ERICSSON

NM ‘LAB

State, Context, Adaptability, and Scale
for Self-Learning Closed Loop Policies

Liam Fallon
Sven van der Meer
John Keeney

12th December 2017

Quality Attributes for a Policy Framework

The Attributes
« State: Keep track of where we are and what we’re doing
» Context: Keep track of what's going on around us

« Adaptability: Able to be changed and to change in response to where
we are, what we’re doing, and what's going around us

Whilst allowing

« Scale: The ability to do the three bullets above while increasing and
decreasing our capacity depending on the load

With the ultimate goal of

 Self-learning: Harnessing and governing machine learning to provide
learnt policies

CI THELINUXFOUNDATION :“DWIW\IWAP

-

Policy for Closed Loops, Work since 2012

 Analytics, Control and

P Orchestration becoming
complex
Models Ctalogs e * Policies in Control Loops were

static, unstructured, and in silos

* Policy Program

- Established well founded theory
for policy in Closed Loops

COMPA, a reference architecture - Developed a pre-production
for closed loops policy system to apply that theory
Control In practice

Management, Policy, Analytics

£1 THE LINUX FOUNDATION @©ONAP

OPEN NETWORK AUTOMATION PLATFORM

UNIFIED POLICY THEORY (UPT)
PRIMER

iy For full details on Unified Policy Theory, see our
R research papers in the APEX project in ResearchGate

Policy Patterns and Roles

Common . Trigger Input > : Output ,l: Action >
Policy Component Balicy Component
i/f i/f i/f i/f
Trigger Input Output Action
Mechanism | | So————> : Policy : | ======D> | | \echanism
Trigger System | | el e ; FEERloes Action System
Policy Complex Event / \ Controller
Pattern Processing | Models Mechamsms Repositories 5
: i Domain Authoring Policies i Orchestrator
Analytics ; Semantic V&V Meta Data ;
System ! Information Deployment Context : | Choreographer
i Data Triggerring Knowledge i
eoe l Context Runtime Ontologies i e6oe
Behavior Inference Domain Obj |
Context Knowledge Design
Concepts {Awareness} [Engineering] {Patterns} {DDD/DSLJ [OODA]

PN

I THELINUX FOUNDATION) DNAP

Unified Policy Model

Policy Models (examples)
Action/Obligation Authorization Functional

Universal Policy Model (UPM)

i
i
.. ! Intent Info Filtering Ontological
. Reference Model for Policies i Adaptive (MEDA) Delegation Context-aware
Domain T 1 (RM-Pol) i DEN-ng/SUPA/SID Refrain Domain-based
Model i Promise, Goal Role-based PCIM, CIM
H : : H ! OODA Composite Business Rules
(DM) Appllcatlon POIIcy DM POIICy Model i Utility Function Meta Production Rules
DM (ADM) (PDM) i Decision Tables Constraint Logic-based
| OMG SBVR/DMN Configuration Declarative,
) U PR SSNIBRERS | DECCENEy e
' i Policy Languages (PL, examples)
, Ponder1&?2 WS-Policy Procera (SDN)
! N3, Turtle CC, MPEG-21 Bell PDL
‘{ Template (Tpl) E KAoS, Rei P3P, APPEL OMG FEEL
i (WS/Geo)XACML JSR94 /331 PFDL, CIM SPL
| Author-X, ODRL PERMIS EPAL, ASL
~{ DM-DSL | lTransformation ! XACL, SAML, SPL ACEL, AIR VALID
Rule (TR) I XrML, LDPL, OSL WIQA-PL RPSL, PAX
1 Chef, Puppet uUDDI, PLUS LDF SRL, PPL
| Cfengine SELinux CIL ...
-_-__-__-__-__--_-__--__-_--__-_, _________ H Universal
Authoring Sonres Pl ﬁM—TpI Policy Transformer (PTr) ., Exetutnble
System ﬁ_’ i i Policy Specification \
Yy [PL-TR Policy Rewriter (PRw) (UEPS) |

