
ONAP Service Assurance
VES Onboarding, Requirements & Operations

Alok Gupta
+1 (732)-420-7007
ag1367@att.com
Tom Tofigh
+1 (732)-420-7007
mt3682@att.com

Date , Dec 11th, 2017

mailto:ag1367@att.com
mailto:ag1367@att.com

Current Environment

Why VES?

2

VES Environment
Design Time

Interface Specs => Logic in Fault/PM Sub systems
Design Time

VES Yaml in SDC => Policy => MS (M-HB, Fault)/CLAMP)

Run Time Environment Run Time Environment

 Multiple Collectors
 Need Multiple design-time artifacts
 Mostly Hard-Coded logic, Some Config.
 Self-Service Not supported

 One VES collector for all events
 A YAML Machine Readable Artifact
 Logic is controlled via policies
 Supports ECOMP/ONAP Self-Service

2 – 3 Months Dev/VNF Self Serve, Operations Control Via Policy

© 2017 AT&T Intellectual Property. All rights reserved. AT&T and the AT&T logo are trademarks of AT&T Intellectual Property.
.

VNF

Fault Coll

Metric
Coll

Syslog
Coll

Analytics Ticketing

Fault

Perf

Alarms

Syslogs

VNF VES Collecor

D
M
A
A
P

GOC

Highland
Park

DKaT

D
M
A
A
P

Policy Engine

Analytics Ticketing

Closed Loop
Controller

C

P

P

P

P

Presenter
Presentation Notes
https://wiki.opnfv.org/display/ves/VES+HomeMultiple Collectors with different Interfaces (SNMP, CORBA, FOI (XML,CSV), UDAP) Need Multiple design-time artifacts and Ops Expertise Hard-coded logic – 2 to 6 months development depend on complexityRequires ECOMP development - does not support self-service A single JSON/REST VES collector is used to collect all eventsA YAML design-time artifact to create policies for DCAE micro-services using CLAMPLogic is controlled via policies (managed by Ops) eliminating code changes Supports ECOMP self-service

VES (VF Event Streaming) Progress

3

Future
 Common predictable, flexible, reusable event format for

all VFs => Closed Loop Automation
 Defined by AT&T based on conformance to standards
 Vendor agnostic and Configurable

Current
 Different interfaces and formats requiring

customization (3 to 6 months development)
 Defined by vendors
 Varies by network functions and software releases

 VES Standard
 VES Data Model (1Q2016): The ‘Common Event Format’ => increased automation in the

Management System (DCAE)
 Standardized VES Internal Header Fields (1Q2016): AT&T-internal data created within DCAE

(enrichment, analytics, ticketing, or micro-service) in one data structure
 VES YAML On-boarding Specification (1Q2017): Machine Readable Event Definition with Actions

driving DCAE Flows
 Open Src Contribution/Influence
 VES Agent Libraries – C (2Q2016) and JAVA (2Q2017)

https://gerrit.onap.org/r/gitweb?p=demo.git;a=tree;f=vnfs;hb=HEAD
 Infrastructure Data Collection (CollectD) (1Q2017) - collaboration with Intel

 VES Telemetry for Tenant and Infrastructure
 Holistic Telemetry for Infrastructure: Must include host, hypervisor, vm, switching, data store,

resource pool, data center, EPA, Container (K8s), open stack, Contrail.
 Reuse of DCAE Tools (micro-services, analytics etc.)

© 2017 AT&T Intellectual Property. All rights reserved. AT&T and the AT&T logo are trademarks of AT&T Intellectual Property.
.

Presenter
Presentation Notes
VES Data Model (1Q2016): The ‘Common Event Format’ significantly reduces the effort required to integrate VNF telemetry into VNF management systems like DCAE. Please Note: VES provides a canonical format that process events within DCAE; all legacy event formats map to VES inside DCAE.Standardized VES Internal Header Fields (1Q2016): Keeping the AT&T-internal data associated with VNF events in one data structure (acquired through enrichment, analytics, ticketing, policy or microservice logic).VES YAML On-boarding Specification (1Q2017): The On-boarding YAML registers VES events, supports event validation and enables policy automation.Open Src Contribution/InfluenceVES Agent Libraries (2Q2016)VES YAML Mapping Specification (2Q2017)Infrastructure Data Collection (CollectD) (1Q2017) - collaboration with IntelIn mathematics and computer science, a canonical, normal, or standard form of a mathematical object is a standard way of presenting that object as a mathematical expression. ... In this context, a canonical form is a representation such that every object has a unique representation.

https://gerrit.onap.org/r/gitweb?p=demo.git;a=tree;f=vnfs;hb=HEAD

 Common Event Data Model
 Common Header and

Domain Specific Event
 Extensible for additional

fields or domains
 Collector connection and

data profile established at
VM creation
 Connection/authentication

/profile parameters
injected into VM

 Data profile is fully
controllable, to optimize
telemetry overhead

VES – Common Event Data Model

Common Header

Domain
Timing
VNF Attribute

Acronyms:
KCI – Key Capacity Indicators
KPI – Key Performance Indicators
KQI – Key Quality Indicators
TCA – Threshold Crossing Alert
VNF – Virtual Network Function

Name/Value

StateChange

NewState
OldState
StateInterface

Technology Independent Records

Syslog

Data
Facility
Proc…..

Name/ValueName/Value

Fault

Severity
Source
SpecProb

Heartbeat

…..

Name/Value

VF Scaling

KCI
KPI
VNF Scaling

Name/Value

otherFields

…..

Name/ValueName/Value

TCA Fields

RTCP
Packet Loss
Other QoS

…...............

MobileFlow

RptEndPt
OthEndPt
Flow…...

Name/Value Name/Value

Signaling

SIP/SDP
H.323
Megaco...

Technology Specific Records

Name/Value

Voice Quality

RTCP
Packet Loss
Other QoS

Name/Value

Future Domains

Configuration
Security
Usage

....

© 2017 AT&T Intellectual Property. All rights reserved. AT&T and the AT&T logo are trademarks of AT&T Intellectual Property.
.

Presenter
Presentation Notes
managing VNF health and lifecycleFrom ONAPa Common Event Data Model for the “VNF Event Stream”, with report "domains" covering e.g. heartbeat, measurements (e.g. resource usage), and events (e.g. faults)A YAML-based "VES VNF artifact" that can be used by VNF developers to describe what the VNF produces in VES format, and the significance (e.g. recommended processing/reaction) for those events or events reported from the VNF host. The YAML artifact is used in the creation/configuration of policy microservices that help lifecycle-manage the VNF.VES Agent library enabling VNFs to directly support VES for delivering application-specific measurements and eventsVarious other ONAP components that support the broader goals and end-to-end operation of a closed-loop lifecycle management platform for VNFs. Shown below are examples of these components (generically/abstractly represented here) that might be deployed in a local cloud to enable local closed-loop control as necessary. These include:The DCAE Collector, which receives events in the VES format and publishes them on the ONAP message bus, as well as saves them in a local time-series database.The local message bus ("Data Movement as a Platform" DMaaP) for ONAP componentsVarious DCAE microservices that implement the closed-loop control or other actions (e.g. analytics analysis) based upon the VES events.Various ONAP components that interface with cloud controllers and application controllers for requested policy microservice actions, through the Multi-VIM layer of ONAP. See Multi-VIM FCAPS VES for R1.docx for a concept document addressing these functions.From OPNFVThe Barometer guide to using the Collectd plugin which publishes host measurements and events over a local Kafka bus, with subject "collectd"The Barometer VES Plugin (ves_app.py) which consumes the collectd Kafka events and forwards them in VES format to a pre-configured VES/DCAE CollectorThe VES test collector and other utilities as needed to create an emulated ONAP environment for testing.VES scripts to deploy the local ONAP components as needed for real closed loop tests etc.VES demos that illustrate the VES framework in operation.VES tests that support certification of test VNFs, NFV platforms, and real VNFs as VES compliant for a key subset of closed loop control use cases.

VES OPNFV Demo

 Leveraging ONAP demo VES Agent and Collector
 Demonstrating InfluxDB/Grafana backend
 Covering host, VM, and VNF status/stats
 Showing fault/stats correlation

OpenStack Compute Host

VDU1/2 VM

JSON/REST

VDU3 VM VDU4 VM

VDU5 VM

VES
Collector

InfluxDB

Jumphost
(TripleO)

Tacker /
DockerTerminal

SSH etc

Barometer
Collectd
Agent

Host and VM (libvirt) stats:
CPU, NIC, memory, …

VES C
Agent

ONAP C
Agent

ONAP C
Agent

NGiNX /
Docker

Web Server traffic

Grafana
vLB

(iptables)
vFW

(iptables)

Traffic,
status

CPU, vNIC
stats

CPU, vNIC
stats

OpenStack
Controller

OpenStack Client
API

Nova-compute
Neutron-gw

etc

You Tube Demo Video: https://www.youtube.com/watch?v=Zoxcj4mwUwU

© 2017 AT&T Intellectual Property. All rights reserved. AT&T and the AT&T logo are trademarks of AT&T Intellectual Property.
.

 To enable Self-Service, an on-boarding artifact can be provided
by VNF Vendors, covering
 Which VES event Domains are supported by the VNF’s VES agents
 Optional fields supported, both in the body and as name/value extensions
 Enumeration of Fault events with recommended action to resolution
 Ranges and related Thresholding Crossing Alert/Actions for VNF Measurement fields
 Complex (multi-field correlated) Thresholding Crossing Alert/Actions
 Recommendation based upon single or correlated fields
 Syslog Tag data with recommended actions

VES On-Boarding Artifact (One Document)

All Artifacts at one place (SDC), no need for additional documents; Drives Automation

© 2017 AT&T Intellectual Property. All rights reserved. AT&T and the AT&T logo are trademarks of AT&T Intellectual Property.
.

VES On-Boarding Artifact Use

7 © 2017 AT&T Intellectual Property. All rights reserved. AT&T and the AT&T logo are trademarks of AT&T Intellectual Property.
.

SDC
VES-Onboarding Artifact

All Domains Supported including Optional Fields
• heartbeat – default heartbeat interval
• Fault – all possible faults with recommended

action
• Measurement (KPI/KCI) – with recommended

TCAs
• Syslogs Tags with recommended actions

Policy Creation Framework Design, Closed Loop
Design Creation

Info to DCAE Components
• Event Validation e.g. Domains/Fields supported
• Rough Policies based Vendor Recom. Actions
• Mapping Info or Logic needed by Micro-services
• CLAMP Flows for Closed Loop and Open Loop

VNFC Instantiation/VFC Life Cycle
• User Name/Password
• FQDN
• Configurable Parameters
 - Heartbeat Interval
 - Measurement Interval
 - Configurable Domain Data

Other Portals
• OPs Portal – Electronic M&Ps
• P&E Portal – Capacity Planning Data

Presenter
Presentation Notes
AT&T Service design Creation What is TCAs ? CLAMP FLOWS? Runtime FlowDefined by CLAMP(Clamp Cockpit)

8

ONAP Self-Serve Event Processing Policy Generation POC

SDC

DCAE Design Studio
1) Select VNF
2) Query Policy for confirmation that Reg

YAML has been processed and policies
approved: provide status to user; direct
them to Policy to complete these tasks.

6) Retrieve approved policies from Policy.
7) Add policies to VNF blueprint and

distribute/activate them

Policy Engine
3) Select VNF
4) Pull Reg YAML from ASDC catalog and

process Reg YAML into pending
policies

5) Support policy approval GUIs/process

DCAE DCAE Inv
DCAE

Controller
Service Chg

Handler

VNF/Cloud
Onboarding

Reg
YAML catalog

Blueprints

C : configuration

P : policy

Legend:

Distribute Policies

Policy Scope Includes:
• Threshold Crossing Policies
• Alarm generation policies
• Closed Loop Policies (Restart,

Rebuild, Migrate, Scale In, Scale
Out)

• Correlation policies

Policy Driven Flow – Operations in Control

policies
Design Time Flow

Runtime Flow
Defined by CLAMP
(Clamp Cockpit)

VNF

Cloud
Bare Metal

Guest OS
DCAE

Collector

D
M
a
a
P

MissHB
Micro Service

Fault
Micro Service

TCA
Micro Service

D
M
a
a
P

Policy
Engine

Controller
for Closed

Loop

Ticketing

P

P

P

Clamp Designer
1) Clamp Template

Telemetry from
Tennant &

Infrastructure using
common DCAE Tools

© 2017 AT&T Intellectual Property. All rights reserved. AT&T and the AT&T logo are trademarks of AT&T Intellectual Property.
.

TCA Configuration (One for each TCA being watch and also for complex TCAs)

9

SDC

DCAE DCAE Inv
DCAE

Controller
Service Chg

Handler

VNF/Cloud
Onboarding

Reg
YAML catalog

Blueprints

Micro-Service

Templates
VNF

DM
aa

P

RUBY
AOTS-

TM
Create
tickets

TCA
MS

Vertica

DMaaP

DB Logger

P

DM
aa

P

Policy
Engine

Controller
for Closed

Loop

P
C T T

DMaaP Topic: DMaaP Topic:
• Event Name, Source Name
• Measurement Interval, Metric Name
• KPI Name. Threshold/Critical Watermark
• Direction
• Suppression Period
• Clear Suppression Period

• Operational Policy: Closed Loop Name + Onset or Abated

ScaleOut
???

Supple-
menter

MS
Enricher

MS

A&AI

DM
aa

P

C
VES
Coll DM

aa
P

Event Name:
User Name:
Password:

T T

Values Pre-
Populated

from Yaml or
defaults

Micro-Services to
provide GUI for
Expected Data

© 2017 AT&T Intellectual Property. All rights reserved. AT&T and the AT&T logo are trademarks of AT&T Intellectual Property.
.

C
T
P

Legends
Config
Topic
Policy

•

Policy Update GUI

10

event: {presence: required, action: [any, any, alarm003, RECO-rebuildVnf],
structure: {

commonEventHeader: {presence: required, structure: {
domain: {presence: required, value: fault},
eventName: {presence: required, value: Fault_vMrf_alarm003},
eventId: {presence: required},
priority: {presence: required, value: Medium},
reportingEntityId: {presence: required},
reportingEntityName: {presence: required},
sequence: {presence: required},
sourceId: {presence: required},
sourceName: {presence: required},
startEpochMicrosec: {presence: required},
lastEpochMicrosec: {presence: required},
version: {presence: required, value: 3.0}

}},
faultFields: {presence: required, structure: {

alarmCondition: {presence: required, value: alarm003},
eventSeverity: {presence: required, value: MAJOR},
eventSourceType: {presence: required, value: virtualNetworkFunction},
faultFieldsVersion: {presence: required, value: 2.0},
specificProblem: {presence: required, value: "Configuration file was corrupt

or not present"},
vfStatus: {presence: required, value: "Requesting Termination"}

}}
}}
...

© 2017 AT&T Intellectual Property. All rights reserved. AT&T and the AT&T logo are trademarks of AT&T Intellectual Property.
.

VES SA Proposed E-t-E Architecture

 Create Policies from
YAML Artifact

 Policy Hardening (from
intent to detailed
specification)

 Explore Data Storage
 Build Micro-Services that

can be used by Policies
 Build Flows to Analyze

Data and Take Action

Data Store
(influxDB)

Grafana
Service Design
and Creation

(SDC)
Policy Apps Analytics

Apps

OpenStack Compute Host

VDU1/2 VM

JSON/REST

VDU3 VM VDU4 VM

Barometer
Collectd Agent

Host and VM (libvirt) stats:
CPU, NIC, memory, …

vMRF ONAP VPP
vLB/vDNS ONAP VPP vFW

DCAE
Collector

DCAE/App-C
Controllers

OpenStack
Controller

Nova-compute
Neutron-gw

etc

VES C
Agent

ONAP vLB C
Agent

Traffic,
status VPP stats

ONAP vFW C
Agent

VPP stats

DMaaP

© 2017 AT&T Intellectual Property. All rights reserved. AT&T and the AT&T logo are trademarks of AT&T Intellectual Property.
.

 Enhance the semantics of the Onboarding YAML
Micro-Services to Provide GUI with Data Input. Need

Standardized GUI and API Definitions
 Design Time Flow Creation for a DCAE Flow for every VNF

event
 Use Common Vocabulary between Closed Loop with VES Yaml

Action
 Simple and Intuitive GUI with pre-populated data
 Same Telemetry for Tenant and Infrastructure
 Next Step - Support policy creation via machine-

learning/artificial-intelligence

ONAP Work Items

12
© 2017 AT&T Intellectual Property. All rights reserved. AT&T and the AT&T logo are trademarks of AT&T Intellectual Property.

.

Presenter
Presentation Notes
The current VES yaml artifacts defines a simple and one action recommendation. In reality, recommendation could be multi-step sequence of actions. Action Iem: Working with Policy frame work the Action in yaml needs to address complex multistep actions.Currently Design Studio, Policy and CLAMP work with their own GUIs. With this PoC, the actions defined by Vendors via VES Yaml and vetted by TechOps as final Policies should be considered driving Design Studio and CLAMP with one GUI.We need a generic set of Policies/Clamp Flows that can cover most events. The new flows could include Ticket Create, Notification, Logging.

13

• Backup Material

© 2017 AT&T Intellectual Property. All rights reserved. AT&T and the AT&T logo are trademarks of AT&T Intellectual Property.
.

Registration – vMRF_heartbeat

registration for Heartbeat_vMRF
event: {presence: required, heartbeatAction: [3, vnfDown, RECO-
rebuildVnf],
structure: {

commonEventHeader: {presence: required, structure: {
domain: {presence: required, value: heartbeat},
eventName: {presence: required, value: Heartbeat_vMRF },
eventId: {presence: required},
nfNamingCode: {presence: required, value: mrfx},
priority: {presence: required, value: High},
reportingEntityName: {presence: required},
sequence: {presence: required},
sourceName: {presence: required},
sourceId: {presence: required},
startEpochMicrosec: {presence: required},
lastEpochMicrosec: {presence: required},
version: {presence: required, value: 3.0}

}},
heartbeatFields: {presence: optional, structure:{

heartbeatFieldsVersion: {presence: required, value: 1.0},
heartbeatInterval: {presence: required, range: [0, 600], default:

60 }
}}

}}
...

