
ONAP Security using trusted solutions

Intel & Tech Mahindra

Agenda

• Threats overview and Mitigations

• Certificate Management

• Secret Management

Typical Threats in Micro Service Architecture

Threats

Credential Stealing -- Attacker stealing passwords and Certificate private keys
• From images (containers/VMs) – Files in images having credentials
• From captured traffic
• From ephemeral storage disk (swap disk, local disk for temporary storage)
• From memory (After breaking into some vulnerable application)
• From log files that log environment variables
• Images using default user names and password

Denial of Service Attacks
• Resource exhausts
• Kernel exploits

Tampering
• OS/VMM Tampering (by installing sniffing tools)
• Container/VM tampering
• Attacker images resembling genuine images

Data Stealing – Attacker stealing data that could be confidential, privacy information etc.…
• From databases, file systems, thrown-away disks etc.…

Background – Attack examples that happened

Heart bleed attack – Vulnerability in OpenSSL, that expose private keys.
How widespread is this?
The most notable software using OpenSSL are the open source web servers
like Apache and nginx. The combined market share of just those two out of
the active sites on the Internet was over 66%

https://www.symantec.com/connec
t/blogs/how-attackers-steal-private-
keys-digital-certificates

https://blog.netspi.com/stealing-unencrypted-ssh-agent-
keys-from-memory/ - tools to extract keys from memory.

https://wiki.xenproject.org/wiki/Virtual_Machin
e_Introspection - Libvmi that enable VMM Software to

look into the VM memory – Can be used to extract VM secrets.

Implications : Financial loss and brand loss from web
site spoofing, account misuse, money withdrawals and

huge fines.

Onelogin breach – Key
stealing in addition to
authentication breach:

https://krebsonsecurity.co
m/2017/06/onelogin-
breach-exposed-ability-to-
decrypt-data/

https://www.symantec.com/connect/blogs/how-attackers-steal-private-keys-digital-certificates
https://blog.netspi.com/stealing-unencrypted-ssh-agent-keys-from-memory/
https://wiki.xenproject.org/wiki/Virtual_Machine_Introspection
https://krebsonsecurity.com/2017/06/onelogin-breach-exposed-ability-to-decrypt-data/

Mitigations

Mitigations

Threat : Credential Stealing -- Attacker stealing passwords and Certificate private keys
Mitigation :
- Enabling secure communication among services
- Avoiding clear passwords and private keys using secure (HW) techniques. (HW Security include – usage of

TPM, SGX, TZ etc…)
- Avoid using default passwords
- Avoid storing clear passwords and private keys in images
- Avoid passing secrets/password using environment variables and using cloud-init user-data scripts

Threat : Denial of Service Attacks
• Usage of various security techniques such as SECOMP, App-Armor, SELinux to filter out systems calls, provide

mandatory access control for every process in containers.
• Usage of cgroups for all shared resources.

Tampering
• Secure boot, Measured boot with attestation.
• Signed images

Data Stealing
• Encryption of data while storing (in DB, files) and keeping encryption keys secure.

Mitigations

Threat : Credential Stealing -- Attacker stealing passwords and Certificate private keys
Mitigation :
- Enabling secure communication among services
- Avoiding clear passwords and private keys using secure (HW) techniques. (HW Security include – usage of

TPM, SGX, TZ etc…)
- Avoid using default passwords
- Avoid storing clear passwords and private keys in images
- Avoid passing secrets/password using environment variables and using cloud-init user-data scripts

Threat : Denial of Service Attacks
• Usage of various security techniques such as SECOMP, App-Armor, SELinux to filter out systems calls, provide

mandatory access control for every process in containers.
• Usage of cgroups for all shared resources.

Tampering
• Secure boot, Measured boot with attestation.
• Signed images

Data Stealing
• Encryption of data while storing (in DB, files) and keeping encryption keys secure.

Focus Today

HW Security properties

TPM/SGX/TZ – Trusted Execution Environment

HW level fuses – Root keys are different for each chip, Can’t be read by anybody other than the TEE, Factory level
settings, Can’t be modified.

Capability exposed:
- Can generate keys internally (RSA, ECDSA, symmetric keys) – Keys are secured by parent key.
- Perform crypto operations within the TEE (Key is never exposed)
- Migration support (for high availability)
- Even system administrator can’t get the keys from the TEEs (If there is any breach, at the most it is possible to

use the keys, but attacker can never steal the keys)

TPM: Standards created by TCG. Fixed functions as defined by standard.
- Used also for attestation (Quote generation)

SGX/TZ : Programmable, can even be used for any application specific encryption and encoding.
SGX: Possible to multiple TEEs (One for each container/VM or even process).

