
State, Context, Adaptability, and Scale 
for Self-Learning Closed Loop Policies
Liam Fallon
Sven van der Meer
John Keeney

12th December	2017



Quality Attributes for a Policy Framework

The Attributes
• State: Keep track of where we are and what we’re doing
• Context: Keep track of what’s going on around us
• Adaptability: Able to be changed and to change in response to where 

we are, what we’re doing, and what’s going around us
Whilst allowing
• Scale: The ability to do the three bullets above while increasing and 

decreasing our capacity depending on the load
With the ultimate goal of
• Self-learning: Harnessing and governing machine learning to provide 

learnt policies



• Analytics, Control and 
Orchestration becoming 
complex

• Policies in Control Loops were 
static, unstructured, and in silos

• Policy Program
- Established well founded theory

for policy in Closed Loops
- Developed a pre-production 

policy system to apply that theory 
in practice

Policy for Closed Loops, Work since 2012

COMPA, a reference architecture 
for closed loops
Control, Orchestration, 
Management, Policy, Analytics



UNIFIED Policy Theory (UPT) 
PRIMER

For	full	details	on	Unified	Policy	Theory,	see	our	
research	papers	in	the	APEX	project	in	ResearchGate



Policy Patterns and Roles



Unified Policy Model



Policy Transformations



Policy Matrix



Applying Unified Policy 
Theory in a System



Practice
• An editor to create policy models
• An engine to run policy models
• Control of state and context
• Features
- Context defined at run time using 

metadata
- Logic loaded at run time
- Policy Deployed as metadata
- Policies/context distributed for scale

Theory
• Harmonize policy models
• Provide single execution 

environment
• Facilitate conflict processing
• Features
- Context aware
- Adaptive logic selection
- Flexible clustering options
- Flexible deployment options
- Flexible policy deployment

Concept & Implementation



• Flow: Trigger → Engine → Policy → Engine → Actioning System
• Context: in all events, per policy type, global (r/w), external (r)

Adaptive Policy Engine: Event Flow & Context



Policy Environment Components & Flow



The Universal Policy Theory (UPT) Policy Model 
as UML



The UPT Policy Model mapped to a Policy System



Engine Execution Model



Engine Configuration and Plugins



Distributed Context for 
Policy



• Policy work required context sharing across policy engines
• We wanted structured context just like what’s available in management models
- Think MIBs, Yang objects, UML classes, Java Beans, XML entities, JSON objects, …

• We went looking for a model distribution system that
- Provides distributed context (somehow classified information)
- Supports locking
- Supports monitoring
- Supports persisting

• No such distributed context framework existed

Distributed Context for Policy



• Numerous frameworks for distributing unstructured hash maps
- Distribution of maps of objects keyed by objects
- E.g.: Hazelcast and Infinispan

• Some frameworks for locking
- Transactional frameworks such as Narayana (Jboss JTA implementation) are slow

• and very expensive in resource usage
- No locking support on specific entries on distributed maps
- No integrated persistence support
- No integrated monitoring of CRUD operations on map entries

Distribution Frameworks



• We decided to build a system for context that had strong structure support (just 
like MIMs)

• Provides an interface to users to define highly structured context
• Provides an interface to users to read, write, create, delete, persist, lock, and monitor 

context
• Provides a plug-in architecture that allows existing distribution, locking, persistence and 

monitoring frameworks to be used
• D-MIM users can use distributed MIM maps

• transparently on multiple processes, hosts, and geographic locations
• Changes to one D-MIM copy are propagated to all others
• Unified monitoring is supported
• Unified locking is supported

Distributed MIMs



Distributed MIMs (D-MIMs) in Policy Engines



D-MIMs in a Distributed System



Distributed MIM instances on Hosts



Applying to ONAP



UPT and UPEE in ONAP

• A model for policies and policy engines
- Drools and beyond Drools, state handling
- XACML engine, stateless

• UPM model distribution using ONAP Policy Framework
• D-MIMs and Context in Drools/plugin for Drools?
• Editor integration for policy authoring
• Context and conflict
- Design time
- Deployment time
- Runtime identification
- Runtime mitigation





ADDENDUM:
Some Policy Terminology



• A Policy Engine is responsible 
for executing policies
- Receiving triggers
- Execute relevant policies
- Receive actions from executed 

policies
- Return / forward them
-With all “-ities: scalability, 

performance, security, …

• Policy is an artefact that governs 
the choices in behaviour of a 
system
- Separation of mechanism from 

policy
- Has capabilities, defined in a 

specification, explicit / implicit trigger
- Has multiple, partially relative, 

dimensions
- Example for choices: in Network 

Management choices are operations 
on managed objects

Policy & Engine



• A Policy Application realizes a 
policy system
- Builds / implements functional 

and non-functional capabilities

• A Policy System controls and 
manages life cycle of policies
- Functional and non-functional 

capabilities
- Life cycle

• Authoring
• Deployment
• Execution (using the engine)

System & Application



Adaptive Policy
• Can change its 

decision making 
behavior

• Based on an 
internal activity
- inside the policy

• Fewer policies: 
same policy, 
multiple behaviors

• Policy can adapt to 
target shifts

Adaptable Policy
• Can change its 

decision making 
behavior

• Based on an 
external activity
- outside the policy

• Fewer policies: 
same policy, 
multiple behaviors

Context-aware Policy
• makes different 

decisions based on 
context information

• static decision-
making behavior

• Fewer policies: 
same trigger, 
different context

Policy Variants
Context-aware, Adaptive & Adaptable

Policies	are	more	flexible



Adaptive Policy
• Change on 

automation target 
resulting in 
new/altered context

• Set policy 
parameter/state 
logic due to policy 
internal context

• Change state logic

Adaptable Policy
• Non-context-aware
- Set policy 

parameter
- Set policy state 

logic
• Context-aware 

(trigger/external)
- Based on context, 

set policy 
parameters and/or 
use different policy 
state logic

Context-aware Policy
• Different trigger 

context results in 
different situations

• External context as 
part of situation or 
decision making can 
change decision

• Not understood 
context might signal 
shift in automation 
target

Policy Variants
Context-aware, Adaptive & Adaptable