{
"event": {

"commonEventHeader": {
“domain”: “heartbeat”,
"eventName": "Heartbeat_vMRF",
"eventId": "ab305d54-85b4-a31b-7db2-fb6b9e546015",
“nfNamingCode”: “mrfx”,
"priority": “High",
“reportingEntityId”: “cc305d54-75b4-431b-adb2-eb6b9e541234”,
“reportingEntityName”: “MegaMRFVf”,
"sequence": 0,
"sourceId": "de305d54-75b4-431b-adb2-eb6b9e546014",
“sourceName”: “MegaMRF”,
“startEpochMicrosec”: 1413378172000000,
“lastEpochMicrosec”: 1413378172000000,
“version”: 3.0

}
}

}

Registration Spec Sample Event

© 2017 AT&T Intellectual Property. All rights reserved. AT&T and the AT&T logo are trademarks of AT&T Intellectual Property.
.

Registering EventType: Fault_vMRF_InvalidLicense

registration for Fault_vMRF_InvalidLicense
event:{ presence: required, action: [any, any, invalidLicense, RECO-renewLicence],
structure: {

commonEventHeader: {presence: required, structure: {
domain: {presence: required, value: fault},
eventName: {presence: required, value: Fault_vMRF_InvalidLicense},
eventId: {presence: required},
nfNamingCode: {presence: required, value: mrfx},
priority: {presence: required, value: High},
reportingEntityName: {presence: required},
sequence: {presence: required},
sourceName: {presence: required},
startEpochMicrosec: {presence: required},
lastEpochMicrosec: {presence: required},
version: {presence: required, value: 3.0}

}},
faultFields: {presence: required, structure: {

faultFieldsVersion: {presence: required, value: 1.2},
alarmCondition: {presence: required, value: "Invalid license key"},
eventSourceType: {presence: required, value: virtualNetworkFunction},
specificProblem: {presence: required, value: "The node license key is invalid"},
eventSeverity: {presence: required, value: CRITICAL},
vfStatus: {presence: required, value: Active},
alarmAdditionalInformation: {presence: required, array: [

field: {presence: required, structure: {
name: {presence: required, value: license_key},
value: {presence: required}

}}
]}

}}
}}
...

{
"event": {

"commonEventHeader": {
“domain”: “fault”,
“eventName”: “Fault_vSCF_InvalidLicense”,
"eventId": "ab305d54-85b4-a31b-7db2-fb6b9e546015",
“nfNamingCode”: “mrfx”,
"priority": "High",
“reportingEntityId”: “cc305d54-75b4-431b-adb2-eb6b9e541234”,
“reportingEntityName”: “MegaMRFVf”,
"sequence": 0,
"sourceId": "de305d54-75b4-431b-adb2-eb6b9e546014",
“sourceName”: “MegaMRF”,
“startEpochMicrosec”: 1413378172000000,
“lastEpochMicrosec”: 1413378172000000,
“version”: 3.0

},
"faultFields": {

“faultFieldsVersion”: 1.2
"alarmCondition": “Invalid license key",
"eventSourceType": "virtualNetworkFunction",
"specificProblem": "The node license key is invalid"
“eventSeverity": "CRITICAL",
“vfStatus”: “Active”,
“alarmAdditionalInformation”: [

{
“name”: “license_key”,
“value”: “1000”

}
]

}
}

}

Registration Spec Sample Event

© 2017 AT&T Intellectual Property. All rights reserved. AT&T and the AT&T logo are trademarks of AT&T Intellectual Property.
.

Registering EventType: MFVS vMRF

registration for Mfvs_vMRF
event: {presence: required, structure: {

commonEventHeader: {presence: required, structure: {
domain: {presence: required, value: measurementsForVfScaling},
eventName: {presence: required, value: Mfvs_vMRF},
eventId: {presence: required},
nfType: {presence: required, value: mrfx},
priority: {presence: required, value: Normal},
reportingEntityName: {presence: required},
sequence: {presence: required},
sourceName: {presence: required},
startEpochMicrosec: {presence: required},
lastEpochMicrosec: {presence: required},
version: {presence: required, value: 3.0}

}},
measurementsForVfScalingFields: {presence: required, structure: {

measurementsForVfSclaingFieldsVersion: {presence: required, value: 2.0},
measurementInterval: {presence: required, range: [60, 1200], default: 180 },
concurrentSessions: {presence: required},
cpuUsageArray: {presence: required, array: {

cpuUsage: {presence: required, structure: {
cpuIdentifier: {presence: required},
percentUsage: {presence: required, range: [0, 100], action: [

90, up, CpuUsageHigh, RECO-scaleOut,
Tca_vMRF_HighCpuUsage],
action: [25, down, CpuUsageLow, RECO-scaleIn,
Tca_vMRF_LowCpuUsage

]}
}}

}},

memoryUsageArray: {presence: required, array: {
memoryUsage: {presence: required, structure: {

vmIdentifier: {presence: required},
memoryFree: {presence: required, range: [0, 100], action: [

100, down, FreeMemLow, RECO-scaleOut,
Tca_vMRF_LowFreeMemory], action: [1000, up, FreeMemHigh,
RECO-scaleIn, Tca_vMRF_HighFreeMemory

]},
memoryUsed: {presence: required}

}}
}},
numberOfMediaPortsInUse: {presence: required, range: [1, 300] },
additionalMeasurements: {presence: required, array: [

measurementGroup: {presence: required, structure: {
name: {presence: required, value: licenseUsage},
measurements: {presence: required, array: [

field: {presence: required, structure: {
name: {presence: required, value: [G711AudioPort,

G729AudioPort, G722AudioPort, AMRAudioPort,
AMRWBAudioPort, OpusAudioPort, H263VideoPort,
H264NonHCVideoPort, H264HCVideoPort, MPEG4VideoPort,
NP8NonHCVideoPort, VP8HCVideoPort, PLC, NR, NG, NLD,
G711FaxPort, T38FaxPort, RFactor, T140TextPort] },

value: {presence: required}
}}

]}
}}

]}
}}

}}
...© 2017 AT&T Intellectual Property. All rights reserved. AT&T and the AT&T logo are trademarks of AT&T Intellectual Property.

Registering EventType: Complex TCAs

Rules
Rules: [

rule: {
trigger: CpuUsageHigh or FreeMemLow,
microservices: [scaleOut] # Note: this presumes there is a scaleOut microservice
alerts: [Tca_vMRF_OutOfResources] # Note: this TCA should be defined in the YAML

},
rule: {

trigger: CpuUsageLow && FreeMemHigh,
microservices: [scaleIn] # Note: this presumes there is a scaleIn microservice

}
]
...

© 2017 AT&T Intellectual Property. All rights reserved. AT&T and the AT&T logo are trademarks of AT&T Intellectual Property.

Registering EventType: syslogs vMRF

registration for Syslog_vMRF
log all, restart if tag = Out_of_Memory
event: {presence: required, action: [any, any, null, RECO-log]
structure: {

commonEventHeader: {presence: required, structure: {
domain: {presence: required, value: syslog},
eventName: {presence: required, value: Syslog_vMRF},
eventId: {presence: required},
nfNamingCode: {presence: required, value: mrfx},
priority: {presence: required, value: Normal},
reportingEntityName: {presence: required},
sequence: {presence: required},
sourceName: {presence: required},
startEpochMicrosec: {presence: required},
lastEpochMicrosec: {presence: required},
version: {presence: required, value: 3.0}

}},

syslogFields: {presence: required, structure: {
eventSourceHost: {presence: required},
eventSourceType: {presence: required, value: virtualNetworkFunction},
syslogFacility: {presence: required, range: [0, 23]},
syslogFieldsVersion: {presence: required, value: 3.0},
syslogMsg: {presence: required},
syslogPri: {presence: required, range: [0, 192]},
syslogProc: {presence: required, range: [0, 65536]},
syslogSData: {},
syslogSdId: {},
syslogSev: {presence: required, range : [0-7]},
syslogTag: {presence: required, action: [“Out_of_Memory”,at,null,reco-restart]},
syslogVer: {presence: required, value 0}

}}
}}
...

© 2017 AT&T Intellectual Property. All rights reserved. AT&T and the AT&T logo are trademarks of AT&T Intellectual Property.
.

 Hosted in the ONAP github site:
https://gerrit.onap.org/r/gitweb?p=demo.git;a=tree;f=vnfs;hb=HEAD

 VES Documentation
- https://github.com/att/evel-test-collector/tree/master/docs/att_interface_definition

 VES EVEL Demo: https://github.com/att/evel-library/tree/master/code/evel_demo

 VES You tube Video from June 15, 2017 OPNFV, Beijing:
https://www.youtube.com/watch?v=Zoxcj4mwUwU

ONAP Vendor Event Listener code on Github and ONAP Gerrit

© 2017 AT&T Intellectual Property. All rights reserved. AT&T and the AT&T logo are trademarks of AT&T Intellectual Property.
.

https://gerrit.onap.org/r/gitweb?p=demo.git;a=tree;f=vnfs;hb=HEAD
https://github.com/att/evel-test-collector/tree/master/docs/att_interface_definition

Summary

20

 AT&T Requesting VNF Vendors to provide Fault, Measurement and Syslog as per the
definition in the following AID* (includes JSON Schema):

 AT&T has it’s Event Library (Agent and Collector Code) available for VNF Vendors that
can be used for integration with their VNF to VES events:

 Following are the Yaml On-boarding files for vFW and vMRF

 The demo files can be found at:
https://gerrit.onap.org/r/gitweb?p=demo.git;a=tree;f=vnfs;hb=HEAD

© 2017 AT&T Intellectual Property. All rights reserved. AT&T and the AT&T logo are trademarks of AT&T Intellectual Property.
.

https://gerrit.onap.org/r/gitweb?p=demo.git;a=tree;f=vnfs;hb=HEAD

Header

		Header

		Field name		ArrayField Name		Opt/Man		Enriched @ Broker		Source		Format		Format Example/Values		Description		Comments		Usage		Range of Values

		version		n/a		O		Enrich		Event Processor		Num		3.0		Version of the event header		first initial release/version		There might be a micro-service or function of the collector to compare the event structure received against the standard definition for that version		0.1 - initial draft (deprecated)
1.0 - VES Event Listener version 2.0 (deprecated)
2.0 - VES Event Listener version 4.1 (current)

		eventName		n/a		M		VNF/VNFC/VM		VNF/VNFC/VM		String		Heartbeat_vIsbcMmc, Fault_MobileCallRecording_PilotNumberPoolExhaustion		Unique Event Name. To prevent naming collisions, eventNames sent as part of the commonEventHeader, should conform to the following naming convention designed to summarize the purpose and type of the event, and to ensure the uniqueness of the eventName: {DomainAbbreviation}_{AsdcModel or ApplicationPlatform}_{DescriptionOfInfoBeingConveyed}

		domain		n/a		M		VNF/VNFC/VM		VNF/VNFC/VM		String		 ‘fault’, ‘heartbeat’, ‘measurementsForVfScaling’, ‘mobileFlow’, ‘other’, ‘sipSignaling’, ‘stateChange’, ‘syslog’, ‘thresholdCrossingAlert’, ‘voiceQuality’		the eventing domain associated with the event; Event domain enumeration: ‘fault’, ‘heartbeat’, ‘measurementsForVfScaling’, ‘mobileFlow’, ‘other’, ‘sipSignaling’, ‘stateChange’, ‘syslog’, ‘thresholdCrossingAlert’, ‘voiceQuality’		Use to define the required Main Body fields. Leveraged by subscribers for appropriate requests.

This header field is used to define the structure of the domain block fields.

- mapping/migrating from "legacy" events to VES shall be done by the collector.
- migrating legacy to D2 VES general guidelines
o SNMP traps -> fault (default)
o SNMP polling measurement -> measurementsForVfScaling
o Xml/csv files -> measurementsForVfScaling
o Syslog messages -> syslog
o Status change events -> stateChange

		Used to differentiate different events sub structure based on their domain.

• There will be post-processing (Highland and/or normalization microService) which may redefine the domain value, and therefore the domain fields, that are more appropriate to the overall end-to-end flow of the events, matching with service design, service assurance design, operation need, etc…
• All events ingested by post-processing service shall be in VES standard format, with a valid defined domain (fault, measurementsForVfScaling, syslog).
• Can be used as a filter string for processing.
• Provide domain classification of events
• Provide different event structure based on domain value		fault: Define event as a fault and sub fields
heartbeat: Define the event as a heartbeat, has no other fields than commonHeader
measurementsForVfScaling: Define event as a measurement and sub fields
mobileFlow: Define event as mobile flow and sub fields
stateChange: Define event as state change and sub fields. These are events reflecting a state change of the VNF
syslog: Define event as a log and sub fields
thresholdCrossingAlert: Define event as TCA and sub fields
other: Define events that do not match any other domains. This domain is a representation of Name-Value pair.

		eventId		n/a		M		VNF/VNFC/VM		VNF/VNFC/VM		String		84291792 or "EnodeBUnreachable_135.12.13.14"		Event key that is unique to the event source.

The key must be unique within notification life cycle similar to EventID from 3GPP. It could be a composite key from the event itself, such as specificProblem_sourceName for example.		A universal identifier of the event. It may be used to uniquely distinguish the event and other uses such as: troubleshooting, cross-referencing of alarms for alarm correlation, offline log analysis, etc.		Same ID for onset and clear.
No specific standard or guideline to the format, could be a unique number per event life cycle, or a text representing unique event life cycle.
A unique number would be advantagous from a collector, parsing function.
		• has to be unique per the event life cycle per source
• needs to have a restart method defined
• could be same eventID for different alarmCondition if related in onset/clear.

SNMP->VES:

for reoccurring event, same alarmCondition as before, eventID reused.
Collector cannot keep state of received events for all eventSource
association of onset/clear shall be enforced based on policy/time between clear and new onset.

eventId could be a representation of the event regardless of alarmCondition.
eventId could be a unique representation of event (onset and clear) to keep association. Shall be created part of configuration rules.

		eventType		n/a		O		VNF/VNFC/VM		VNF/VNFC/VM		String		‘applicationVnf’, ‘guestOS’, ‘hostOS’, ‘platform’ 		Needs to determine the source generating the event. The vlaid values are: ‘applicationVnf’, ‘guestOS’, ‘hostOS’, ‘platform’ 				Represent the Type of event from a category list. The enumeration of the list is defined in the Range of Values.

Not related to Message Queue (DMaaP)
No concatenation of data from other fields.

Used for routing event to different ticketing group.

Help in categorizing alarmConditions to be associated with, and used for routing to appropriate responsible groups.
		applicationVNF: When the event is related to the VNF application
guestOS: When the event is related to the Operating System of the VM where the VNF is running on
platform: When the event is related to the platform, hardware of where a VNF might be running on (including Jericho Cisco NCS Switch)
hostOS: When the event is related to the operating system of the hardware

		nfcNamingCode		n/a		O		VNF/VNFC/VM or Enrich by A&AI		VNF/VNFC/VM or Enrich by A&AI		String		DSF
OAM		Network function component type: 3 characters (aligned with vfc naming standards)				VF Component (Functional) identifier (VFC), which notes the purpose of a VM within the VF, 3-char identifier per Mobility Naming standard.

 Baremetal events field may not be populated
		 For example: DSF

list of nfcNamingCode example (depends on the functionalRole): DCF,DSF,DMZ,OAM,EXN, etc…

		nfNamingCode		n/a		O		VNF/VNFC/VM or Enrich by A&AI		VNF/VNFC/VM or Enrich by A&AI		String		CGWY
CSCF		Network function type: 4 characters (aligned with vnf naming standards)		used for event routing (Ruby)
example Jericho: jl1,jl2,js1,js2 if using VES 5.0		 • Replacement for functionalRole per v4.0
 • VNF Identifier (VVVV) must be unique for a VNF:
 o VNF identifier 4-char codes per Mobility Naming standard.
 o VNF Function Code, 4 character codes per USP and VOIP Naming standard

Baremetal events field may not be populated

?? Layer 3, NamingCode has only 3 characters. example: ME6 (for virtual vPE router)		 For example: CGWY

 list of nfNamingCode example: CGWY, PXMC,LMSP,FRWL, FNAT, SEGW,LOGS,PCRF,MOGX,VOTA, etc…

		sourceId		n/a		O		VNF/VNFC/VM or Enrich by A&AI		VNF/VNFC/VM or Enrich by A&AI		String		23380d70-2c71-4e35-99e2-f43f97e4ec65		UUID identifying the Source Name. (note: the AT&T internal enrichment process shall ensure that this field is populated)

		sourceName		n/a		M		VNF/VNFC/VM		VNF/VNFC/VM		String		ZAKR1CGWY01
cscf0001vm001		UUID identifying the entity experiencing the event issue		should always be the name of the device as inventoried in A&AI		1- incoming from VNF when VES event is used.
2- For Transform to VES:
 • Incoming as IPAddress, set sourceName as IPAddress, contained in SNMP Header when not embedded inside trap variables.
 ○ Source IP Address is resolving to an A&AI name
 • Extract from trap variables, as 'short' name into sourceName as it will match inventory data.		

		reportingEntityId		n/a		O		VNF/VNFC/VM or Enrich by A&AI		VNF/VNFC/VM or Enrich by A&AI		String		23380d70-2c71-4e35-99e2-f43f97e4ec65		UUID identifying the entity reporting the event, for example an OAM VM				 • UUID of the reporting entity Name
 • Could be based on enrichment function against inventory data given the reportingEntityName
 • UUID could be part of the VM instantiation depending on the configuration.

		reportingEntityName		n/a		M		VNF/VNFC/VM		VNF/VNFC/VM		string		cscf0001vm001oam001		name of the entity reporting the event, for example, an OAM EMS				 • EMS name. could be received in the trap/event as an IP to be converted/mapped to a name.
 • Same as sourceName when element is the same as the reporting.
 • reportingEntityName would defer from sourceName, when traps are send to collector from EMS.
 • Synthetic event generated by DCAE would have reportingEntityName as the name of the application generating the event.
 • TCA would be threshold crossing reported/originated by performance analytics.
 • Always associated with original event
Provides name/entry to reach out the end device/VNF.

		priority		n/a		M		VNF/VNFC/VM		VNF/VNFC/VM		String		High		Processing priority enumeration: ‘High’, ‘Medium’, ‘Normal’, ‘Low’		provide processing priority of the event. (not related to severity of message). Can be used to segragate processing certain events based on this value.		 • Could be used to process event out of order received.