Certificate Management Service

Secure Communication – Need for Mutual TLS (with Certificate based authentication)

Background

ONAP consists of multiple micro services

Two types of communication among micro services – REST API based and DMAPP publish/subscriber
based communication.

Both use TCP transport

Hence TLS 1.2+ secure communication is good enough. No need for others such as IPSEC.

Need

Protect bad actors stealing the data on the wire
Protect from receiving messages from bad actors
- Secure communication among services that provide
• Mutual Authentication of end points (Mutual TLS)
• Confidentiality, Integrity and non-repudiation of transport
 TLS1.2+ based transport (HTTPS)

Secure DMAPP messages using TLS1.2+ between brokers to
publishers/subscribers. Possible End-to-End encryption/integrity of the data
between publishers and subscribers.

How does Mutual TLS work?

Java HTTPS library and underlying TLS1.2+ classes do support
Mutual TLS (Certificate based authentication)
But, it requires certificate provisioning on each end point.

S1 S2

Secure Communication
(TLS record layer)

Auth:
S1Cert
S1PrivateKey
Peer verification:
S2 CA Cert
Subject name

Auth:
S2Cert
S2PrivateKey
Peer Verification:
S1 CA Cert
Subject Name

Mutual Authentication (as
part of TLS handshake)

Each endpoint is expected to have private key and
certificate with public key signed by CA. This
information is used to authenticate itself with the
peer.

It is also expected to have CA Certificate and subject
names to verify the peer when presented with its
certificate.

Best Practices of Certificate provisioning – End point initiated

S1

Certificate Management Service
(Acts as CA)

1

S1
Service

1

In Micro Services, before it communicates with other
micro services, it needs to get certificate enrolled by CA.

1. Typically at startup, generates an RSA/ECDSA public/private
key pair.

2. Generates PKCS10 CSR (Certificate request) – Which involves
signing the message with private key.

3. Request Certificate by sending PKCS10 request to CA.
4. CA verifies that genuine service is requesting for certificate,

verifies PKCS10 request, generates X.509v3 certificate, signs
it using CA certificate-private key.

5. Sends signed X.509v3 certificate and CA certificate.
6. Service stores the information.
7. It uses this information during TLS handshake to establish

secure communication channels.
2

3

4

5

6

Secure communication with other
service instances

7
• Good for Micro Services that are long lived.
• Possibility of keeping the private key secure within container

service.
• Good for any workloads (Local/remote)
• Slow startup – Need for certificate auto provisioning.

Best Practices of Certificate provisioning – Middle Man initiated

S1

Certificate
Management Service

(Acts as CA)

1

S1
Service

As part of service instantiation, provisioning service provisions
certificate and private key (either via environment variables,
volume backend, cloud-init)

Provisioning Service is deployed with token/authentication
credentials with permissions that allow CA to issue certificates.

For Every Service instance
1. Generates RSA/ECDSA key pair, generates subject name,

PKCS10 CSR
2. Request signed certificate by sending CSR to CMS
3. CMS verifies the token/auth-credentials, generates x.509v3

certificate and signs it using CA private key
4. CMS sends the x.509v3 certificate to Provisioning service
5. Provisioning service sends certificate + private key to service.
6. Service uses these credentials to create Mutual TLS session

with others

2 3

4

5

6

Secure communication with other
service instances

Provisioning service
(Middle man)

1

• Good for Micro services that are short lived and where startup
performance is very important.

• Disadvantage : Keys are clear

Mutual TLS opportunities among ONAP Components

ONAP Central Orchestrator
(Mutual TLS among its services – SDC, MSO, DCAE, SDN-C, APP-C, POLICY, A&AI, DMaaP, Logging, VF-C)

Macro (CO) Edge

ONAP Child
DCAE

ONAP Child
SDNC/APPC

VNF VNF

Micro Edge

VNF VNF

• Secure communications
among ONAP components in
central location

• Secure communication
between ONAP Child
components in edges to
central orchestrator services.

• Secure communication
between VNFs and ONAP
services (e.g. VES, Netconf)

All require certificate provisioning

Certificate provisioning Proposal – High level flow in ONAP

S1

Certificate Credential
Management Service

with Internal CA

1

S1
Service

7
9

8

Secure communication with other
service

10

ONAP
Operations

1

Auth
Service
(AAF)

2

3

4

5

It is expected that Certificate management and Auth services
are brought up first.

