Why Vagrant?

It’s a tool for building and managing 
virtual machine environments in a 
single workflow. With an easy-to-use 
workflow and focus on automation, 
Vagrant lowers development 
environment setup time, increases 
production parity, and makes the 
"works on my machine" excuse a 
relic of the past.



Synced Folders

Enables Vagrant to sync a folder on the host machine to the guest 
machine, allowing you to continue working on your project's files on 
your host machine, but use the resources in the guest machine to 
compile or run your project.



Shell Provisioning

Provisioners in Vagrant allow you to automatically install software, alter 
configurations, and more on the machine as part of the vagrant up 
process. Shell provisioning is ideal for users new to Vagrant who want 
to get up and running quickly and provides a strong alternative for users 
who are not comfortable with a full configuration management system 
such as Chef or Puppet.



Plugins

They are powerful, first-class citizens that extend Vagrant using a well-
documented, stable API that can withstand major version upgrades.



Architecture

• doc – Provides documentation about the 
installation and usage of the tool.

• etc – Allows to persist configuration changes
• lib – Contains common development functions 

to setup and work with ONAP components.
• opt – Shared folder that synchronizes host and 

virtual machine source code changes.
• tests – Used to ensure correct functionality of 

the scripts located into lib folder.
• tools – Helper scripts to facilitate some daily 

tasks.
• vagrant_utils – Script connectors between 
Vagrantfile and lib folder. 



Usage - Demo
$ ./tools/run.sh <app_name>



Conclusion

• This can be used as vehicle to standardize process and dependencies 
through an automated provisioning mechanism.

• Setup a development environment using only a single instruction.
• Adding this tool into a CI/CD pipeline can prevent any compilation 

failure in the future and guarantee building image process works any 
time.