		 • for Tranform from SNMP to VES: Set to "Normal"
 • Future use

		startEpochMicrosec		n/a		M		VNF/VNFC/VM		VNF/VNFC/VM		Integer		1444914112111110		the earliest unix time aka epoch time associated with the event from any component--as microseconds elapsed since 1 Jan 1970 not including leap seconds. “Time zone shall be GMT.
The values of this field is set on the first occurrence of the event, and must be kept the same for the duration of the event.
Specifically, for a fault or TCA, this value is set when the alarm/TCA if first raised, and does not change for the lifecycle of this alarm/TCA.
The lifecycle of an alarm/TCA is defined as the time-span starting when the alarm/TCA is first raised, any intermediate updates, ending when the alarm/TCA clears (NORMAL).”
				• Start time of the events.
 • Fault first time received (same eventId)
 ○ SNMP to VES: from SNMP header (SNMPv1) or data from varbind OID if exist.
 § If none exists in SNMP (mostly SNMPv2c), default to collector (SNMP manager) time stamp.
 ○ Epoch in micro second.
 • Measurement start of measuring window.
 ○ Should be align to closest minute (represent in microseconds)
 • Synthetic alarm (created by correlation) should be based on network event or system generated?
 ○ Currently synthetic are inheriting the time of the network event.
 ○ From Lynn Fuhrmann (TechOPS): synthetic events will inherit time in commonHeader under startEpochMicrosec from the first trigger. The internalHeader field correlationFirstEpoch will be the time at which the system created/generated the synthetic event.
Depends on the sourceName of the logic applied, for that correlation, defining the synthetic.

		lastEpochMicroSec		n/a		M		VNF/VNFC/VM		VNF/VNFC/VM		Integer		1444921312000000		the latest unix time aka epoch time associated with the event from any component--as microseconds elapsed since 1 Jan 1970 not including leap seconds. “Time zone shall be GMT.
The value of this field changes each time this event updates.
Specifically, for a fault or TCA, this value is the same as firstEpoch when the fault/TCA is first raised. Subsequently, this value is changed each time this fault/TCA updates and when it finally clears (NORMAL).”
				• Epoch in micro second
• startEpochMicrosec would not change
		• Last time of the events, with same eventId
• Last time on first occurrence would be similar to startEpochMicrosec

		sequence		n/a		M		VNF/VNFC/VM		VNF/VNFC/VM or
Event Processor if set to 0 by VN		Integer		0,1,2, etc...		Ordering of events communicated by an event source instance or 0 if not needed.		Should document the ‘default’ processing when missing		• Keep order of generated event for a processing
• Only applicable to VES generated events from VNF.
 • From other types of received events, sequence is most likely not provided, in transform/mapping set to 0 (default)
• Should be reset when same event clear, based on equivalent source and type.
Sequence is not linked to the eventName/alarm generated. it is sequential number of stream by the VNF.
		incremental integer starting at 1 when set by VNF source.
Reset when VNF source process for VES event is restarted.

		internal Header Fields		n/a		O		Enrich		DCAE		Object Array of internal header fields

		Internal Header.

		Field name		ArrayField Name		Opt/Man		Enriched @ Broker		Source		Format		Format Example/Values		Description		Comments		Definition		Usage		Range of Values		System Source		Team/Group owner - Requestor

		internalHeaderFieldsVersion		n/a		M		enrich		Collector		number		2

		alarmInterfaceZ		n/a		O		enrich		A&AI		Integer				port, channel or interface name of the paired remote object		used for correlation		 Given the information from receive event on an interface issue, alarmInterfaceA
Use topology model available from A&AI data to find the far end interface (alarmInterfaceZ
Provides the logical far end interface when local fault is interface related.		Use for topology correlation with respect to interface (logical or physical) far end device				A&AI

		alarmRemoteObjectZ		n/a		O		enrich		A&AI		String				Device name of paired remote object		used for correlation		 Equivalent as "sourceName" in the event header, for the far end element which its interface has a fault with.
Provides the name of the element that is logically the far end of the element reporting the interface fault (interface A)
						A&AI

		automationComponentName		n/a		O		Enrich		Ruby		String				represent the name of the component responsible for automation.		only applicable when Ticketing exists

		assetLocation		n/a		O		Enrich		A&AI		string				location clli of the sourceName. Represents the physical location.				CLLI code of the location						A&AI

		closedLoopControlName		n/a		O		Enrich		Highland Park		String		ClosedLoop-FRWL-SIG_d925ed73-8231-4d02-9545-db4e113213abab322		The closedLoopFlag and closed LoopControlName value is set by the policy defined in Camunda with alarmcondition as key. Camunda, sends the policy update to CAE/PDAS, and HP populates the field during the enrichment				Set in CLAMP UI. Policy in Highland Park that find alarms matching signature and set field names.
closedLoopControlName- Set through Policy UI when correlation occurs GOC, synthetic get CloseLoopControlName (1707)
closedLoopControlName set by HP based on conditions above.						DCAE Supplement

		closedLoopFlag		n/a		O		Enrich		Highland Park		String		Y/N		The closedLoopFlag and closed LoopControlName value is set by the policy defined in Camunda. Camunda, sends the policy update to CAE/PDAS, and HP populates the flag if alarmcondition meets the policy keys.				is set by Highlank Park as Y if closedLoopControlName is not null		Usage currently is to filter alarms to be picked up by downstream systems		Y
N		DCAE Supplement

		collectorTimeStamp		n/a		O		Enrich		Highland Park		date-time		RC 2822- day-of-week, dd MM yyyy HH’:’mm’:’ss ‘GMT’, e.g.,Tue, 21 Jun 2016 14:05:20 GMT		day-of-week, dd MM yyyy HH’:’mm’:’ss ‘GMT’, e.g.,Tue, 21 Jun 2016 14:05:20 GMT				 • Time at which the collector received the event, in RFC2822 format.
 • only to be populated when event was processed by collector.
 ○ Synthetic and other events would not come from collector, would not have collectorTimeStamp
						DCAE Collector

		correlationEventType		n/a		O		Enrich		GOC		string				Defines if the event is Parent Root Cause of correlation or Symptom of correlation. Defined by Correlation Engine.

• “RC” for root-cause events
• “SYMPTOM” for symptom events
		only applicable when correlation exist		Parent and Children. Children are symptoms. Set by Policy		identify Parent/Root Cause and Symptoms/Tranversals events part of correlation.
Used by downstream system to identify Parent event if action is necessary and identify children/symptom events.		RC
SYMPTOM		GOC, Highland Park

based on Policy (PEF)

		correlationFirstEpoch		n/a		O		Enrich		GOC		number				Measured in unix epoch time as microseconds elapsed since 1 Jan 1970 not including leap seconds				 • Time at which the correlation was initially created, in RFC2822 format.						GOC

		correlationName		n/a		O		Enrich		GOC		string				Name of the correlation rule this alarm was processed by Correlation Engine. Could contain more than one Name		only applicable when correlation exist		Similar to the policy name that derived the correlation, when correlation occurs.
 GOC policy is given a name, saved in configuration (PDAS)

 PEF as the source, for a defined correlation.
		for reporting purpose. Identify correlation Policy event was subject to.				GOC, Highland Park

based on Policy (PEF)

		correlationRootEventId		n/a		O		Enrich		GOC		string				Represent the unique event identification of the Rootcause event, added by Correlation Engine. Could be a composite of fields from root cause event.

• For RC alarms: Same as @eventId
• For SYMPOM alarms: Same as root-cause @eventId, to represent the relation of symptom event to its root-cause event.
				only for symptoms, represent the eventId of the parent alarm from the VES header field,
tie parent and children events.		for reporting purpose. Identify parent event for symptoms events when correlation occurred.				GOC

		correlationType		n/a		O		Enrich		GOC		string				Defines the type of correlations applied. Might be multiple.
Enumeration: Ops Rule, Topology, Statistical, etc...
		only applicable when correlation exist		 Would be for different correlation types. All policy driven.
 This could represent the GOC, or different scope of correlation of GOC.

Component name, scope name, for example: GOC, ROADM

if not using GOC for correlation, such as HP Overland, the correlation fields correlationType could be set as "HP, Overland"		not currently used		example:
GOC, ROADM
HP, Overland		GOC, Highland Park

		equipmentNameCode		n/a		M O		enrich		A&AI		String				code of the equipment name per provided sourceName		used for ticketing assignment

		equipmentType		n/a		M O		enrich		A&AI		String				type of equipment per provided sourceName		used for ticketing assignment

		equipmentVendor		n/a		M O		enrich		A&AI		String				vendor name of the equipment per provided sourceName		used for ticketing assignment

		equipmentVendorModel		n/a		O		enrich		A&AI		String				Device desc associated with the alarm object id		used for ticketing assignment

		eventSourceHostname		n/a		O		enrich		A&AI		String				Hostname of the device generating the alarm		used for correlation		 Physical name of the server that would have the VM/VNF/VNFc running on at the time of the event was generated.
Or physical device when the event is from a physical device itself		enrichment data.
Could be used when associating NF/NFC events to physical host relationship				?

		eventTag		n/a		O		Enrich		Highland Park		String		hp.SendNewEvent.20161006.0000094858		unique tag for each new event received				When event has been processed post-collection.

		DCAE post-processing		 Format example: hp.SendNewEvent.20161006.0000094858		DCAE Supplement

		firstDateTime		n/a		O		enrich		Collector		String		RC 2822		needed for Fault, TCA, and Syslog Domain				Representation of firstEpochMicroSec into human readable format. Done by DCAE supplementing microservices		reporting purpose providing human readible date				DCAE Supplement

		inMaint		n/a		M O		enrich		A&AI		String				Operational Status value of the sourceName		used for filtering actionable event

		lastDateTime		n/a		O		enrich		Collector		String		RC 2822		needed for Fault, TCA, and Syslog Domain				Representation of lastEpochMicrosec into human readable format. Done by DCAE supplementing microservices		reporting purpose providing human readible date				DCAE Supplement

		policyName		n/a		O		Enrich		Policy		string				name of the close loop policy applied if one exists		only applicable when Policy exists

		policyType		n/a		O		Enrich		Policy		string				type of policy applied if one exists		only applicable when Policy exists

		productId		n/a		O		Enrich		A&AI		string				Name of the customer facing product associated with the event

		provStatus		n/a		M O		enrich		A&AI		String				Provisioning status value of the sourceName		used for filtering actionable event

		resourceInstanceId		n/a		O		enrich		A&AI		string				A&AI id of the resource instance associated with the event

		serviceInstanceId		n/a		O		enrich		A&AI		String				A&AI id of the service instance associated with the event

		serviceInstanceName		n/a		O		Enrich		A&AI		string				Identifying the service associated with the event

		sourceInstance				O		Enrich		A&AI		filed[]				Additional information about the event source
additional VNFc names on same VM

		subscriberId		n/a		O		Enrich		A&AI		string				Customer or subscriber identifier associated with the event

		tenantNAme		n/a		O		enrich		A&AI		string				The AIC tenant name

		ticketingAction		n/a		O		Enrich		Ruby		String				represent the status of the ticket, Create or Update		only applicable when Ticketing exists

		ticketingSystem		n/a		O		Enrich		Ruby		String				system in which the ticket was created in, ie AOTS-M, AOTS-TM, etc..		only applicable when Ticketing exists

		ticketingTimestamp		n/a		O		Enrich		Ruby		DateTime				time when ticket request was initiated, in Standardize 24 hour GMT format as:
ddd, dd MM yyyy HH’:’mm’:’ss ‘GMT’		only applicable when Ticketing exists

		ticketNumber		n/a		O		Enrich		Ruby		String				number of the ticket created		only applicable when Ticketing exists

internalHeader

		Internal Header.

		Field name		ArrayField Name		Opt/Man		Enriched @ Broker		Source		Format		Format Example/Values		Description		Comments		Definition		Usage		Range of Values		System Source		Team/Group owner - Requestor

		internalHeaderFieldsVersion		n/a		M		enrich		Collector		number		2

		alarmInterfaceZ		n/a		O		enrich		A&AI		Integer				port, channel or interface name of the paired remote object		used for correlation		 Given the information from receive event on an interface issue, alarmInterfaceA
Use topology model available from A&AI data to find the far end interface (alarmInterfaceZ
Provides the logical far end interface when local fault is interface related.		Use for topology correlation with respect to interface (logical or physical) far end device				parent-entity-id from l-interface table to link-name from logical-link table

		alarmRemoteObjectZ		n/a		O		enrich		A&AI		String				Device name of paired remote object		used for correlation		 Equivalent as "sourceName" in the event header, for the far end element which its interface has a fault with.
Provides the name of the element that is logically the far end of the element reporting the interface fault (interface A)
				not found specifically in A&AI

		automationComponentName		n/a		O		Enrich		Ruby		String				represent the name of the component responsible for automation.		only applicable when Ticketing exists										Ruby

		assetLocation		n/a		O		Enrich		A&AI		string				location clli of the sourceName. Represents the physical location.				CLLI code of the location						physical-location-id from complex table

		closedLoopControlName		n/a		O		Enrich		Highland Park		String		ClosedLoop-FRWL-SIG_d925ed73-8231-4d02-9545-db4e113213abab322		The closedLoopFlag and closed LoopControlName value is set by the policy defined in Camunda with alarmcondition as key. Camunda, sends the policy update to CAE/PDAS, and HP populates the field during the enrichment				Set in CLAMP UI. Policy in Highland Park that find alarms matching signature and set field names.
closedLoopControlName- Set through Policy UI when correlation occurs GOC, synthetic get CloseLoopControlName (1707)
closedLoopControlName set by HP based on conditions above.						DCAE Supplement		DCAE/Tech OPS

		closedLoopFlag		n/a		O		Enrich		Highland Park		String		Y/N		The closedLoopFlag and closed LoopControlName value is set by the policy defined in Camunda. Camunda, sends the policy update to CAE/PDAS, and HP populates the flag if alarmcondition meets the policy keys.				is set by Highlank Park as Y if closedLoopControlName is not null		Usage currently is to filter alarms to be picked up by downstream systems		Y
N		DCAE Supplement		DCAE

		collectorTimeStamp		n/a		O		Enrich		Highland Park		date-time		RC 2822- day-of-week, dd MM yyyy HH’:’mm’:’ss ‘GMT’, e.g.,Tue, 21 Jun 2016 14:05:20 GMT		day-of-week, dd MM yyyy HH’:’mm’:’ss ‘GMT’, e.g.,Tue, 21 Jun 2016 14:05:20 GMT				 • Time at which the collector received the event, in RFC2822 format.
 • only to be populated when event was processed by collector.
 ○ Synthetic and other events would not come from collector, would not have collectorTimeStamp
						DCAE Collector		DCAE/Tech OPS

		correlationEventType		n/a		O		Enrich		GOC		string				Defines if the event is Parent Root Cause of correlation or Symptom of correlation. Defined by Correlation Engine.

• “RC” for root-cause events
• “SYMPTOM” for symptom events
		only applicable when correlation exist		Parent and Children. Children are symptoms. Set by Policy		identify Parent/Root Cause and Symptoms/Tranversals events part of correlation.
Used by downstream system to identify Parent event if action is necessary and identify children/symptom events.		RC
SYMPTOM		GOC, Highland Park

based on Policy (PEF)		DCAE/Tech OPS

		correlationFirstEpoch		n/a		O		Enrich		GOC		number				Measured in unix epoch time as microseconds elapsed since 1 Jan 1970 not including leap seconds				 • Time at which the correlation was initially created, in RFC2822 format.						GOC		DCAE/Tech OPS

		correlationName		n/a		O		Enrich		GOC		string				Name of the correlation rule this alarm was processed by Correlation Engine. Could contain more than one Name		only applicable when correlation exist		Similar to the policy name that derived the correlation, when correlation occurs.
 GOC policy is given a name, saved in configuration (PDAS)

 PEF as the source, for a defined correlation.
		for reporting purpose. Identify correlation Policy event was subject to.				GOC, Highland Park

based on Policy (PEF)		DCAE/Tech OPS

		correlationRootEventId		n/a		O		Enrich		GOC		string				Represent the unique event identification of the Rootcause event, added by Correlation Engine. Could be a composite of fields from root cause event.

• For RC alarms: Same as @eventId
• For SYMPOM alarms: Same as root-cause @eventId, to represent the relation of symptom event to its root-cause event.
				only for symptoms, represent the eventId of the parent alarm from the VES header field,
tie parent and children events.		for reporting purpose. Identify parent event for symptoms events when correlation occurred.				GOC		DCAE

		correlationType		n/a		O		Enrich		GOC		string				Defines the type of correlations applied. Might be multiple.
Enumeration: Ops Rule, Topology, Statistical, etc...
		only applicable when correlation exist		 Would be for different correlation types. All policy driven.
 This could represent the GOC, or different scope of correlation of GOC.

Component name, scope name, for example: GOC, ROADM

if not using GOC for correlation, such as HP Overland, the correlation fields correlationType could be set as "HP, Overland"		not currently used		example:
GOC, ROADM
HP, Overland		GOC, Highland Park		DCAE

		equipmentNameCode		n/a		M O		enrich		A&AI		String				code of the equipment name per provided sourceName		used for ticketing assignment if required by Ruby		ruby can populate the data, if needed, based on data from A&AI feed to Ruby		from A&AI feed to Ruby						Ruby

		equipmentType		n/a		M O		enrich		A&AI		String				type of equipment per provided sourceName		used for ticketing assignment if required by Ruby		ruby can populate the data, if needed, based on data from A&AI feed to Ruby		from A&AI feed to Ruby (equip-type from pserver table based on hostname)						Ruby

		equipmentVendor		n/a		M O		enrich		A&AI		String				vendor name of the equipment per provided sourceName		used for ticketing assignment if required by Ruby		ruby can populate the data, if needed, based on data from A&AI feed to Ruby		from A&AI feed to Ruby (equip-vendor from pserver table based on hostname)						Ruby

		equipmentVendorModel		n/a		O		enrich		A&AI		String				Device desc associated with the alarm object id		used for ticketing assignment if required by Ruby		ruby can populate the data, if needed, based on data from A&AI feed to Ruby		from A&AI feed to Ruby (equip-model from pserver table based on hostname)						Ruby

		eventSourceHostname		n/a		O		enrich		A&AI		String				Hostname of the device generating the alarm		used for correlation		 Physical name of the server that would have the VM/VNF/VNFc running on at the time of the event was generated.
Or physical device when the event is from a physical device itself		enrichment data.
Could be used when associating NF/NFC events to physical host relationship				hostname from pserver table

		eventTag		n/a		O		Enrich		Highland Park		String		hp.SendNewEvent.20161006.0000094858		unique tag for each new event received		required for ruby automation
operation use this field for historical log search.		When event has been processed post-collection.