UEPS
Repository

Triggering Stimulus Event Universal Universal Policy Engine (UPe)
System D I-?r?ghlf'n\é | Universal Policy Executor (UPx) i [l(|*] Becuien
Cluster |!Execut'ion Strategyl] |ILogic Executor F]: » Environment
Agysigimng Response Event (UPec) : C°ﬁ)‘:'e "ggﬁéﬁc{;e
C < Universal Policy Execution Env (UPEE) Runtime

£1 THE LINUX FOUNDATION @©ONAP

| e e

Policy Transformations

Source. POIICIe.S Source policies, original format,
u I7| u I7| specific authoring tools

Transformation engine, using
templates & transformation rules

Universal Policy Universal policy specification,

i : harmonizing processing (e.g. conflicts
Specification &execuﬁongp g(eg)

Universal policy execution &

ﬁ Universal Po||cy Engine ﬁ connection to stimulus (e.g. trigger)

Stimulus Response & response (e.g. actioning) systems
(e.g. Trigger) (e.g. Actions) P (8) sy

CI THELINUXFOUNDATION :.:DNAP

Policy Matrix

Stimuli Policy Ingredients Response
Information - - Class, Type
Semantics Purpose / Model Context . Flavor/States/Tasks ass, Yp
Configuration Create / Configure |: No Context : Simple / God (s/s/t) - Obligation
something should happen Obligation, Promise, Intent only simple events 1 state, 1 task how should it be done

Report Repair i | EventContext | |Simple Sequence (s/+s/t) - Authorization
something did happen Obligation, Utility, Goal ' | only events with context | : sequential, n states, 1 task each what must be permitted
Monitoring Mitigate / Permit | i | Policy Context, ro | i | Simple Selective (s/s/+t) = Intent
something does happen Obligation, Authorization for policy class, read-only 1 state, n tasks what should be done
Analysis Escalate / Delegate |:| Policy Context, w | Selective (s/+s/+t) = Delegation
why did something happen Refrain, Delegation for policy class, writable sequential, n states, m tasks each who should do something
Prediction Prevent / Enforce || Global Context, ro | i | Classic Directed (d/+s/t) Fail / Error
what might happen, next Adaptive, Utility, Goal : everywhere, read-only : directed, n states, 1 task each logic? engine? context?
Feedback History / Experience | i | Global Context, w | i | Super Adaptive (d/+s/+t) - Feedback
why did something (not) happen Context-aware, Meta everywhere, writable directed, n states, m tasks each why this decision
epends on trigger purpose should match stimuli, select one matching select one that suits application epends on actioning
d d 1 hould h stimulj, 1 h I h / d d
system capabilities models are examples purpose and model (except when adaptive models) system capabilities

FITHELINUX FOUNDATION '©® ONAP

N e oy

APPLYING UNIFIED POLICY
THEORY IN A SYSTEM

Concept & Implementation

Theory
* Harmonize policy models

* Provide single execution
environment

* Facilitate conflict processing

» Features
- Context aware
- Adaptive logic selection
- Flexible clustering options
- Flexible deployment options
- Flexible policy deployment

CI THELINUXFOUNDATION

Practice

* An editor to create policy models
* An engine to run policy models

« Control of state and context

 Features

- Context defined at run time using
metadata

- Logic loaded at run time
- Policy Deployed as metadata
- Policies/context distributed for scale

PN

Adaptive Policy Engine: Event Flow & Context

* Flow: Trigger — Engine — Policy — Engine — Actioning System
» Context: in all events, per policy type, global (r/w), external (r)

I
[
Stimulus Event Policy Response Event

(e.g. Trigger) (e.g. Actions)
))) State 1) State 2 State n)))

t F i || Task Selection|| i || Task Selection :{o> oo ':{>I Task Selection|| | r r

Y Yet e | €| ec |e° e|__lec |e e | _logic | e e e))
t t j Task j Task j Task
c)¢ ¢ ¢ ¢ c cce c
Context C

£1 THE LINUX FOUNDATION @©ONAP

ooooooooooooooooooooooooooooo

Policy Environment Components & Flow

Stimulus Event

Adaptive Policy Engine (AP-EN)