Creating CA Instance (Typically once per deployment)
1. Admin user creates authentication session by passing username/password

OR grant token given by Auth Service.
2. CMS validates the Admin user credentials using Auth Service
3. Admin user instructs CMS to create self signed CA.

ONAP (Rest of) Service instance bring up (Getting the CMS-
token)
4. Operations Admin provides username/password or Auth grant token to CMS

to get the CMS-token.
5. CMS validates the credentials with Auth Service.
6. CMS returns the CMS-token.
7. CMS-token is passed to Service as part of its bring up

ONAP Service Certificate provisioning (Service startup time)
8. As part of bring up, generates RSA/ECDSA key pair and PKCS10 (CSR) request.
9. Sends PKCS10 CSR with CMS-token to CMS. CMS validates the token. If valid

generates certificate and signs it with its CA. Returns certificate and CA
certificate.

ONAP TLS Communication
10. ONAP service uses certificate and private key during TLS handshake

6

Answers to Security Concerns

S1

Certificate
Management Service

with Internal CA

1

S1
Service

ONAP
Operations

Auth
Service

In-Transit security
- TLS 1.2 (even for communication among CMS-to-Auth,

ONAP Operations-to-CMS, Service-to-CMS etc.…

Authentication:
• Between Service-to-CMS : CMS-token, Certificate of CMS
• Between ONAP Operation-to-CMS : Grant-token given by

Auth-Service/UN+PWD and Certificate of CMS.
• Usage count of CMS-token to 1 and very low life time.

Additional Authentication:
• Using MAC addresses/IP addresses

Security of Private keys + UN+PWD:
• HW based Security : TPM/SGX/TZ.
• Private key is not exposed even in memory.

Vault with
TPM/SGX

Vault with
TPM/SGX

Vault with
TPM/SGX

Certificate Credential Management : Architecture Blocks

Internal CA
Service

Certificate Credential
Management Service

HashiCorp
Vault - PKI

Certificate
Client
agent

Java Sun PKCS11 Provider

SoftHSMv2
TPM

Plugin
SGX

Plugin

Vault Plugin
Custom CA

Service Plugin

External CA
Service

TPM/SGX
Plugin

Existing
ONAP Service

logic

SW store

Certificate Credential Management : Architecture Blocks with sidecar

Internal CA

Service

Certificate Credential
Management Service

HashiCorp
Vault - PKI

Vault Plugin
Custom CA

Service Plugin

External CA
Service

TPM/SGX
Plugin

pod

Existing ONAP Service
container

Side car
Certificate

Client agent
Proxy (e.g.

envoy)

Openssl

SoftHSM

SGX/TPM

Internal Certificate Management service- Requirements

1. RESTful API support for Certificate request agents
• Generate Certificate request
• Revocation status request
• Usage report update
• Token Authentication

2. Admin interface
• Generate self signed CA
• Upload CA cert + CA private key (In PEM/DER)
• Get usage report on per key
• Revoke certificate
• Get CA Certificate in PEM/DER format.
• Token Service to provide temporary tokens

3. Authenticate user using AAF
4. Role based access control using AAF
5. Settings using Distributed KV Store
6. Service registration using MSB
7. Reports and Logs
8. GUI/CLI support using Portal and CLI

• Security of CA private key – Using TPM/SGX/Trustzone
if available.

• Ability to add new CA plugins to talk to deployment
specific CA service.

• policy support such as algorithms allowed(For
example to support NIST specified algorithms such as
RSA 3K)

• Future:
• Multiple CA instances
• Validation of Genuine HW of client agents
• Validation of attested OS
• SCEP Support for Certificate enrollment.
• OCSP support for Revocation status.
• High availability of CMS/CA.
• Additional Authentication mechanisms – JWT,

AWS, GCP, K8S Service accounts, vendor cert/key
etc…

Certificate request agent requirements

1. Ability to generate RSA/ECDSA key pair using PKCS11
interface

2. Secure storage of private key : Ability to use HW
security under PKCS11 if TPM/SGX is available.

3. PKCS10 CSR generation
4. Communication with CA over REST API
5. Java Client and Python Client support
6. Periodic generation of usage report.
7. Service discovery of Certificate Credential

Management service.
8. Certificate renewal

Secret Management Service

Secret Service - Need

Background

Many services still use password based authentication – Various database servers, Publish/Subscribe
brokers, Log Service, VIM and many more…

Passwords are stored in files in many services.