		DCAE post-processing		 Format example: hp.SendNewEvent.20161006.0000094858		DCAE Supplement		DCAE

		firstDateTime		n/a		O		enrich		Collector		String		RC 2822		needed for Fault, TCA, and Syslog Domain		required for ruby automation		Representation of firstEpochMicroSec into human readable format. Done by DCAE supplementing microservices		reporting purpose providing human readible date				DCAE Supplement		DCAE

		inMaint		n/a		M O		enrich		A&AI		String				Operational Status value of the sourceName		used for filtering actionable event				used to indicate whether or not this object is in maintenance mode (maintenance mode = true).		boolean		in-maint from generic-vnf table given vnf-id (sourceId)

or

in-maint from pserver table given hostname (sourceName) if source is physical.		A&AI

		lastDateTime		n/a		O		enrich		Collector		String		RC 2822		needed for Fault, TCA, and Syslog Domain		required for ruby automation		Representation of lastEpochMicrosec into human readable format. Done by DCAE supplementing microservices		reporting purpose providing human readible date				DCAE Supplement		DCAE

		policyName		n/a		O		Enrich		Highland Park		string				name of the close loop policy applied if one exists		only applicable when Policy exists		from Policy Designer populated by Analytics (DCAE) for PEF (Policy Engine) to act on		Policy Engine to act on		policy name provided by Policy Designer		Policy Designer		PEF

		policyType		n/a		O		Enrich		Highland Park		string				type of policy applied if one exists		only applicable when Policy exists		no information

		productId		n/a		O		Enrich		A&AI		string				Name of the customer facing product associated with the event				what is the difference with subscriberId??
Could it be related to "network id/name"?
Could it be related to "service instance" endpoint?						network-name from l3-network table given service-id

or

service-instance-id from service-instance table given vnf-id

		provStatus		n/a		M O		enrich		A&AI		String				Provisioning status value of the sourceName		used for filtering actionable event								prov-status from generic-vnf table given vnf-id (sourceId)

or

prov-status from pserver table given hostname (sourceName) if source is physical

		resourceInstanceId		n/a		O		enrich		A&AI		string				A&AI id of the resource instance associated with the event
				UUID of the hostname as physical server						pnf-id from pnf table given hostname

		serviceInstanceId		n/a		O		enrich		A&AI		String				A&AI id of the service instance associated with the event
				Unique identifier of the service						service-id from generic-vnf table given vnf-id (sourceId)		A&AI

		serviceInstanceName		n/a		O		Enrich		A&AI		string				Identifying the service associated with the event				service name						service-description from service table given service-id		A&AI

		sourceInstance				O		Enrich		A&AI		field[]				Additional information about the event source
additional VNFc names on same VM				the VNF/VNFC that are instantiated on the same pserver of the VNF/VNFC that reported the event received.		?				vnf-id from generic-vnf table given hostname (eventSourceHostname) for same hostname (eventSourceHostname) of the sourceName		??

		subscriberId		n/a		O		Enrich		A&AI		string				Customer or subscriber identifier associated with the event				customer ID ??
Global customer id used across ECOMP to uniquely identify customer.						global-customer-id from customer table		A&AI

		tenantNAme		n/a		O		enrich		A&AI		string				The AIC tenant name				Readable name of tenant						tenant-name from tenant table given tenant-id		A&AI

		ticketingAction		n/a		O		Enrich		Ruby		String				represent the status of the ticket, Create or Update		only applicable when Ticketing exists		feed back from Ruby via DMaaP on AOTS ticket								Ruby

		ticketingSystem		n/a		O		Enrich		Ruby		String				system in which the ticket was created in, ie AOTS-M, AOTS-TM, etc..		only applicable when Ticketing exists		feed back from Ruby via DMaaP on AOTS ticket								Ruby

		ticketingTimestamp		n/a		O		Enrich		Ruby		DateTime				time when ticket request was initiated, in Standardize 24 hour GMT format as:
ddd, dd MM yyyy HH’:’mm’:’ss ‘GMT’		only applicable when Ticketing exists		feed back from Ruby via DMaaP on AOTS ticket								Ruby/Tech Ops

		ticketNumber		n/a		O		Enrich		Ruby		String				number of the ticket created		only applicable when Ticketing exists		feed back from Ruby via DMaaP on AOTS ticket								Ruby/Tech Ops

Heartbeat

		Heartbeat (optional)

		Field Name		ArrayField Name		Opt/Man		Enriched @ Broker		Source		Format		Format Example		Description		Comments

		heartbeatFieldVersion		n/a		M		VNF/VNFC/VM		VNF/VNFC/VM		Number		1		Version of the heartbeatFields block

		additionalFields		Array		O		VNF/VNFC/VM		VNF/VNFC/VM		Name-Value Pair Object Array				Additional expansion fields if needed

		Additional expansion fields if needed		n/a		M		VNF/VNFC/VM		VNF/VNFC/VM		Integer		60		Current heartbeatInterval in seconds

														

FaultI

		Fault

		Field Name		ArrayField Name		Opt/Man		Enriched @ Broker		Source		Format		Format Example		Description		Comments		Usage		Range of Values

		faultFieldsVersion		n/a		M		VNF/VNFC/VM		VNF/VNFC/VM		Number		2.0		version of the faultFields block				not required until version 4.0. provides the version of the fault fields definition used.

		eventSeverity		n/a		M		VNF/VNFC/VM		VNF/VNFC/VM		String		CRITICAL, MAJOR, MINOR, WARNING, NORMAL		Event severity or priority.

NORMAL severity reflects the event condition is back to Normal, or has Cleared.				 • Type as enumerate values as given.
• Case sensitive
		• If INFORMATIONAL set to WARNING

		eventSourceType		n/a		M		VNF/VNFC/VM		VNF/VNFC/VM		String		router; switch;host; card; port; slotThreshold; portThreshold; virtualMachine, etc..		Provide the type of element the Source might be. This can be network function specific, or application specific: other, router, switch, host, card, port, slotThreshold, portThreshold, virtual machine, etc…could also be PCRF, MMSC, NEM, MME, ENB, etc...		Set to 0 if not known or not applicable. Similar to ObjectType (MTOSI)		 • Provide specifically the details of the event generated by the VNF component, if the event/fault is for a port failure, the eventSourceType shall be "port"
 • Should these list be enumerate values given a standard entry?
Based on the event to category.

		eventCategory		n/a		O		VNF/VNFC/VM		VNF/VNFC/VM		String		‘license’, ‘link’, ‘routing’, ‘security’, ‘signaling’		Event category, for example: ‘license’, ‘link’, ‘routing’, ‘security’, ‘signaling’

		alarmCondition		n/a		M		VNF/VNFC/VM		VNF/VNFC/VM		String		association to Macro eNodeB 155197 in PLMN 310-410 with eNodeB name KYL05197 is lost		Indicates the Alarm Condition as reported by the device, Should be string to avoid duplicate dictionary translation. This would be a alarm description.		data from probableCause (3GPP and MTOSI). Would be an alarm summary		define the alarm name, short name of the onset or clear generated.

 Future will need to define alarmCondition standard by catalog and modeling		For Transform SNMP to VES:

• one alarm - One trap - - alarmCondition could be the trapName
 ○ Example: tpLgCgiNotInConfig - Usually this text does not come with the trap, and would need to be set by the collector upon receiving the trap, matching the alarmCondition to the trap number, most like via a lookup/mapping function
 tpLgCgiNotInConfig NOTIFICATION-TYPE
 OBJECTS { tpEventType,
 tpLgCellId,
 tpLgMCC,
 tpLgMNC,
 tpLgLAC
 }
 STATUS current
 DESCRIPTION
 "This trap is sent when the LG is asked to perform a location for a CGI that is not in its configuration."
 ::= { tpLgNotifications 31 }

 • multiple alarm - One trap - - alarmCondition is the name of the problem/fault contained in one of varbind,
 ○ could be alarm name or alarmNumber or alarmCode. Whatever is done currently to represent the name of the fault

		specificProblem		n/a		M		VNF/VNFC/VM		VNF/VNFC/VM		String		EnodeBUnreachable		Short name of the alarm/problem, like trap name. Could be of SPECIFIC_PROBLEM list: (x733_SpecificProblems). Should be string to avoid duplicate dictionary translation. This should be a one word.		example: LinkDown, BFDSessionDown, etc….
SpecificProblem (3GPP) or X733_SpecificProblem (MTOSI)		 • Description of the problem
 • Highlight from Trap description if exists. Usually this text does not come with the trap, and would need to be set by the collector upon receiving the trap, matching the alarmCondition to the trapName or trap number as received, most like via a lookup/mapping function

 • Short text describing more details about the event/fault received
		 ○ Example: "This trap is sent when the LG is asked to perform a location for a CGI that is not in its configuration"
 tpLgCgiNotInConfig NOTIFICATION-TYPE
 OBJECTS { tpEventType,
 tpLgCellId,
 tpLgMCC,
 tpLgMNC,
 tpLgLAC
 }
 STATUS current
 DESCRIPTION
 "This trap is sent when the LG is asked to perform a location for a CGI that is not in its configuration."
 ::= { tpLgNotifications 31 }

		vfStatus		n/a		M		VNF/VNFC/VM		VNF/VNFC/VM		String		Active		Used to report on VF status, both to indicate success/failure of start/stop/prepare to terminate events, but also to allow VF to request termination after unrecoverable errors.
Enumeration; valid values are
- Idle
- Active
- Preparing to terminate
'- Ready to terminate
- Requesting termination		If set to "Ready to terminate", all outstanding alarm conditions for this VF may be cleared.		 • Mapping to "Active" when events are not generated by VNF in VES format inherently
		 For Transfrom SNMP to VES event, map to Active

		alarmInterfaceA				O		VNF/VNFC/VM		VNF/VNFC/VM/Event Processor		String		SCTP cause is 6:Max Retransmits Failed, no peers responding. Origin is Local user.		Provide port or channel or interface information when alarm is related with interface faults. Could be card/port, or channel, or interface name.
		Used for correlation

if alarm is interface related, VN should provide which interface data in this field.		 • Would represent the interface number the event on the sourceName is reported against, so alarm generated on the device interface could be identified against the far side (alarmInterfaceZ) based on logical or physical topology rather than having the information embedded somewhere else requiring regular expression extract.

		 • Example: linkDown alarm…. Link Down (ifEntry.7)
 ○ alarmInterfaceA = 7

		alarmAdditionalInformation				O		VNF/VNFC/VM		VNF/VNFC/VM		Field ()		SCTP cause is 6:Max Retransmits Failed, no peers responding. Origin is Local user.		Additional Information related to Alarm, such as Repair Action, Remedy code….May by serialized alarm payload: varbind list, original syslog message, notification parameters, etc. when event is generated via other means, should provide raw detail out of element.		Used for correlation		 • Name/value		• For Transform SNMP to VES:
 ○ Name => use OID of varbind
 ○ Value => use incoming data for that varbind
 ○ Keep order as received
 • Example:
 ○ "1.3.6.1.2.1.55.2.0.1" = "extra info for this varbind"
 ○ "1.3.6.1.2.1.55.2.0.2" = "extra info for this varbind"

measurementForVfScaling

		Scaling KPI

		Field Name		Array Field Name		Sub ArrayFieldName		Req/Opt		Enriched @ Broker		Source		Format		Reporting Type		Format Example		Field Description		Comments

		measurementForVfScalingFieldsVersion		n/a				M		Enrich		Collector		Num				2.0		Version of the measurementsForVfScalingFields block		first initial release/version

		additonalFileds		field				O						Name-Value Pair Object Array

						name		M						string

						value		M						string

		additionalMeasurements		namedArrayOfFields				O		VNF/VNFC/VM		VNF/VNFC/VM		object Array						additional measurement fields		name/value

						name		M		VNF/VNFC/VM		VNF/VNFC/VM		String								name/value

						field		M		VNF/VNFC/VM		VNF/VNFC/VM		Object Array								name/value

		additionalObjects		jsonObject				O		VNF/VNFC/VM		VNF/VNFC/VM

						objectInstances		M		VNF/VNFC/VM		VNF/VNFC/VM		JsonObjectInstance [] (see line 141)						Contains one or more instances of the json object

						objectName		M		VNF/VNFC/VM		VNF/VNFC/VM		string						Name of the json object

						objectSchema		O		VNF/VNFC/VM		VNF/VNFC/VM		string						json schema for the object

						objectSchemaUrl		O		VNF/VNFC/VM		VNF/VNFC/VM		string						URL to the json schema for the object

						nfSubscribedObjectName		O		VNF/VNFC/VM		VNF/VNFC/VM		string						Name of the object associated with the nfSubscriptionId

						nfSubscriptionId		O		VNF/VNFC/VM		VNF/VNFC/VM		string						Identifies an openConfig telemetry subscription on a network function, which configures the network function to send complex object data associated with the jsonObject

		codecUsageArray		codecsInUse				O		VNFC		VNFC		object Array						array of codecs in use
		Codec Usage

						codecIdentifier		M		VNFC		VNFC		string						Description of the codec		Codec Usage

						numberInUse		M		VNFC		VNFC		integer						Number of such codecs in use		Codec Usage

		concurrentSessions		n/a				O		VNF/VNFC/VM		VNF/VNFC/VM		integer		Gauge				In the VM context: Peak concurrent sessions for the VM over the measurement Interval. Sessions metric should be qualified - such as, the number of VNFs supported. In the VNF context : Peak concurrent sessions should refer to peak number of concurrent requests serviced by the VNF during the reporting interval

		configuredEntities		n/a				O		VNF/VNFC/VM		VNF/VNFC/VM		number		Counter				In the VM context: Peak total number of users, subscribers, devices, adjacencies, etc., for the VM over the measurement Interval. In the VNF context: configured entities should refer to the peak number of subscribers, devices, etc serviced by the VNF

		cpuUsageArray		cpuUsage				O		VNF/VNFC/VM		VNF/VNFC/VM		Object Array

						cpuIdentifier		M		VNF/VNFC/VM		VNF/VNFC/VM		string						CPU Identifier

						cpuIdle		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Gauge				Percentage of CPU time spent in the idle task.

						cpuUsageInterrupt		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Gauge				Percentage of time the CPU has spent servicing interrupts.

						cpuUsageNice		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Gauge				Percentage of time the CPU spent running user space processes that have been niced. The priority level a user space process can be tweaked by adjusting its niceness.

						cpuUsageSoftirq		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Gauge				Percentage of time spent handling interrupts that are synthesized, and almost as important as Hardware interrupts. "In current kernels there are ten softirq vectors defined; two for tasklet processing, two for networking, two for the block layer, two for timers, and one each for the scheduler and read-copy-update processing. The kernel maintains a per-CPU bitmask indicating which softirqs need processing at any given time."

						cpuUsageSteal		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Gauge				CPU steal is a measure of the fraction of time that a machine is in a state of “involuntary wait.” It is time for which the kernel cannot otherwise account in one of the traditional classifications like user, system, or idle. It is time that went missing, from the perspective of the kernel.

						cpuUsageSystem		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Gauge				Percentage of time that the CPU spent running the kernel.

						cpuUsageUser		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Gauge				Percentage of time CPU spends running un-niced user space processes.

						cpuWait		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Gauge				Percentage of CPU time spent waiting for I/O operations to complete

						percentUsage		M		VNF/VNFC/VM		VNF/VNFC/VM		number		Gauge				Aggregate CPU usage of the VM on which the VNFC reporting the event is running

		diskUsageArray		diskUsage				O		VNF/VNFC/VM		VNF/VNFC/VM		Object Array

						diskIdentifier		M		VNF/VNFC/VM		VNF/VNFC/VM		string

						diskIoTimeAvg		O		VNF/VNFC/VM		VNF/VNFC/VM		number						time spent doing I/Os (ms) over 1 sec. You can treat this metric as a device load percentage (Value of 1 sec time spent matches 100% of load). Value is the average within the collection interval.

						diskIoTimeLast		O		VNF/VNFC/VM		VNF/VNFC/VM		number						time spent doing I/Os (ms) over 1 sec. You can treat this metric as a device load percentage (Value of 1 sec time spent matches 100% of load). Value is the last within the collection interval.

						diskIoTimeMax		O		VNF/VNFC/VM		VNF/VNFC/VM		number						time spent doing I/Os (ms) over 1 sec. You can treat this metric as a device load percentage (Value of 1 sec time spent matches 100% of load). Value is the maximum within the collection interval.

						diskIoTimeMin		O		VNF/VNFC/VM		VNF/VNFC/VM		number						time spent doing I/Os (ms) over 1 sec. You can treat this metric as a device load percentage (Value of 1 sec time spent matches 100% of load). Value is the minimum within the collection interval.

						diskMergedReadAvg		O		VNF/VNFC/VM		VNF/VNFC/VM		number						the number of operations, that could be merged into other, already queued operations, i. e. one physical disk access served two or more logical operations. Of course, the higher that number, the better. Value is the average within the collection interval.

						diskMergedReadLast		O		VNF/VNFC/VM		VNF/VNFC/VM		number						the number of operations, that could be merged into other, already queued operations, i. e. one physical disk access served two or more logical operations. Of course, the higher that number, the better. Value is the last within the collection interval.

						diskMergedReadMax		O		VNF/VNFC/VM		VNF/VNFC/VM		number						the number of operations, that could be merged into other, already queued operations, i. e. one physical disk access served two or more logical operations. Of course, the higher that number, the better. Value is maximum within the collection intervals.

						diskMergedReadMin		O		VNF/VNFC/VM		VNF/VNFC/VM		number						the number of operations, that could be merged into other, already queued operations, i. e. one physical disk access served two or more logical operations. Of course, the higher that number, the better. Value is the minimum within the collection intervals.