Response Event

(e.g. Trigger) Policy (e.g. Actions)
) — > | State 1 | => | State 2 | 5. >%ee> | State n | = ||| o> =————x=>
>) |)
5 \v4 5
: Contextl;
Task Policy v
Design Authoring Adaptive Adaptive Policy Context
Policy 1 Knowledge |€TTTTTTC *| | Coordinator | Adaptive
VKNS Follisy Deployment Base (AP-KB) I Policy
B P°"CV; (AP-DEP) T Context
v ¥ Context I (AP-CTX)
Repository | |Repository ' A
: '&ﬁl@ﬁf

Adaptive Policy
Authoring (AP-AUTH)

CI THELINUXFOUNDATION

Adaptive Policy
Meta-Data

Context -
Sources

L" TTTTTTTTTTTTTTTTTTTTTTTTTTTT

The Universal Policy Theory (UPT) Policy Model

PolicyDefinition ; . Policy
1..*$ 1% $
StateDefinition K State < > Event
) TaskSelectorDefinition <—— TaskSelector @ ™ TaskSelectionLogic
1*\/ 1.*
—=> TaskDefinition K Task @ > TaskLogic
1.% .
¢ E \ 1
: 0.. \/n
StateFinalizerDefinition < : StateFinalizer 0? StateFinalizerLogic
0.* : .
* A\
ParameterDefinition Parameter

£1 THE LINUX FOUNDATION @©ONAP

TTTTTTTTTTTTTTTTTTTTTTTTTTTT

The UPT Policy Model mapped to a Policy System

T Runtime (AP-EN)
(AP-AUTH)
 statepeincon s S

rosscoroenton
esostorn |

e S—
rramerostorion | Deployment
AP-DEP

CI THELINUXFOUNDATION :‘:DMNMAPW

TaskSelectionLogic

TaskLogic

StateFinalizerLogic

Engine Execution Model

& Policy [“~ PolicyModel > DataType PolicyModel <>*_ ContextMap [Context Model
PolicyFlavour DataType ContextMapType
FirstState Q . Scope
1.*% * *
State trigger 7| Event L6 = fStIaTtek .| Contextltem
DefaultTask @ StateQutput [NameSpace T el WritableFlag
* S) o
T Nexstte Target . 01 DataType
TaskParameter Task ContextltemTemplate || DataType
General Model e — | eblerig
— TaskSelectionLogic Event |@ - Field DataType
State ‘J_ NameSpace DataType
X L) . Source
DefaultTask StateFinalizerLogic Logic Target InputField J
LogicType *
—1> LogicCode .
Task
Task (@ - TaskLogic OutputField
Logic Model Event / Field Model

CI THELINUXFOUNDATION :.:DNAP

Engine Configuration and Plugins

Input System Engine Output System
Stimulus Events . ; . Response Events
Input Options | Event Protocol Options | Output Options
Standard Input Standard i 1SON i Standard Standard Output
APEX engine console read from stdin all 1/0 write to stdout APEX engine console

~ FilelIn I_» Standard XML JSJ(MISJ,\IEL(:N Wﬂf,,?o?]{fa Standard I_» ~ File Out
configured file, local access read from file most 1/0 write to file configured file, local access
Kafka Streams Kafka Pl T e Kafka PI Kafka Streams
Kafka system with topics read from topic(s) Context Handler OptIO ns write to topic Kafka system with topics
JMS Messages IMS PI Java (Std) AVRO PI IMS PI JMS Messages
JMS system with topics read from topic any Java implementation an AVRO specification read from topic JMS system with topics
Websocket Client WS PI Do e S WS PI Websocket Client
any WS application server reads from clients Execution Optlons server sends to clients any WS application
Websocket Server I_» WS PI Java PI Javascript Pl WS PI I_» Websocket Server
standard WS server client reding from server execute Java logic execute Javascript logic client writing to server standard WS server
REST Client REST Server PI | i Jython PI JRuby PI i | REST Server Pl REST Client
any HTTP client Grizzly server execute Jython logic execute JRuby logic Grizzly server any HTTP client
REST Client REST Server PI | MVEL P Custom P :| REST Server PI REST Client
any HTTP client APEX servlet execute MVEL logic any other executor APEX servlet any HTTP client
REST Server I_» REST Client PI REST Client PI I_» REST Server
HTTP server HTTP client : : HTTP client HTTP server

£1 THE LINUX FOUNDATION @©ONAP

ooooooooooooooooooooooooooooo

DISTRIBUTED CONTEXT FOR
POLICY

Distributed Context for Policy

 Policy work required context sharing across policy engines

* We wanted structured context just like what's available in management models
- Think MIBs, Yang objects, UML classes, Java Beans, XML entities, JSON objects, ...