With many services and service instances, attack surface area is becoming very big.

Need

Avoid passwords sprawl in files.

Avoid passing passwords via environment variables to services

Avoid clear passwords in storage.

Secret Server is nothing new….

K8S Orchestrator has built in Secret Server
- As an admin/user, create a secret in secret server, get the secret reference.
- Puts these references in yaml files instead of actual secrets.
- K8 controller on demand basis (while bringing up the POD), creates file system volumes with secrets

using secret references.
- Application in Pods read the secrets from volumes.
- Volumes disappear when POD exits.

Openstack deployments typically have Barbican to store secrets.
- Secrets can be created using Barbican APIs. Reference to secret is returned.
- These references are passed to Openstack services.
- Secrets can be retrieved by calling Barbican APIs by services on demand basis.

Secret Service - High level Requirements

1. Shall be able to support multiple secret domains. (New key for every secret domain)
2. For each domain, multiple secrets can be stored.
3. Each secret can have multiple key value pairs
4. Each domain is associated with various policies.
5. Configuration of roles to permissions (policies)
6. Configuration of subject names (with wildcard, prefix) to permissions (policies)
7. Authenticate users with AAF
8. Certificate authentication
9. Issuing token with permissions (assigning policies that this token has permission to)

upon successful authentication.
10. Key life cycle management (Keys used for every secret domain) – Key rotation, Key

expiry, Key archival, Key deletion/destruction.

Secret Server – High level flow in ONAP

S1

Secret Management
Service

1

S1
Service

1

Auth
Service
(AAF)

2

3

4

5

It is expected that Certificate management and Auth
services are brought up first.

Creating Secret Domain
1. Admin user creates authentication session by passing

username/password OR grant token given by Auth Service.
2. SMS validates the Admin user credentials using Auth Service
3. Admin user instructs SMS to create secret domain (Policies, CA-

Cert, Set of Subject name prefix to allow vs permissions)

Service instance bring up (Assumes that service already
got the certificate provisioned)
4. Service makes Secret service request via TLS. (Create Secret/Read

Secret)
5. SMS validates the certificate credentials, if valid and if policy allows

it, perform the operation. Also, create and return SMS-token for
future operations.

6. SMS returns the results

Service uses secrets for service specific processing

6

Secret Service: Architecture Blocks

Secret Service
Service

Secret Management
Service

HashiCorp
Vault

Secret Client agent

Vault Plugin
Custom Secret
Server plugin

External
Secret Service

TPM/SGX plugin

s

Q&A

Why not use istio

Istio (istio.io) is service mesh project, has all the features required for service/service-
instance with versions/ registration, discovery, load balancing, Mutual TLS security
with certificate credential provisioning

Challenges with istio:
• Yet to mature.
• Closely works with Kubernetes – Since ONAP may be also orchestrated via

Openstack and others, this could be impediment.
• Security does not start from application : There is sidecar container in every POD

which runs envoy HTTP proxy. Security starts from the envoy. Communication
data between application container and sidecar container is in clear.

• CA software – Seems basic, may be good enough. Also, need to check how CA
private key is stored securely.

• Support for new protocols (beyond HTTP) – Needs to upgrades to Envoy container

What are secret backend candidates

Choices:
- K8S Secret Server,
- Barbican
- Vault

K8S Secret Server:
- Tightly integrated with K8S, if ONAP needs to be brought up using other orchestrators, then this could be an

issue.
- Secrets in the secret service are not protected.

Barbican :
- Good architecture, but….
- But only used in Openstack, Maturity/Scalability may be a concern. Community support is limited

Vault: (Recommended)
- Good architecture and well supported
- Widely used in multiple projects.
- Quorum based master key, but can be enhanced to use TPM/SGX/HSMs for hardware level security.

Secret Service - Requirements

1. RESTful API support
• Adding secrets
• Deletion of secrets
• Update secrets
• Token Authentication for above operations
• User name/password based authentication too

3. Authenticate user using AAF
4. Role based access control using AAF
5. Settings using Distributed KV Store
6. Service registration using MSB
7. Reports and Logs
8. GUI/CLI support using Portal and CLI

• Security of secrets via AES encryption
• Usage of AES-256 based master key – Plugin approach

to secure master key (e.g.. TPM/SGX/HSM/TrustZone)