						diskMergedWriteAvg		O		VNF/VNFC/VM		VNF/VNFC/VM		number						the number of operations, that could be merged into other, already queued operations, i. e. one physical disk access served two or more logical operations. Of course, the higher that number, the better. Value is the average within the collection interval.

						diskMergedWriteLast		O		VNF/VNFC/VM		VNF/VNFC/VM		number						the number of operations, that could be merged into other, already queued operations, i. e. one physical disk access served two or more logical operations. Of course, the higher that number, the better. Value is the last within the collection interval.

						diskMergedWriteMax		O		VNF/VNFC/VM		VNF/VNFC/VM		number						the number of operations, that could be merged into other, already queued operations, i. e. one physical disk access served two or more logical operations. Of course, the higher that number, the better. Value is the maximum within the collection interval.

						diskMergedWriteMin		O		VNF/VNFC/VM		VNF/VNFC/VM		number						the number of operations, that could be merged into other, already queued operations, i. e. one physical disk access served two or more logical operations. Of course, the higher that number, the better. Value is the minimum within the collection intervals

						diskOctetsReadAvg		O		VNF/VNFC/VM		VNF/VNFC/VM		number						the number of octets per second read from a disk or partition. Value is the average within the collection interval.

						diskOctetsReadLast		O		VNF/VNFC/VM		VNF/VNFC/VM		number						the number of octets per second read from a disk or partition. Value is the last within the collection interval.

						diskOctetsReadMax		O		VNF/VNFC/VM		VNF/VNFC/VM		number						the number of octets per second read from a disk or partition. Value is the maximum within the collection interval.

						diskOctetsReadMin		O		VNF/VNFC/VM		VNF/VNFC/VM		number						the number of octets per second read from a disk or partition. Value is the minimum within the collection interval.

						diskOctetsWriteAvg		O		VNF/VNFC/VM		VNF/VNFC/VM		number						the number of octets per second written to a disk or partition. Value is the average within the collection interval.

						diskOctetsWriteLast		O		VNF/VNFC/VM		VNF/VNFC/VM		number						the number of octets per second written to a disk or partition. Value is the last within the collection interval.

						diskOctetsWriteMax		O		VNF/VNFC/VM		VNF/VNFC/VM		number						the number of octets per second written to a disk or partition. Value is the maximum within the collection interval.

						diskOctetsWriteMin		O		VNF/VNFC/VM		VNF/VNFC/VM		number						the number of octets per second written to a disk or partition. Value is the minimum within the collection interval.

						diskOpsReadAvg		O		VNF/VNFC/VM		VNF/VNFC/VM		number						the number of read operations per second issued to the disk. Value is the average within the collection interval.

						diskOpsReadLast		O		VNF/VNFC/VM		VNF/VNFC/VM		number						the number of read operations per second issued to the disk. Value is the last within the collection interval.

						diskOpsReadMax		O		VNF/VNFC/VM		VNF/VNFC/VM		number						the number of read operations per second issued to the disk. Value is the maximum within the collection interval.

						diskOpsReadMin		O		VNF/VNFC/VM		VNF/VNFC/VM		number						the number of read operations per second issued to the disk. Value is the minimum within the collection interval.

						diskOpsWriteAvg		O		VNF/VNFC/VM		VNF/VNFC/VM		number						the number of write operations per second issued to the disk. Value is the average within the collection interval.

						diskOpsWriteLast		O		VNF/VNFC/VM		VNF/VNFC/VM		number						the number of write operations per second issued to the disk. Value is the last within the collection interval.

						diskOpsWriteMax		O		VNF/VNFC/VM		VNF/VNFC/VM		number						the number of write operations per second issued to the disk. Value is the maximum within the collection interval.

						diskOpsWriteMin		O		VNF/VNFC/VM		VNF/VNFC/VM		number						the number of write operations per second issued to the disk. Value is the minimum within the collection interval.

						diskPendingOperationsAvg		O		VNF/VNFC/VM		VNF/VNFC/VM		number						shows queue size of pending I/O operations per second. Value is the average within the collection interval.

						diskPendingOperationsLast		O		VNF/VNFC/VM		VNF/VNFC/VM		number						shows queue size of pending I/O operations per second. Value is the last within the collection interval.

						diskPendingOperationsMax		O		VNF/VNFC/VM		VNF/VNFC/VM		number						shows queue size of pending I/O operations per second. Value is the maximum within the collection interval.

						diskPendingOperationsMin		O		VNF/VNFC/VM		VNF/VNFC/VM		number						shows queue size of pending I/O operations per second. Value is the minimum within the collection interval.

						diskTimeReadAvg		O		VNF/VNFC/VM		VNF/VNFC/VM		number						the average time per second an I/O-operation took to complete. Value is the average within the collection interval.

						diskTimeReadLast		O		VNF/VNFC/VM		VNF/VNFC/VM		number						the average time per second an I/O-operation took to complete. Value is the last within the collection interval.

						diskTimeReadMax		O		VNF/VNFC/VM		VNF/VNFC/VM		number						the average time per second an I/O-operation took to complete. Value is the maximum within the collection interval.

						diskTimeReadMin		O		VNF/VNFC/VM		VNF/VNFC/VM		number						the average time per second an I/O-operation took to complete. Value is the minimum within the collection interval.

						diskTimeWriteAvg		O		VNF/VNFC/VM		VNF/VNFC/VM		number						the average time per second an I/O-operation took to complete. Value is the average within the collection interval.

						diskTimeWriteLast		O		VNF/VNFC/VM		VNF/VNFC/VM		number						the average time per second an I/O-operation took to complete. Value is the last within the collection interval.

						diskTimeWriteMax		O		VNF/VNFC/VM		VNF/VNFC/VM		number						the average time per second an I/O-operation took to complete. Value is the maximum within the collection interval.

						diskTimeWriteMin		O		VNF/VNFC/VM		VNF/VNFC/VM		number						the average time per second an I/O-operation took to complete. Value is the minimum within the collection interval.

						diskWeightedIoTimeAvg		O		VNF/VNFC/VM		VNF/VNFC/VM		number						measure in ms over 1 sec of both I/O completion time and the backlog that may be accumulating. Value is the average within the collection interval.

						diskWeightedIoTimeLast		O		VNF/VNFC/VM		VNF/VNFC/VM		number						measure in ms over 1 sec of both I/O completion time and the backlog that may be accumulating. Value is the last within the collection interval.

						diskWeightedIoTimeMax		O		VNF/VNFC/VM		VNF/VNFC/VM		number						measure in ms over 1 sec of both I/O completion time and the backlog that may be accumulating. Value is the maximum within the colletion interval.

						diskWeightedIoTimeMin		O		VNF/VNFC/VM		VNF/VNFC/VM		number						measure in ms over 1 sec of both I/O completion time and the backlog that may be accumulating. Value is the minimum within the colletion interval.

		featureUsageArray		featuresInUse				O		VNFC		VNFC		Object Array						Array of features in use		Feature Usage

						featureIdentifier		M		VNFC		VNFC		string								Feature Usage

						featureUtilization		M		VNFC		VNFC		number								Feature Usage

		filesystemUsageArray		filesystemUsage				O		VNF/VNFC/VM		VNF/VNFC/VM		Object Array						Filesystem usage of the VM on which the VNFC reporting the event is running

						filesystemName		M		VNF/VNFC/VM		VNF/VNFC/VM		string						File System Name

						blockConfigured		M		VNF/VNFC/VM		VNF/VNFC/VM		number						Configured block storage capacity in GB

						blockIops		M		VNF/VNFC/VM		VNF/VNFC/VM		number						Block storage input-output operations per second

						blockUsed		M		VNF/VNFC/VM		VNF/VNFC/VM		number						Used block storage capacity in GB

						ephemeralConfigured		M		VNF/VNFC/VM		VNF/VNFC/VM		number						Configured ephemeral storage capacity in GB

						ephemeralIops		M		VNF/VNFC/VM		VNF/VNFC/VM		number						Ephemeral storage input-output operations per second

						ephemeralUsed		M		VNF/VNFC/VM		VNF/VNFC/VM		number						Used ephemeral storage capacity in GB

		latencyDistribution		latencyBucketMeasure				O		VNF/VNFC/VM		VNF/VNFC/VM		Object Array						Object Array of integers representing counts of requests whose latency falls within per-VNF configured ranges. Latency refers to the lapse duration between a service request and its fulfillment. The expected unit is milliseconds. The primary idea is instrumentation of the critical functionality/service provided by the VNF

						countsInTheBucket		M		VNF/VNFC/VM		VNF/VNFC/VM		number		Counter				Number of counts falling within a defined latency bucket

						highEndOfLatencyBucket		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Gauge				High end of bucket range (typically in ms)

						lowEndOfLatencyBucket		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Gauge				Low end of bucket range (typically in ms)

		meanRequestLatency		n/a				O		VNF/VNFC/VM		VNF/VNFC/VM		number						Mean seconds required to respond to each request for the VM on which the VNFC reporting the event is running

		measurementInterval		n/a				M		VNF/VNFC/VM		VNF/VNFC/VM		number						Interval over which the usage measures are being reported. The allowed intervals to be integral number of minutes that evenly divide 60 minutes. So, allowed intervals would be 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60 minutes or the parameter to be specified in seconds (e.g., 60, 120, 180, 240, 300, 360, 600, 720, 900, 1200, 1800, and 3600 seconds).

		memoryUsageArray		memoryUsage

						vmIdentifier		M		VNF/VNFC/VM		VNF/VNFC/VM		string

						memoryBuffered		O		VNF/VNFC/VM		VNF/VNFC/VM		number						The amount, in kibibytes, of temporary storage for raw disk blocks.

						memoryCached		O		VNF/VNFC/VM		VNF/VNFC/VM		number						The amount of physical RAM, in kibibytes, left unused by the system.

						memoryConfigured		O		VNF/VNFC/VM		VNF/VNFC/VM		number						Memory configured in the VM on which the VNFC reporting the event is running

						memoryFree		M		VNF/VNFC/VM		VNF/VNFC/VM		number						The amount of physical RAM, in kibibytes, left unused by the system.

						memorySlabRecl		O		VNF/VNFC/VM		VNF/VNFC/VM		number						The part of Slab that can be reclaimed, such as caches.

						memorySlabUnrecl		O		VNF/VNFC/VM		VNF/VNFC/VM		number						The part of Slab that cannot be reclaimed even when lacking memory

						memoryUsed		M		VNF/VNFC/VM		VNF/VNFC/VM		number						mem_used = mem_total - (mem_free + mem_buffered + mem_cached + mem_slab_total);

		numberOfMediaPortsInUse		n/a				O		VNFC		VNFC		number						number of media ports in use		Media Ports

		requestRate		n/a				O		VNF/VNFC/VM		VNF/VNFC/VM		number						Peak request rate per second, for the VM over the measurement Interval

		vnfcScalingMetric		n/a				O		VNF/VNFC/VM		VNF/VNFC/VM		number						represents busy-ness of the VN from 0 to 100		Syntetic Metrics

		vNicPerformanceArray		vNicPerformance				O		VNF/VNFC/VM		VNF/VNFC/VM		Object Array						Performance measurements of an array of virtual network interface cards		Resource Performance Metrix

						vNicIdentifier		M		VNF/VNFC/VM		VNF/VNFC/VM		string		Identifier				vNic idnetification		Resource Performance Metrix

						receivedBroadcastPacketsAccumulated		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Counter				Cumulative count of broadcast packets received as read at the end of the collection interval		Resource Performance Metrix

						receivedBroadcastPacketsDelta		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Counter				Count of broadcast packets received within the collection interval		Resource Performance Metrix

						receivedDiscardedPacketsAccumulated		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Counter				Cumulative count of discarded packets received as read at the end of the collection interval		Resource Performance Metrix

						receivedDiscardedPacketsDelta		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Counter				Count of discarded packets received within the collection interval		Resource Performance Metrix

						receivedErrorPacketsAccumulated		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Counter				Cumulative count of error packets received as read at the end of the collection interval		Resource Performance Metrix

						receivedErrorPacketsDelta		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Counter				Count of error packets received within the collection interval		Resource Performance Metrix

						receivedMulticastPacketsAccumulated		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Counter				Cumulative count of multicast packets received as read at the end of the collection interval		Resource Performance Metrix

						receivedMulticastPacketsDelta		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Counter				Count of multicast packets received within the collection interval		Resource Performance Metrix

						receivedOctetsAccumulated		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Counter				Cumulative count of octets received as read at the end of the collection interval		Resource Performance Metrix

						receivedOctetsDelta		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Counter				Count of octets received within the collection interval		Resource Performance Metrix

						receivedTotalPacketsAccumulated		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Counter				Cumulative count of all packets received as read at the end of the collection interval

						receivedTotalPacketsDelta		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Counter				Count of all packets received within the collection interval

						receivedUnicastPacketsAccumulated		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Counter				Cumulative count of unicast packets received as read at the end of the collection interval		Resource Performance Metrix

						receivedUnicastPacketsDelta		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Counter				Count of unicast packets received within the collection interval		Resource Performance Metrix

						transmittedBroadcastPacketsAccumulated		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Counter				Cumulative count of broadcast packets transmitted as read at the end of the collection interval		Resource Performance Metrix

						transmitteddBroadcastPacketsDelta		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Counter				Count of broadcast packets transmitted within the collection interval		Resource Performance Metrix

						transmittedDiscardedPacketsAccumulated		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Counter				Cumulative count of discarded packets transmitted as read at the end of the collection interval		Resource Performance Metrix

						transmittedDiscardedPacketsDelta		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Counter				Count of discarded packets transmitted within the collection interval		Resource Performance Metrix

						transmittedErrorPacketsAccumulated		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Counter				Cumulative count of error packets transmitted as read at the end of the collection interval		Resource Performance Metrix

						transmittedErrorPacketsDelta		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Counter				Count of error packets transmitted within the collection interval		Resource Performance Metrix

						transmittedMulticastPacketsAccumulated		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Counter				Cumulative count of multicast packets transmitted as read at the end of the collection interval		Resource Performance Metrix

						transmitteddMulticastPacketsDelta		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Counter				Count of multicast packets transmitted within the collection interval		Resource Performance Metrix

						transmittedOctetsAccumulated		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Counter				Cumulative count of octets transmitted as read at the end of the collection interval		Resource Performance Metrix

						transmittedOctetsDelta		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Counter				Count of octets transmitted within the collection interval		Resource Performance Metrix

						transmittedTotalPacketsAccumulated		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Counter				Cumulative count of alll packets transmitted as read at the end of the collection interval

						transmittedTotalPacketsDelta		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Counter				Count of all packets transmitted within the collection interval

						transmittedUnicastPacketsAccumulated		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Counter				Cumulative count of unicast packets transmitted as read at the end of the collection interval		Resource Performance Metrix

						transmittedUnicastPacketsDelta		O		VNF/VNFC/VM		VNF/VNFC/VM		number		Counter				Count of unicast packets transmitted within the collection interval		Resource Performance Metrix

						valuesAreSuspect		M		VNF/VNFC/VM		VNF/VNFC/VM		string		Discrete				Enumeration: 'true' or 'false'. If 'true' then the vNicPerformance values are likely inaccurate due to counter overflow or other conditions.		Resource Performance Metrix

				JSONObjectInstance										Object Array

						objectInstance		M						object						Contains an instance conforming to the jsonObject schema

						objectInstanceEpochMicrosec		O						number						the unix time, aka epoch time, associated with this objectInstance--as microseconds elapsed since 1 Jan 1970 not including leap seconds

						objectKeys		O						key []						An ordered set of keys that identifies this particular instance of jsonObject (e.g., that places it in a hierarchy)

				Key										Object Array

						keyName		M						string						Name of the key

						keyOrder		O						Integer						Relative sequence or order of the key (with respect to other keys)

						keyValue		O						string						Value of the key

		Other Measurements that can be added to additonalField Array

		Field Name		ArrayField Name		Sub ArrayFieldName		Req/Opt		Enriched @ Broker		Source		Format		Reporting Type		Format Example		Field Description		Comments

		PingStatsArray		PinStats										Object Array						Network latency is measured as a round-trip time in milliseconds. An ICMP “echo request” is sent to a host and the time needed for its echo-reply to arrive is measured.

						pingIdentifier								string

						pingDropRate								number						droprate = ((double) (pkg_sent - pkg_recv)) / ((double) pkg_sent);

						pingStdDev								number						latency_stddev = sqrt (((((double) pkg_recv) * latency_squared) - (latency_total * latency_total)) / ((double) (pkg_recv * (pkg_recv - 1))));

		loadArray		load										Object Array

						loadIdentifier								string

						shortTeam								number						load average figures giving the number of jobs in the run queue (state R) or waiting for disk I/O (state D) averaged over 1 Minute
measured CPU and IO utilization for 1 min using /proc/loadavg

						midTerm								number						load average figures giving the number of jobs in the run queue (state R) or waiting for disk I/O (state D) averaged over 5 Minutes
measured CPU and IO utilization for 5 mins using /proc/loadavg

						longTerm								number						load average figures giving the number of jobs in the run queue (state R) or waiting for disk I/O (state D) averaged over 15 Minutes
measured CPU and IO utilization for 15 mins using /proc/loadavg

		ovsStatsAarry		ovsStats										Array

						ovsLinkIdentifier								string

						ovsLinkStatus								Gauge						Link status of the Open vSwitch interface: UP or DOWN

						collisions								number						Number of collisions.

						rx_bytes								number						Number of received bytes.

						 rx_crc_err								number						Number of CRC errors.

						 rx_dropped								number						Number of packets dropped by RX.

						 rx_errors								number						Total number of receive errors, greater than or equal to the sum of the RX errors above.

						 rx_frame_err								number						Number of frame alignment errors.

						 rx_over_err								number						Number of packets with RX overrun.

						 rx_packets								number						Number of received packets

						 tx_bytes								number						Number of transmitted bytes

						 tx_dropped								number						Number of packets dropped by TX

						 tx_errors								number						Total number of transmit errors, greater than or equal to the sum of the TX errors above.