* We went looking for a model distribution system that
- Provides distributed context (somehow classified information)
- Supports locking
- Supports monitoring
- Supports persisting

 No such distributed context framework existed

£1 THE LINUX FOUNDATION @©ONAP

OPEN NETWORK AUTOMATION PLATFORM

Distribution Frameworks

 Numerous frameworks for distributing unstructured hash maps
- Distribution of maps of objects keyed by objects
- E.g.: Hazelcast and Infinispan

« Some frameworks for locking

- Transactional frameworks such as Narayana (Jboss JTA implementation) are slow
* and very expensive in resource usage

- No locking support on specific entries on distributed maps

- No integrated persistence support

- No integrated monitoring of CRUD operations on map entries

CI THELINUXFOUNDATION "‘DNAP

Distributed MIMs

» We decided to build a system for context that had strong structure support (just
like MIMs)
» Provides an interface to users to define highly structured context

» Provides an interface to users to read, write, create, delete, persist, lock, and monitor
context

» Provides a plug-in architecture that allows existing distribution, locking, persistence and
monitoring frameworks to be used

* D-MIM users can use distributed MIM maps

 transparently on multiple processes, hosts, and geographic locations
» Changes to one D-MIM copy are propagated to all others
» Unified monitoring is supported

 Unified locking is supported

CI THELINUXFOUNDATION :‘:DWIW\IWAP

Distributed MIMs (D-MIMs) in Policy Engines

: — E— D-MIM
e D'MlM Edltor P Usage Data
- : D-MIM D-MIM \
D_MIM Object !._._._._ Metadata S = Usage Data = B R T
Repository : :
: ! iMIM Knowledge BGL D-MIM
- ! i Usage
v % Collector
D-MIM Deployer :
D-MIM Object o N
Libraries Lol D-MIM \ i N
\\ ! /| Metadata \‘.\ ! N
1 1 1 . N,
I, ____________________ 1 .:' : \ R EE L L L LR EEERREP SR :,\.\..
1 1 ! \ 1 AR
: (.'. : * Lo \.‘.
I Process ! ! Process Do Process ™.
: ¥ ' : ! AN
! Applications <. D-MIM i Applications < D-MIM : Applications <y D-MM || |
i Manager ! Manager | Manager
|
]| 5| D-MIM Object Library J | | D-MIM Object Library J i__{_5] D-MIM Object Library J
Distributed Processes on Real and Virtual Hosts

.

£1 THE LINUX FOUNDATION @©ONAP

ooooooooooooooooooooooooooooo

D-MIMs in a Distributed System

D-MIM Editor
D-MIM Type || D-MIM Map Application
Authoring Authoring Configuration
B— N ¥
D-MIM D-MIM Item Application
Object - Metadata Metadata D-MIM
D-MIM Object Repository Y / Usage
; D-MIM Map Data
! Metadata D-MIM B-MW'
e O - = 2298
o Usage Data Collector
b D-MIM D-MIM Knowledge Base
o Metadata
D-MIM D-MIM Deployer |
Objects T] : i
Process E Process - Process :
Y Y

{ Distributor I— I Distributor I— App Instance { Distributor I—

App Instance

App Instance
App Instance

App Instance|
App Instance

D-MIMs

App Instance

App Instance

App Instance

App Instance

App Instance

L < D-MIMs)

App Instance
App Instance

I

Monitor

1|

App Instance|—

Monitor }

—

Persistor]

App Instance

— D-MIMs)