						tx_packets								number						Number of transmitted packets

		HugePagesArray		HugePages										Object Array

						HugePagesIdentifier								string

						bytesUsed								number						Number of used hugepages in bytes

						bytesFree								number						Number of free hugepages in bytes

						vmPageNumberUsed								number						Number of used hugepages in numbers

						vmPageNumberFree								number						Number of free hugepages in numbers

						percentUsed								number						Number of used hugepages in percent

						percentFree								number						Number of free hugepages in percent

		processStatsArray		processStats										Object Array

						processIdentifier								string

						fork_rate								number						the number of threads created since the last reboot

						ps_state								number						the number of processes in a blocked state

						ps_state								number						the number of processes in a paging state

						ps_state								number						the number of processes in a running state

						ps_state								number						the number of processes in a sleeping state

						ps_state								number						the number of processes in a stopped state

						ps_state								number						the number of processes in a Zombie state

		libvirtStatsArray		libvirtDiskStats										Object Array

						diskOctetsRead								number						number of read bytes as unsigned long long.

						diskOctetsWrite								number						number of written bytes as unsigned long long

						diskOpsRead								number						number of read requests

						diskOpsWrite								number						number of write requests

				libvirtIfStats										Object Array

						ifDroppedIn								number						receive packets dropped as unsigned long long

						ifDroppedOut								number						transmit packets dropped as unsigned long long

						ifErrorsIn								number						receive errors as unsigned long long

						ifErrorsOut								number						transmission errors as unsigned long long.

						ifOctetsIn								number						bytes received as unsigned long long

						ifOctetsOut								number						bytes transmitted as unsigned long long

						ifPacketsIn								number						packets received as unsigned long long

						ifPacketsOut								number						packets transmitted as unsigned long long

				libvirtMemoryStats										Object Array

						memoryActualBalloon								number						Resident Set Size of the process running the domain. This value is in kB

						memoryRss								number						How much the balloon can be inflated without pushing the guest system to swap, corresponds to 'Available' in /proc/meminfo

						memorySwapIn								number						The total amount of memory written out to swap space (in kB).

						memoryTotal								number						the memory in KBytes used by the domain

				libvirtCpuStats										Object Array

						virtCpuTotal								number						The CPU time used in nanaoseconds.

						virtVcpu								number						vcpu_NR. The CPU time used in nanoseconds per cpu

						cpuAffinity								number						vcpuNR - cpuNR. Pinning of domain VCPUs to host physical CPUs (Value stored is a boolean)

				domainState										Object Array

						state								number						VIR_DOMAIN_NOSTATE = 0 # no state
VIR_DOMAIN_RUNNING = 1 # the domain is running
VIR_DOMAIN_BLOCKED = 2 #the domain is blocked on resource
VIR_DOMAIN_PAUSED = 3 #the domain is paused by user
VIR_DOMAIN_SHUTDOWN = 4 #the domain is being shut down
VIR_DOMAIN_SHUTOFF = 5 #the domain is shut off
VIR_DOMAIN_CRASHED = 6 #the domain is crashed
VIR_DOMAIN_PMSUSPENDED = 7 #the domain is suspended by guest power management
VIR_DOMAIN_LAST = 8 #NB: this enum value will increase over time as new events are added to the libvirt API. It reflects the last state supported by this version of the libvirt API.

						reason														returned reason which led to @state (one of virDomain*Reason corresponding to the current state);

				fileSystem										string						File system information (mountpoint, device name, filesystem type, number of aliases, disk aliases) Dispatched as notification. Requires guest agent to be installed and configured.

				jobStats										Arrray

						VIR_DOMAIN_JOB_AUTO_CONVERGE_THROTTLE														current percentage guest CPUs are throttled to when auto-convergence decided migration was not converging, as VIR_TYPED_PARAM_INT.

						VIR_DOMAIN_JOB_COMPRESSION_BYTES														number of compressed bytes transferred since the beginning of migration, as VIR_TYPED_PARAM_ULLONG.

						VIR_DOMAIN_JOB_COMPRESSION_CACHE														size of the cache (in bytes) used for compressing repeatedly transferred memory pages during live migration, as VIR_TYPED_PARAM_ULLONG.

						VIR_DOMAIN_JOB_COMPRESSION_CACHE_MISSES														number of repeatedly changing pages that were not found in compression cache and thus could not be compressed, as VIR_TYPED_PARAM_ULLONG.

						VIR_DOMAIN_JOB_COMPRESSION_OVERFLOW														number of repeatedly changing pages that were found in compression cache but were sent uncompressed because the result of compression was larger than the original page as a whole, as VIR_TYPED_PARAM_ULLONG.

						VIR_DOMAIN_JOB_COMPRESSION_PAGES														number of compressed pages transferred since the beginning of migration, as VIR_TYPED_PARAM_ULLONG.

						VIR_DOMAIN_JOB_DATA_PROCESSED														number of bytes transferred from the beginning of the job, as VIR_TYPED_PARAM_ULLONG. This field corresponds to dataProcessed field in virDomainJobInfo.

						VIR_DOMAIN_JOB_DATA_REMAINING														number of bytes that still need to be transferred, as VIR_TYPED_PARAM_ULLONG. This field corresponds to dataRemaining field in virDomainJobInfo.

						VIR_DOMAIN_JOB_DATA_TOTAL														total number of bytes supposed to be transferred, as VIR_TYPED_PARAM_ULLONG. For VIR_DOMAIN_JOB_UNBOUNDED jobs, this may be less than the sum of VIR_DOMAIN_JOB_DATA_PROCESSED and VIR_DOMAIN_JOB_DATA_REMAINING in the event that the hypervisor has to repeat some data, e.g., due to dirtied pages during migration. For VIR_DOMAIN_JOB_BOUNDED jobs, VIR_DOMAIN_JOB_DATA_TOTAL shall always equal VIR_DOMAIN_JOB_DATA_PROCESSED + VIR_DOMAIN_JOB_DATA_REMAINING. This field corresponds to dataTotal field in virDomainJobInfo.

						VIR_DOMAIN_JOB_DISK_BPS														network throughput used while migrating disks in Bytes per second, as VIR_TYPED_PARAM_ULLONG.

						VIR_DOMAIN_JOB_DISK_PROCESSED														as VIR_DOMAIN_JOB_DATA_PROCESSED but only tracking guest disk progress, as VIR_TYPED_PARAM_ULLONG. This field corresponds to fileProcessed field in virDomainJobInfo.

						VIR_DOMAIN_JOB_DISK_REMAINING														as VIR_DOMAIN_JOB_DATA_REMAINING but only tracking guest disk progress, as VIR_TYPED_PARAM_ULLONG. This field corresponds to fileRemaining field in virDomainJobInfo.

						VIR_DOMAIN_JOB_DISK_TOTAL														as VIR_DOMAIN_JOB_DATA_TOTAL but only tracking guest disk progress, as VIR_TYPED_PARAM_ULLONG. This field corresponds to fileTotal field in virDomainJobInfo.

						VIR_DOMAIN_JOB_DOWNTIME														downtime (ms) that is expected to happen during migration, as VIR_TYPED_PARAM_ULLONG. The real computed downtime between the time guest CPUs were paused and the time they were resumed is reported for completed migration.

						VIR_DOMAIN_JOB_DOWNTIME_NET														real measured downtime (ms) NOT including the time required to transfer control flow from the source host to the destination host, as VIR_TYPED_PARAM_ULLONG.

						VIR_DOMAIN_JOB_MEMORY_BPS														network throughput used while migrating memory in Bytes per second, as VIR_TYPED_PARAM_ULLONG.

						VIR_DOMAIN_JOB_MEMORY_CONSTANT														number of pages filled with a constant byte (all bytes in a single page are identical) transferred since the beginning of the migration job, as VIR_TYPED_PARAM_ULLONG. The most common example of such pages are zero pages, i.e., pages filled with zero bytes.

						VIR_DOMAIN_JOB_MEMORY_DIRTY_RATE														number of memory pages dirtied by the guest per second, as VIR_TYPED_PARAM_ULLONG. This statistics makes sense only when live migration is running.

						VIR_DOMAIN_JOB_MEMORY_ITERATION														current iteration over domain's memory during live migration, as VIR_TYPED_PARAM_ULLONG. This is set to zero when memory starts to be transferred and the value is increased by one every time a new iteration is started to transfer memory pages dirtied since the last iteration.

						VIR_DOMAIN_JOB_MEMORY_NORMAL														number of pages that were transferred without any kind of compression (i.e., pages which were not filled with a constant byte and which could not be compressed) transferred since the beginning of the migration job, as VIR_TYPED_PARAM_ULLONG.

						VIR_DOMAIN_JOB_MEMORY_NORMAL_BYTES														number of bytes transferred as normal pages, as VIR_TYPED_PARAM_ULLONG. See VIR_DOMAIN_JOB_MEMORY_NORMAL for more details.

						VIR_DOMAIN_JOB_MEMORY_PROCESSED														as VIR_DOMAIN_JOB_DATA_PROCESSED but only tracking guest memory progress, as VIR_TYPED_PARAM_ULLONG. This field corresponds to memProcessed field in virDomainJobInfo.

						VIR_DOMAIN_JOB_MEMORY_REMAINING														as VIR_DOMAIN_JOB_DATA_REMAINING but only tracking guest memory progress, as VIR_TYPED_PARAM_ULLONG. This field corresponds to memRemaining field in virDomainJobInfo.

						VIR_DOMAIN_JOB_MEMORY_TOTAL														as VIR_DOMAIN_JOB_DATA_TOTAL but only tracking guest memory progress, as VIR_TYPED_PARAM_ULLONG. This field corresponds to memTotal field in virDomainJobInfo.

						VIR_DOMAIN_JOB_SETUP_TIME														total time in milliseconds spent preparing the migration in the 'setup' phase before the iterations begin, as VIR_TYPED_PARAM_ULLONG.

						VIR_DOMAIN_JOB_TIME_ELAPSED														time (ms) since the beginning of the job, as VIR_TYPED_PARAM_ULLONG. This field corresponds to timeElapsed field in virDomainJobInfo.

						VIR_DOMAIN_JOB_TIME_ELAPSED_NET														time (ms) since the beginning of the migration job NOT including the time required to transfer control flow from the source host to the destination host, as VIR_TYPED_PARAM_ULLONG.

						VIR_DOMAIN_JOB_TIME_REMAINING														remaining time (ms) for VIR_DOMAIN_JOB_BOUNDED jobs, as VIR_TYPED_PARAM_ULLONG. This field corresponds to timeRemaining field in virDomainJobInfo.

				diskError																Disk error code (Metric isn’t dispatched for disk with no errors)

				perf										Object Array

						perfCmt														usage of l3 cache in bytes by applications running on the platform

						perfMbmt														total system bandwidth from one level of cache

						perfMbml														bandwidth of memory traffic for a memory controller

						perfCpuCycles														the count of cpu cycles (total/elapsed)

						perfInstructions														the count of instructions by applications running on the platform

						perfCacheReferences														the count of cache hits by applications running on the platform

						perf.branchInstructions														the count of branch instructions by applications running on the platform

						perf.branchMisses														the count of branch misses by applications running on the platform

						perf.busCycles														the count of bus cycles by applications running on the platform

						perf.stalledCyclesFrontend														the count of stalled cpu cycles in the frontend of the instruction processor pipeline by applications running on the platform

						perf.stalledCyclesBackend														the count of stalled cpu cycles in the backend of the instruction processor pipeline by applications running on the platform

						perfCacheMisses														the count of cache misses by applications running on the platform

		rdtArray		RDT										Object Array

						ipc														Number of instructions per clock per core group

						memoryBandwidthLocal														Local Memory Bandwidth utilization

						memoryBandwidthRemote														Remote Memory Bandwidth utilization

						bytesLlc														Last Level Cache occupancy

		dpdkStatsArrary		derive		rxL3L4XsumError														 Number of receive IPv4, TCP, UDP or SCTP XSUM errors.

				errors										Object Array

						flowDirectorFilterAddErrors														Number of failed added filters

						flowDirectorFilterRemoveErrors														Number of failed removed filters

						macLocalErrors														Number of faults in the local MAC.

						macRemoteErrors														Number of faults in the remote MAC.

				ifRxDropped										Object Array

						rxFcoeDropped														Number of Rx packets dropped due to lack of descriptors.

						rxMacShortPacketDropped														Number of MAC short packet discard packets received.

						rxManagementDropped														Number of management packets dropped. This register counts the total number of packets received that pass the management filters and then are dropped because the management receive FIFO is full. Management packets include any packet directed to the manageability console (such as RMCP and ARP packets).

						rxPriorityXdropped														Number of dropped packets received per UP

				ifRxErrors										Object Array

						rxCrcErrors														Counts the number of receive packets with CRC errors. In order for a packet to be counted in this register, it must be 64 bytes or greater (from <Destination Address> through <CRC>, inclusively) in length.

						rxErrors														Number of errors received

						rxFcoeCrcErrors														FC CRC Count.

																				Count the number of packets with good Ethernet CRC and bad FC CRC

						rxFcoeMbufAllocationErrors														Number of fcoe Rx packets dropped due to lack of descriptors.

						rxFcoeNoDirectDataPlacement

						rxFcoeNoDirectDataPlacementExtBuff

						rxFragmentErrors														Number of receive fragment errors (frame shorted than 64 bytes from <Destination Address> through <CRC>, inclusively) that have bad CRC (this is slightly different from the Receive Undersize Count register).

						rxIllegalByteErrors														Counts the number of receive packets with illegal bytes errors (such as there is an illegal symbol in the packet).

						rxJabberErrors														Number of receive jabber errors. This register counts the number of received packets that are greater than maximum size and have bad CRC (this is slightly different from the Receive Oversize Count register). The packets length is counted from <Destination Address> through <CRC>, inclusively.

						rxLengthErrors														Number of packets with receive length errors. A length error occurs if an incoming packet length field in the MAC header doesn't match the packet length.

						rxMbufAllocationErrors														Number of Rx packets dropped due to lack of descriptors.

						rxOversizeErrors														eceive Oversize Error. This register counts the number of received frames that are longer than maximum size as defined by MAXFRS.MFS (from <Destination Address> through <CRC>, inclusively) and have valid CRC.

						rxPriorityXmbufAllocationErrors														Number of received packets per UP dropped due to lack of descriptors.

						rxQ0Errors														Number of errors received for the queue.

						rxUndersizeErrors														Receive Undersize Error. This register counts the number of received frames that are shorter than minimum size (64 bytes from <Destination Address> through <CRC>, inclusively), and had a valid CRC.

				ifRxOctets										Object Array

						rxErrorBytes														Counts the number of receive packets with error bytes (such as there is an error symbol in the packet). This registers counts all packets received, regardless of L2 filtering and receive enablement.

						rxFcoeBytes														number of received fcoe bytes

						rxGoodBytes														Good octets/bytes received count. This register includes bytes received in a packet from the <Destination Address> field through the <CRC> field, inclusively.

						rxQ0Bytes														Number of bytes received for the queue.

						rxTotalBytes														Total received octets. This register includes bytes received in a packet from the <Destination Address> field through the <CRC> field, inclusively.

				ifRxPackets										Object Array

						rxBroadcastPackets														Number of good (non-erred) broadcast packets received.

						rxFcoePackets														Number of FCoE packets posted to the host. In normal operation (no save bad frames) it equals to the number of good packets.

						rxFlowControlXoffPackets														Number of XOFF packets received. This register counts any XOFF packet whether it is a legacy XOFF or a priority XOFF. Each XOFF packet is counted once even if it is designated to a few priorities.

						rxFlowControlXonPackets														Number of XON packets received. This register counts any XON packet whether it is a legacy XON or a priority XON. Each XON packet is counted once even if it is designated to a few priorities.

						rxGoodPackets														Number of good (non-erred) Rx packets (from the network).

						rxManagementPackets														Number of management packets received. This register counts the total number of packets received that pass the management filters. Management packets include RMCP and ARP packets. Any packets with errors are not counted, except for the packets that are dropped because the management receive FIFO is full are counted.

						rxMulticastPackets														Number of good (non-erred) multicast packets received (excluding broadcast packets). This register does not count received flow control packets.

						rxPriorityXxoffPackets														Number of XOFF packets received per UP

						rxPriorityXxonPackets														Number of XON packets received per UP

						rxQ0Packets														Number of packets received for the queue.

						rxSize1024ToMaxPackets														Number of packets received that are 1024-max bytes in length (from <Destination Address> through <CRC>, inclusively). This registers does not include received flow control packets. The maximum is dependent on the current receiver configuration and the type of packet being received. If a packet is counted in receive oversized count, it is not counted in this register. Due to changes in the standard for maximum frame size for VLAN tagged frames in 802.3, packets can have a maximum length of 1522 bytes.

						rxSize128to255Packets														Number of packets received that are 128-255 bytes in length (from <Destination Address> through <CRC>, inclusively).

						rxSize256to511Packets														Number of packets received that are 256-511 bytes in length (from <Destination Address> through <CRC>, inclusively).

						rxSize512to1023Packets														Number of packets received that are 512-1023 bytes in length (from <Destination Address> through <CRC>, inclusively).

						rxSize64Packets														Number of good packets received that are 64 bytes in length (from <Destination Address> through <CRC>, inclusively).

						rxSize65to127Packets														Number of packets received that are 65-127 bytes in length (from <Destination Address> through <CRC>, inclusively)

						rxTotalMissedPackets														the total number of rx missed packets, that is is a packet that was correctly received by the NIC but because it was out of descriptors and internal memory, the packet had to be dropped by the NIC itself

						rxTotalPackets														Number of all packets received. This register counts the total number of all packets received. All packets received are counted in this register, regardless of their length, whether they are erred, but excluding flow control packets.

						rxXoffPackets														Number of XOFF packets received. Sticks to 0xFFFF. XOFF packets can use the global address or the station address. This register counts any XOFF packet whether it is a legacy XOFF or a priority XOFF. Each XOFF packet is counted once even if it is designated to a few priorities. If a priority FC packet contains both XOFF and XON, only this counter is incremented.

						rxXonPackets														Number of XON packets received. XON packets can use the global address, or the station address. This register counts any XON packet whether it is a legacy XON or a priority XON. Each XON packet is counted once even if it is designated to a few priorities. If a priority FC packet contains both XOFF and XON, only the LXOFFRXCNT counter is incremented.

				ifTxErrors																Total number of TX error packets

				ifTxOctets										Object Array

						tx_fcoe_bytes														Number of fcoe bytes transmitted

						tx_good_bytes														counter of successfully transmitted octets. This register includes transmitted bytes in a packet from the <Destination Address> field through the <CRC> field, inclusively.

						tx_q0_bytes														Number of bytes transmitted by the queue.

				ifTxPackets

						txBroadcastPackets														Number of broadcast packets transmitted count. This register counts all packets, including standard packets, secure packets, FC packets and manageability packets

						txFcoePackets														Number of fcoe packets transmitted

						txFlowControlXoffPackets														Link XOFF Transmitted Count

						txFlowControlXonPackets														Link XON Transmitted Count

						txGoodPackets														Number of good packets transmitted

						txManagementPackets														Number of management packets transmitted.

						txMulticastPackets														Number of multicast packets transmitted. This register counts the number of multicast packets transmitted. This register counts all packets, including standard packets, secure packets, FC packets and manageability packets.

						txPriorityXxoffPackets														Number of XOFF packets transmitted per UP

						txPriorityXxonPackets														Number of XON packets transmitted per UP

						txQ0Packets														Number of packets transmitted for the queue. A packet is considered as transmitted if it is was forwarded to the MAC unit for transmission to the network and/or is accepted by the internal Tx to Rx switch enablement logic. Packets dropped due to anti-spoofing filtering or VLAN tag validation (as described in Section 7.10.3.9.2) are not counted.

						txSize1024ToMaxPackets														Number of packets transmitted that are 1024 or more bytes in length (from <Destination Address> through <CRC>, inclusively). This register counts all packets, including standard packets, secure packets, and manageability packets.

						txSize128to255Packets														Number of packets transmitted that are 128-255 bytes in length (from <Destination Address> through <CRC>, inclusively). This register counts all packets, including standard packets, secure packets, and manageability packets

						txSize256to511Packets														Number of packets transmitted that are 256-511 bytes in length (from <Destination Address> through <CRC>, inclusively). This register counts all packets, including standard packets, secure packets, and manageability packets.

						txSize512to1023Packets														Number of packets transmitted that are 512-1023 bytes in length (from <Destination Address> through <CRC>, inclusively). This register counts all packets, including standard packets, secure packets, and manageability packets.

						txSize64Packets														Number of packets transmitted that are 64 bytes in length (from <Destination Address> through <CRC>, inclusively). This register counts all packets, including standard packets, secure packets, FC packets, and manageability packets.

						txSize65to127Packets														Number of packets transmitted that are 65-127 bytes in length (from <Destination Address> through <CRC>, inclusively). This register counts all packets, including standard packets, secure packets, and manageability packets.

						txTotalPackets														Number of all packets transmitted. This register counts the total number of all packets transmitted. This register counts all packets, including standard packets, secure packets, FC packets, and manageability packets.

						txXoffPackets														Number of XOFF packets transmitted

						txXonPackets														Number of XON packets transmitted

				operations										Object Array

						flowDirectorAddedFilters														This field counts the number of added filters to the flow director filters logic.

						flowDirectorMatchedFilters														This field counts the number of matched filters to the flow director filters logic.

						flowDirectorMissedFilters														This field counts the number of missed filters to the flow director filters logic.

						flowDirectorRemovedFilters														This field counts the number of removed filters from the flow director filters logic.

		mceLog (RAS memory)		errors										Object Array

						correctedMemoryErrors														The total number of hardware errors that were corrected by the hardware (e.g. using a single bit data corruption that was correctible using ECC). These errors do not require immediate software actions, but are still reported for accounting and predictive failure analysis.

						uncorrectedMemoryErrors														the total number of uncorrected hardware errors detected by the hardware. Data corruption has occurred. These errors require software reaction.

						correctedMemoryErrorsIn%s														The total number of hardware errors that were corrected by the hardware in a certain period of time

						uncorrectedMemoryErrorsIn%s														the total number of uncorrected hardware errors detected by the hardware in a certain period of time

		IPMI 		percentUsage										Object Array

						 P2ThermCtrl%

						 P1ThermCtrl%

						 PS1CurrOut%

				voltage										Object Array

						 BB3.3vVbat

						 BB12.0v

				temparature										Object Array

						 AggThermMgn1

						 DIMMThrmMrgn4

						 DIMMThrmMrgn3

						 DIMMThrmMrgn2

						 DIMMThrmMrgn1

						 P2DTSThermMgn

						 P1DTSThermMgn

						 P2ThermCtrl%

						 P1ThermCtrl%

						 P2ThermMargin

						 P1ThermMargin

						 PS1Temperature

						 LANNICTemp

						 ExitAirTemp

						 HSBP1Temp

						 I/OModTemp

						 BBLftRearTemp

						 BBRtRearTemp

						 BBBMCTemp

						 SSBTemp

						 FrontPanelTemp

						 BBP2VRTemp

						 BBP1VRTemp

				fan										Object Array

						 SystemFan6B

						 SystemFan6A

						 SystemFan5B

						 SystemFan5A

						 SystemFan4B

						 SystemFan4A

						 SystemFan3B

						 SystemFan3A

						 SystemFan2B

						 SystemFa 2A

						 SystemFan1B

						 SystemFan1A

				cfm		 System Airflow

				watts		 PS1InputPower

		intelPmu		counter										Object Array

						cpuCycles

						instructions

						cacheReferences

						cacheMisses

						branchInstructionsORbranches

						branchMisses

						busCycles

						cpuClock

						taskClock

						pageFaultsORfaults

						minorFaults

						majorFaults

						contextSwitchesORcs

						cpuMigrationsORmigrations

						alignmentFaults

						emulationFaults

						L1DcacheLoads

						L1DcacheLoadMisses

						L1DcacheStores

						L1DcacheStoreMisses

						L1DcachePrefetches

						L1DcachePrefetchMisses

						L1IcacheLoads

						L1IcacheLoadMisses

						L1IcachePrefetches

						L1IcachePrefetchMisses

						LLCLoads

						LLCLoadMisses

						LLCStores

						LLCStoreMisses

						LLCPrefetchMisses

						dTLBLoads

						dTLBLoadMisses

						dTLBStores

						dTLBStoreMisses

						dTLBPrefetches

						dTLBPrefetchMisses

						iTLLoads

						iTLBLoadMisses

						branchLoads

						branchLoadMisses

Syslog

		SYSLOG - based on RFC 5424 - The Syslog Protocol

		Field Name		ArrayField Name		Opt/ Man		Enriched @ Broker		Source		Format		Format Example		Description		Comments

		syslogFieldsVersion				M		VN		VN		num		3.0		The VERSION field denotes the version of the syslog protocol specification		What AT&T calls SyslogVer is called VERSION in the standard, and is a 0-2 digit number. This number indicates the version of syslog format the message follows. It is normally 1.
The VERSION field denotes the version of the syslog protocol specification. The version number MUST be incremented for any new syslog protocol specification that changes any part of the HEADER format. Changes include the addition or removal of fields, or a change of syntax or semantics of existing fields. This document uses a VERSION value of "1". The VERSION values are IANA-assigned
 (Section 9.1) via the Standards Action method as described in [RFC5226].

		additionalFields		 		O		VNF		VNF		String				Additional syslog fields if needed, provided as name=value delimited by a pipe ‘|’ symbol, for example: “name1=value1|name2=value2|…”

		eventSourceHost				O		VNF		VNF		String				Examples: ‘other’, ‘router’, ‘switch’, ‘host’, ‘card’, ‘port’, ‘slotThreshold’, ‘portThreshold’, ‘virtualMachine’, ‘virtualNetworkFunction’

		eventSourceType				M		VN		VN		String 		router		An enumeration: other, router, switch, host, card, port, slotThreshold, portThreshold, virtual machine, virtual nwtwork function, etc…
		Set to 0 if not known or not applicable. Similar to ObjectType (MTOSI)

		syslogFacility				O		VN		VN		integer		21		Facility values is not normative but often used. The following tables for purely informational purposes. Facility values MUST be in the range of 0 to 23 inclusive.
 Code Facility
 0 kernel messages
 1 user-level messages
 2 mail system
 3 system daemons
 4 security/authorization messages
 5 messages generated internally by syslogd
 6 line printer subsystem
 7 network news subsystem
 8 UUCP subsystem
 9 clock daemon
 10 security/authorization messages
 11 FTP daemon
 12 NTP subsystem
 13 log audit
 14 log alertrouter
 15 clock daemon (note 2)
 16 local use 0 (local0)
 17 local use 1 (local1)
 18 local use 2 (local2)
 19 local use 3 (local3)
 20 local use 4 (local4)
 21 local use 5 (local5)
 22 local use 6 (local6)
 23 local use 7 (local7)		This field is decoded for the the Priority field
=int(<PRI>/8)

		syslogMsg				M		VN		VN		String		reject configuration because REASON8 MORE THAN ONE WORD REASON		Msg contains the details of the syslog. It contains spaces and non alphabetic characters

		syslogPri				O		VN		VN		integer		2		0-192
Combined Severity and Facility

		syslogProc				O		VN		VN		string		root		The Proc field identifies the application that originated the message.

		syslogProcId				O		VN		VN		num		12345		PROCID is a value that is included in the message, having no interoperable meaning, except that a change in the value indicates there has been a discontinuity in syslog reporting

		syslogSData				O		VN		VN		String		[F5@12276 acl_policy_name="/Common/MOBILE-POLICY-IPV6" acl_policy_type="Enforced" acl_rule_name="/Common/SUNDANCE-RULE-LIST-IPV6:DEFAULT-DROP" action="Drop" hostname="wt2bwa1fgi01v.sundance.local"]		STRUCTURED-DATA = NILVALUE / 1*SD-ELEMENT
 SD-ELEMENT = "[" SD-ID *(SP SD-PARAM) "]"
 SD-PARAM = PARAM-NAME "=" %d34 PARAM-VALUE %d34
 SD-ID = SD-NAME
 PARAM-NAME = SD-NAME
 PARAM-VALUE = UTF-8-STRING ; characters '"', '\' and
 ; ']' MUST be escaped.
 SD-NAME = 1*32PRINTUSASCII
 ; except '=', SP, ']', %d34 (")		What AT&T calls SyslogSData is called STRUCTURED-DATA in the standard, which consists of a structured data ID followed by a set of key value pairs. This allows the syslog to be presented in a common format with common attributes instead of just the free form way it is presented in the MSG field. It is an optional field, but allows better normailztion of syslogs
STRUCTURED-DATA provides a mechanism to express information in a well defined, easily parseable and interpretable data format. There are multiple usage scenarios. For example, it may express meta-information about the syslog message or application-specific information such as traffic counters or IP addresses.
NOTE: This field may contain the entire Stuctured Data format includinf brackets "[]" and SD-ID or SD-ID can be provided in syslogSdId field and just the list of parameters without brackets can be in this field

		syslogSdId				O		VN		VN		String		ourSDID@32473		0-32 char in format name@number,
ie ourSDID@32473

		syslogSev				O		VN		VN		String		Emergency		Numerical Code for Severity
(derived from syslogPri: remaider of syslogPri / 8)
 0 Emergency: system is unusable
 1 Alert: action must be taken immediately
 2 Critical: critical conditions
 3 Error: error conditions
 4 Warning: warning conditions
 5 Notice: normal but significant condition
 6 Informational: informational messages
 7 Debug: debug-level messages

		syslogTag				M		VN		VN		String		ASP_SFW_POLICY_REJECT
-or-
142348		TAG (AKA MSGID) SHOULD identify the type of message. For example, a firewall might use the MSGID "TCPIN" for incoming TCP traffic and the MSGID "TCPOUT" for outgoing TCP traffic. Messages with the same MSGID should reflect events of the same semantics. The MSGID itself is a string without further semantics. It is intended for filtering messages on a relay or collector. The NILVALUE SHOULD be used when the syslog application does not, or cannot, provide any value.		What AT&T calls SyslogTag is called MSGID in the standard, 1 to 32 character.
The MSGID SHOULD identify the type of message. For example, a firewall might use the MSGID "TCPIN" for incoming TCP traffic and the MSGID "TCPOUT" for outgoing TCP traffic. Messages with the same MSGID should reflect events of the same semantics. The MSGID itself is a string without further semantics. It is intended for filtering messages on a relay or collector.

		syslogVer				O		VN		VN		number 		0		Vendor should default to 0 if evetns are send in vES. If collector gets evetn ins UDP then it should populate with value received.

Other

		OtherFields

		Field Name		ArrayField Name		Sub ArrayFieldName		Req/Opt		Enriched @ Broker		Source		Format		Reporting Type		Format Example		Field Description		Comments

		OtherFieldVersion		n/a				M		Enrich		Collector		Num				1.1		Version of the OtherField block		first initial release/version

		nameValuePairs		field				O						Object Array

						name		M						string

		additonalFileds				value		M						string

		hashOfNameValuePAirArray		namedArrayOfFields				O		VNF/VNFC/VM		VNF/VNFC/VM		Object Array						additional measurement fields		name/value

						name		M		VNF/VNFC/VM		VNF/VNFC/VM		String								name/value

						field		M		VNF/VNFC/VM		VNF/VNFC/VM		Object Array								name/value

		jsonObjects		jsonObject				O		VNF/VNFC/VM		VNF/VNFC/VM

						objectInstances		M		VNF/VNFC/VM		VNF/VNFC/VM		JsonObjectInstance [] (see line 141)						Contains one or more instances of the json object

						objectName		M		VNF/VNFC/VM		VNF/VNFC/VM		string						Name of the json object

						objectSchema		O		VNF/VNFC/VM		VNF/VNFC/VM		string						json schema for the object

						objectSchemaUrl		O		VNF/VNFC/VM		VNF/VNFC/VM		string						URL to the json schema for the object

						nfSubscribedObjectName		O		VNF/VNFC/VM		VNF/VNFC/VM		string						Name of the object associated with the nfSubscriptionId

						nfSubscriptionId		O		VNF/VNFC/VM		VNF/VNFC/VM		string						Identifies an openConfig telemetry subscription on a network function, which configures the network function to send complex object data associated with the jsonObject

				JSONObjectInstance										Object Array

						objectInstance		M						object						Contains an instance conforming to the jsonObject schema

						objectInstanceEpochMicrosec		O						number						the unix time, aka epoch time, associated with this objectInstance--as microseconds elapsed since 1 Jan 1970 not including leap seconds

						objectKeys		O						key []						An ordered set of keys that identifies this particular instance of jsonObject (e.g., that places it in a hierarchy)

				Key										Object Array

						keyName		M						string						Name of the key

						keyOrder		O						Integer						Relative sequence or order of the key (with respect to other keys)

						keyValue		O						string						Value of the key

StateChange

		StateChange

		Field Name		ArrayField Name		Sub ArrayFieldName		Req/Opt		Enriched @ Broker		Source		Format		Format Example		Field Description		Comments

		stateChangeFieldsVersion		n/a		n/a		M		VNFC		VN/Collector		Num		2.0		Version of the stateChange Fields block		first initial release/version

		additionalFields		field		 		O		VNFC		VN/Collector		Object Array		Additional stateChange fields if needed

						name 		M		VNFC		VN/Collector		String

						value		M		VNFC		VN/Collector		String

		newState		n/a		n/a		M		VNFC		VN		String		inService, "outOfService", "maintenance"		New state of the entity		Not limited to the examples shown.

		OldState		n/a		n/a		M		VNFC		VN		String		"inService", "outOfService", "maintenance"		Previous state of the entity		 Not limited to the examples shown.

		StateInterface		n/a		n/a		M		VNFC		VN		String				Card or port name of the entity that has changed state		Media Ports

		Field Name		Arry		Sub Array		Opt/Man		Enriched @ Broker		Source		Format		Format Example		Description		Comments

		name		n/a		n/a		M		VNFC		VN		String

		value		n/a		n/a		M		VNFC		VN		String

TCA Alerts

		thresholdCrossingAlert

		Field Name		ArrayField Name		Sub ArrayFieldName		Req/Opt		Enriched @ Broker		Source		Format		Format Example		Field Description		Comments

		thresholdCrossingFieldsVersion						O		VNFC/VM				number		2		version of the ThresholdCrossingFields block

		additionalFields		Field				O		O		VNFC		VN/Collector		 		Additional stateChange fields if needed

						Name 		M		M		VNFC		VN/Collector		

						Value		M		M		VNFC		VN/Collector		

		additionalParameters		counter				M		Enrich				Object Array				Here is where the counters and values get listed which make up the alert. 		Value is concatenation of (possibility) multiple sets of “name=value[thresholdCrossed-criticalityLevel]”, separated by semicolons. Value of criticalityLevel is CRIT or MAJ. Eg TxUtil=90%[80%-CRIT];RxUtil=75%[70%-MAJ]

						name		M		Enrich				string		CRIT		Name of the counter

						value		M		Enrich				string				Current value of the counter

						thresholdCrossed		M		Enrich				string				Last threshold that was crossed

						criticality		M		Enrich				string				Enumeration: ‘CRIT’, ‘MAJ’

		alertAction		n/a				M		Enrich				string				Enumerated value SET, CONT, CLEAR

		alertDescription		n/a				M		VNFC/VM				string				Unique alert “short” alert description, such as NE-CPUMEM or IF-SHUB-ERRDROP

		alertType		n/a				M		VNFC/VM				string		CARD-ANOMALY		Enumerated value CRITICAL, MAJOR, MINOR
Enumerated/Standard list of values:
CARD-ANOMALY
INTERFACE-ANOMALY
ELEMENT-ANOMALY
SERVICE-ANOMALY

		alertValue		n/a				O		Enrich				string				Calculated API value if applicable				VNF Name

		associatedAlertIdList		n/a				O						string[]				List of eventIds associated with the event being reported

		collectionTimestamp		n/a				M		VNFC/VM				string				Time when Performance Collector collects the data		Either when it is picked it up from the EMS or when we collect it from the network element (so for direct SNMP polling, this will be same as Event Start Time)

		dataCollector		n/a				O		Enrich				string				Specific performance collector instanced used

		elementType		n/a				O		Enrich				string				The type of element, ie 7750, 7450, CRS-1		Relates to the elementName if availbale

		eventSeverity		n/a				M		VNF/VNFC/VM		VNF/VNFC/VM		String		CRITICAL, MAJOR, MINOR, WARNING, NORMAL		Event severity or priority.