App Instance

App Instance

I

App Instance|—

| Monitor

————

| Persisto[|

D-MIM Object D-MIM Object D-MIM Object
T Library I ubrary S | Tl Library

Distributed Processes on Real and Virtual Hosts

N

CI THELINUXFOUNDATION :.ADNAP

Distributed MIM instances on Hosts

|| D-MIM Instance n Process D-MIM || Process D-MIM ||

D-MIM Instance 1

D-MIM Instance 0
[D-MIM Concept Instance)—><____ D-MIM Object Instance0 > Process | D-MIM]| A Process | D-MIM]| :
[D-MIM Concept Instance 1H@M Object Insta@
U Process D-MIM || Process D-MIM ||

|D-MIM Concept Instance nl——)@M Object Instan@ r

Process Process D-MIM || Process D-MIM ||

[D-MIM Instance | [D-MIM Instance |

Process
[D-MIM Instance | [D-MIM Instance | Process | D-MIM]| Process | D-MIM]| l
Host O Host 1 Host n

PN

£1 THE LINUX FOUNDATION @©ONAP

ooooooooooooooooooooooooooooo

APPLYING TO ONAP

UPT and UPEE in ONAP

* A model for policies and policy engines
- Drools and beyond Drools, state handling
- XACML engine, stateless

« UPM model distribution using ONAP Policy Framework
* D-MIMs and Context in Drools/plugin for Drools?
« Editor integration for policy authoring

« Context and conflict
- Design time
- Deployment time
- Runtime identification
- Runtime mitigation

CI THELINUXFOUNDATION

PN

OPEN NETWORK AUTOMATION PLATFORM

ERICSSON

W e OPEN NETWORK AUTOMATION PLATFORM

ADDENDUNM:
SOMEe POLICY TERMINOLOGY

Policy & Engine

* Policy is an artefact that governs
the choices in behaviour of a

* A Policy Engine is responsible
for executing policies

system - Receiving triggers
- Separation of mechanism from - Execute relevant policies
policy

- Has capabilities, defined in a
specification, explicit / implicit trigger

- Has multiple, partially relative,
dimensions

- Example for choices: in Network
Management choices are operations
on managed objects

CI THELINUXFOUNDATION

- Receive actions from executed
policies
- Return / forward them

- With all “-ities: scalability,
performance, security, ...

System & Application

* A Policy System controls and * A Policy Application realizes a
manages life cycle of policies policy system
- Functional and non-functional - Builds / implements functional
capabilities and non-functional capabilities
- Life cycle
* Authoring

* Deployment
« Execution (using the engine)

FITHELINUX FOUNDATION '©® ONAP

‘ OPEN NETWORK AUTOMATION PLATFORM

/

Policy Variants

Context-aware, Adaptive & Adaptable

Context-aware Policy

 makes different
decisions based on
context information

e static decision-
making behavior

* Fewer policies:
same trigger,
different context

Policies are more flexible

CI THELINUXFOUNDATION

Adaptable Policy

« Can change its
decision making
behavior

« Based on an
external activity

- outside the policy

» Fewer policies:
same policy,
multiple behaviors

Adaptive Policy

« Can change its
decision making
behavior

 Based on an
iInternal activity

- inside the policy

» Fewer policies:
same policy,
multiple behaviors

 Policy can adapt to
target shifts

OPEN NETWORK AUTOMATION PLATFORM

Policy Variants

Context-aware, Adaptive & Adaptable

Context-aware Policy

* Different trigger
context results in
different situations

» External context as
part of situation or
decision making can
change decision

* Not understood
context might signal
shift in automation
target

CI THELINUXFOUNDATION

Adaptable Policy

* Non-context-aware
- Set policy
parameter
- Set policy state
logic

« Context-aware
(trigger/external)

- Based on context,
set policy
parameters and/or
use different policy
state logic

Adaptive Policy

« Change on
automation target
resulting in
new/altered context

« Set policy
parameter/state
logic due to policy
iInternal context

« Change state logic

OPEN NETWORK AUTOMATION PLATFORM

ERICSSON

W e OPEN NETWORK AUTOMATION PLATFORM