NORMAL severity reflects the event condition is back to Normal, or has Cleared.		Could follow the X733PerceivedSeverity (MTOSI/ETSI, or PerceivedSeverity (3GPP) standard.

		eventStartTimestamp		n/a				M		VNFC/VM				string				Time closest relating to when the measurement relates		If SNMP polling, the timestamp when we poll the element; if collecting from EMS, when the EMS collected from the element

		interfaceName		n/a				O		Enrich				string				If alert relates to a physical or logical port (or to a card) that will be identified here

		networkService		n/a				O		VNFC/VM				string				Network Name		It is the network name where measurement data is collected. In most cases it will be AIC. For mobility network it can be related to deveice for which the evetn is reported.

		possibleRootCause		n/a				O		Enrich				string				Not currently used

SipSignaling

		SipSignalingFields

		Field Name		ArrayField Name		Sub ArrayFieldName		Req/Opt		Enriched @ Broker		Source		Format		Format Example		Field Description		Comments

		sipSignalingFieldsVersion		n/a		n/a		M		VNF/VNFC		VNF/VNFC		number		1		Version of the sipSignalingFields block (currently: 1.0)

		additionalInformation		field				O		VNF/VNFC		VNF/VNFC		Object Array				Additional sip Signalling fields

						name		M		VNF/VNFC		VNF/VNFC		String				Name

						Value		M		VNF/VNFC		VNF/VNFC		String				Value

		compressedSip		n/a		n/a		O		VNF/VNFC		VNF/VNFC		string				The full SIP request/response including headers and bodies

		correlator		n/a		n/a		M		VNF/VNFC		VNF/VNFC		string				Constant across all events on this call

		localIpAddress		n/a		n/a		M		VNF/VNFC		VNF/VNFC		string				Ip address on VNF

		localPort		n/a		n/a		M		VNF/VNFC		VNF/VNFC		string				Port on VNF

		remoteIpAddress		n/a		n/a		M		VNF/VNFC		VNF/VNFC		string				IP address of peer endpoint

		remotePort		n/a		n/a		M		VNF/VNFC		VNF/VNFC		string				Port of peer endpoint

		summarySip		n/a		n/a		O		VNF/VNFC		VNF/VNFC		string		 		The SIP Method or Response (‘INVITE’, ‘200 OK’, ‘BYE’, etc)		first initial release/version

		vendorVnfNameFields		vendorVnfNameFields				M		VNF/VNFC		VNF/VNFC		Object Array				 Vendor, VNF and VfModule names

						vendorName		M		VNF/VNFC		VNF/VNFC		string				VNF vendor name

						vfModuleName		O		VNF/VNFC		VNF/VNFC		string				The ASDC vfModuleName for the vfModule generating the event

						vnfName		O		VNF/VNFC		VNF/VNFC		string		 		The ASDC modelName for the VNF generating the event

		Field Name		Arry		Sub Array		Opt/Man		Enriched @ Broker		Source		Format		Format Example		Description		Comments

		name		n/a		n/a		M		VNFC		VN		String

		value		n/a		n/a		M		VNFC		VN		String

voiceQuality

		Vocie Quality

		Field Name		ArrayField Name		Sub ArrayFieldName		Req/Opt		Enriched @ Broker		Source		Format		Format Example		Field Description		Comments

		voiceQualityFieldsVersion		n/a		n/a		M		VNF/VNFC		VNF/VNFC		number		1		Version of the voiceQualityFields block

		additionalInformation		field				O		VNF/VNFC		VNF/VNFC		Object Array				Additional voice quality fields

						name		M		VNF/VNFC		VNF/VNFC		String				Name

						Value		M		VNF/VNFC		VNF/VNFC		String				Value

		calleeSideCodec						M		VNF/VNFC		VNF/VNFC		string				Callee codec for the call

		callerSideCodec		n/a		n/a		M		VNF/VNFC		VNF/VNFC		string				Caller codec for the call

		correlator		n/a		n/a		M		VNF/VNFC		VNF/VNFC		string				Constant across all events on this call

		endOfCallVqmSummaries		endOfCallVqmSummaries		 		O		VNF/VNFC		VNF/VNFC		array				End of call voice quality metric summaries

						adjacencyName		M		VNF/VNFC		VNF/VNFC		string				Adjacency name

						endpointDescription		M		VNF/VNFC		VNF/VNFC		string				Enumeration: ‘Caller’, ‘Callee’

						endpointJitter		O		VNF/VNFC		VNF/VNFC		number				Endpoint jitter

						endpointRtpOctetsDiscarded		O		VNF/VNFC		VNF/VNFC		number				Endpoint RTP octets discarded

						endpointRtpOctetsReceived		O		VNF/VNFC		VNF/VNFC		number				Endpoint RTP octets received

						endpointRtpOctetsSent		O		VNF/VNFC		VNF/VNFC		number				Endpoint RTP octets sent

						endpointRtpPacketsDiscarded		O		VNF/VNFC		VNF/VNFC		number				Endpoint RTP packets discarded

						endpointRtpPacketsReceived		O		VNF/VNFC		VNF/VNFC		number				Endpoint RTP packets received

						endpointRtpPacketsSent		O		VNF/VNFC		VNF/VNFC		number				Endpoint RTP packets sent

						localJitter		O		VNF/VNFC		VNF/VNFC		number				Local jitter

						localRtpOctetsDiscarded		O		VNF/VNFC		VNF/VNFC		number				Local RTP octets discarded

						localRtpOctetsReceived		O		VNF/VNFC		VNF/VNFC		number				Local RTP octets received

						localRtpOctetsSent		O		VNF/VNFC		VNF/VNFC		number				Local RTP octets sent

						localRtpPacketsDiscarded		O		VNF/VNFC		VNF/VNFC		number				Local RTP packets discarded

						localRtpPacketsReceived		O		VNF/VNFC		VNF/VNFC		number				Local RTP packets received

						localRtpPacketsSent		O		VNF/VNFC		VNF/VNFC		number				Local RTP packets sent

						mosCqe		O		VNF/VNFC		VNF/VNFC		number				Decimal range from 1 to 5 (1 decimal place)

						packetsLost		O		VNF/VNFC		VNF/VNFC		number				Packets lost

						packetLossPercent		O		VNF/VNFC		VNF/VNFC		number				Calculated percentage packet loss based on endpoint RTP packets lost (as reported in RTCP) and local RTP packets sent. Direction is based on endpoint description (Caller, Callee). Decimal (2 decimal places)

						rFactor		O		VNF/VNFC		VNF/VNFC		number				rFactor from 0 to 100

						roundTripDelay		O		VNF/VNFC		VNF/VNFC		number				Round trip delay in milliseconds

		phoneNumber		n/a		n/a		O		VNF/VNFC		VNF/VNFC		string				Phone number associated with the correlator

		midCallRtcp		n/a		n/a		M		VNF/VNFC		VNF/VNFC		string				Base64 encoding of the binary RTCP data (excluding Eth/IP/UDP headers)

		vendorVnfNameFields		n/a		n/a		M		VNF/VNFC		VNF/VNFC		vendorVnfNameFields				Vendor, VNF and VfModule names

mobileFlowFields

		`© 2016 AT&T Intellectual Property. All rights reserved. AT&T and the AT&T logo are trademarks of AT&T Intellectual Property.
AT&T Proprietary & Confidential (Internal Use Only) - Provided pursuant to NDA with AT&T.
Not for use or disclosure outside the AT&T companies except as permitted under written agreement.

		IEs for Mobile Flow Record

		IE (Field Name)		Required / Optional		Data Type		Description		Example/Values		Source Specifying this Info Element		Source Text used to Derive the Data Element to be reported		Notes / Comments		Enriched by ECOMP		Entity Providing this IE		IE Group

		mobileFlowFieldsVersion		Yes		number		Version of the mobileFlowFields block (currently: 1.1)		2

		additionalFields		No		Object Array		Additional mobileFlow fields if needed		VNFC		VN/Collector		String		Additional stateChange fields if needed

		applicationType		O		string [enum]		Application Type (inferred)								The application type is to be inferred from the 3GPP class of service, packet sizes, pattern of packet arrivals, destination type, and other available information about the flow.

		applProtocolType		O		string [enum]		Application protocol								Application type inferred						protocol

		applProtocolVersion		O		string [enum]		Application protocol version								Application protocol						protocol

		cid		O		integer		"				"		"		"						ue

		connectionType		O [required if the connection implements a 3GPP-defined reference point)		string [enum]		Abbreviation referencing a 3GPP reference point (e.g., S1-U, S11, etc.)

		ecgi		O		integer		"				"		"		"						ue

		flowDirection		R		sending / receiving indicator value		Flow direction, indicating if the reporting node is the source of the flow or destination for the flow

		gtpPErFlowMetrics		R		gtpPerFlowMetrics		Mobility GTP Protocol per flow metrics

		gtpProtocolType		O [required if the connection is a GTP connection]		string [enum]		GTP protocol														protocol, gtpDetail

		gtpVersion		O [required if the connection is a GTP connection]		string [enum]		GTP protocol version														protocol, gtpDetail

		httpHeader		O [required if remote endpoint is addressed by HTTP]		string		HTTP request header, if the flow connects to a node referenced by HTTP				GSTool - 3.1.35, 3.1.36, 3.1.37, 3.1.38, 3.1.39		The Flow Record feature shall be capable to retrieving the value of the host string/field in the HTTP Request header field in the HTTP protocol for the flow record / relative HTTP URI – the remainder of the HTTP URL excluding the host for the flow record, content type information element / the value of the user agent / user agent profile field

		imei		O		integer		IMEI for the subscriber UE used in this flow, if the flow connects to a mobile device				LTE EPC DA - Appl KPI //
GSTool - 3.1.41, 3.1.42, 3.1.43		"		"						ue

		imsi		O [required if remote endpoint is a mobile UE]		integer		IMSI for the subscriber UE used in this flow, if the flow connects to a mobile device				"LTE – Evolved Packet Core DA", 2010 (DOCX) (LTE EPC DA) - Application KPIs (Appl KPI) //
GSTool - 3.1.41, 3.1.42, 3.1.43		number of unique subscribers (UEs) //
The Flow Record feature shall be capable to retrieving the correlated (IMSI) International Mobile Subscriber Identity / (MSISDN) Mobile Subscriber Phone Number / (IMEI and IMEISV) International Mobile Equipment Identity including check digit or software version for the mobile session for the flow record 		[Single slash (/) indicates alternative values used in different similar requirements (e.g., GSTool reqt 3.1.41 refers to IMSI, and GSTool reqt. 3.1.42 refers to IMEI, but otherwise uses the same wording).]
[Double slash (//) indicates a separation between two requirements sources]
[MSISDN and IMEI can be found by lookup using reference data, if the IMSI is known.]
[UE category (make/model) can be found by lookup after data collection]						ue

		ipProtocolType		R		string [enum]		IP protocol type (TCP, UDP, RTP, …)														protocol

		ipVersion		R		string [enum]		IP protocol version (IPv4, IPv6)														protocol

		lac		O		integer		"				"		"		"						ue

		mcc		O		integer		"				"		"		"						ue

		mnc		O		integer		"				"		"		"						ue

		otherEndpointPort		R		integer		IP port for the other endpoint, as used for the flow being reported on

		otherEndpointIpAddress		R		string IPv4 or IPv6 address		IP address for the other endpoint, as used for the flow being reported on

		otherFunctionalRole		O		string [enum]		Functional role of the other endpoint for the flow being reported on (e.g., MME, S-GW, P-GW, PCRF, …)

		rac		O		integer		"				"		"		"						ue

		radioAccessTechnology		O		string [enum]		Radio Access Technology (2G, 3G, LTE)								RAT can also be derived from the LAC and CID (for 3G) or ECGI (for LTE)						ue

		reportingEndpointIpAddr		R		string IPv4 or IPv6 address		IP address for the reporting entity, as used for the flow being reported on								Application version

		reportingEndpointPort		R		integer		IP port for the reporting entity, as used for the flow being reported on

		sac		O		integer		"				"		"		"						ue

		samplingAlgorithm		O		integer		Integer identifier for the sampling algorithm or rule being applied in calculating the flow metrics if metrics are calculated based on a sample of packets, or 0 if no sampling is applied.				clean-GSTool Glossary.pdf (GSTool) - Reqt 2.1.6		The Flow Record feature on the Probe shall be capable of being sampled based on a predefined algorithm implemented via a sampling filter…

		msisdn		O		integer		MSISDN for the subscriber UE used in this flow, as an integer, if the flow connects to a mobile device				LTE EPC DA - Appl KPI //
GSTool - 3.1.41, 3.1.42, 3.1.43		"		"						ue

		tac		O		integer		"				"		"		"						ue

		tunnelId		O [required if the connection uses a tunnel]		string (TEID)		Tunnel identifier								Format is TBD.

As an illustration, Tunnel ID may be the GTP Fully Qualified Tunnel Endpoint Identifier (F-TEID) (see, e.g., 3GPP TS 29.274)

Alternatively, as an illustration of a tunnel ID format see CANOPI - GCP MV Application Interface Design
R13 – 257826 FBS and 258060 PMT 409789 - OEW Rel 6 (5/9/2013), where the tunnel naming convention is
<TunnelheadDNS>_<TunneltailDNS>_<TunnelType>_<TunnelClassification>_<TunnelQoSClassification>_<TunnelInstance>_<TunnelTag> where TunnelHeadDNS and TunneltailDNS are the names of the originating and terminating end of the uni-directional tunnel. Example Tunnel name: CHAIL301IA1_CGCIL301IA2_B_2_5_x_PRIORITY (bypass tunnel for a LAG from edge chail301ia1 to edge cgcil301ia2 for real time traffic)

		vlanId		O [required if the connection uses a VLAN]		integer		VLAN identifier as used by this flow

		Content Body for GTP Per-flow metrics

		avgBitErrorRate		R		integer		Average bit error rate				LTE EPC DA - Platform KPIs (Plat KPI) //
LTE EPC DA - Appl KPI		number of active EPS bearers by UE / APN//
number of connections / EPS bearers		Activation time is required to know the number of active connections, and connection duration

Totals per dimension can be computed from individual flow metrics, e.g., number of active connections per APN, number of errors per VLAN, totals per VN, per UE, etc.

Top N values, e.g., top N subscribers by byte count, will be ranked from collected data

		avgPacketDelayVariation		R		integer milliseconds		Average packet delay variation (jitter) for received packets: Average difference between the packet timestamp and time received for all pairs of consecutive packets

		avgPacketLatency		R		integer milliseconds		average delivery latency

		avgReceiveThroughput		R		integer kbps		average receive throughput				LTE EPC DA - Platform KPIs //
LTE EPC DA - Appl KPI		number of EPS bearer activations by UE / APN //
total EPS bearers per UE
number of EPS bearer activations by UE

		avgTransmitThroughtput		R		integer kbps		average transmit throughput 				LTE EPC DA - Appl KPI		number of EPS bearer activation failures by UE / APN //
number of EPS bearer activation failures by UE.

		durConnectionFailedStatus		O [required if the connection is a GTP connection]		integer milliseconds		Duration of failed state, computed as the cumulative time between a failed echo request and the next following successful error request, over this reporting interval								[Deactivation time is required to know the number of active connections, and connection duration]

		durTunnelFailedStatus		O [required if the connection is a GTP connection]		integer milliseconds		Duration of errored state, computed as the cumulative time between a tunnel error indicator and the next following non-errored indicator, over this reporting interval

		flowActivatedBy		O		indicator value indicating the reporting node or the other endpoint node		Endpoint activating the flow

		flowActivationEpoch		R		integer seconds UTC epoch time		Time for the start of the flow (connection), in integer UTC epoch time (UNIX time). 				LTE EPC DA - Appl KPI		number of EPS bearer deactivations by UE / APN
number of PGW initiated EPS bearer deactivations by APN

		flowActivationMicrosec		R		integer microseconds		Integer microseconds for the start of the flow (connection). 				GSTool - 3.1.34		The Flow Record feature shall be capable to retrieving the tcp time to first byte (TTFB) elapsed between the TCP SYN and the first packet with payload

		flowActivationTime		O		UTC timestamp		Time the connection is activated in the flow (connection) being reported on, or transmission time of the first packet if activation time is not available.				LTE EPC DA - Plat KPI //
LTE EPC DA - Appl KPI //
LTE EPC DA - Service KPIs (Svc KPI) //
GSTool - 3.1.16, 3.1.17		total number of bytes transmitted
number of bytes transmitted per physical / VLAN interface
total number of bytes transmitted per VLAN interface //
number of bytes transmitted per UE / APN //
number of bytes transmitted per QoS queue. //
The Flow Record feature shall be capable to retrieving total number of client to server / server to client bytes including retransmissions starting from the Ethernet header for the flow record ...

		flowDeactivatedBy		O		indicator value indicating the reporting node or the other endpoint node		Endpoint deactivating the flow				GSTool - 3.1.20		The Flow Record feature shall be capable to retrieving count of tunneled layer 7 bytes excluding retransmissions from client to server / server to client for the flow record ...								layer7Detail

		flowDeactivationEpoch		R		integer seconds UTC epoch time		Time for the start of the flow (connection), in integer UTC epoch time (UNIX time). 				LTE EPC DA - Plat KPI //
LTE EPC DA - Appl KPI //
LTE EPC DA - Svc KPI //
GSTool -3.1.16, 3.1.17		total number of bytes received
number of bytes received per physical / VLAN interface //
number of bytes received per UE / APN //
number of bytes transmitted per QoS queue. //
The Flow Record feature shall be capable to retrieving total number of client to server / server to client bytes including retransmissions starting from the Ethernet header for the flow record ...

		flowDeactivationMicrosec		R		integer microseconds		Integer microseconds for the start of the flow (connection). 				GSTool - 3.1.20, 3.1.21		The Flow Record feature shall be capable to retrieving count of tunneled layer 7 bytes excluding retransmissions from client to server / server to client for the flow record ...								layer7Detail

		flowDeactivationTime		R		UTC timestamp		Transmission time of the first packet in the flow (connection) being reported on.				GSTool - 3.1.20, 3.1.21		The Flow Record feature shall be capable to retrieving count of tunneled layer 7 bytes excluding retransmissions from client to server / server to client for the flow record ...								layer7Detail

		flowStatus		R		character		connection status at reporting time as a working / inactive / failed indicator value				GSTool DPI Enumerations				Used reflect jitter1p (1st percentile), jitter5p (5th percentile), jitterMedian, as indicated in GTS DPI Enumerations

https://tools.ietf.org/html/rfc3393

		gtpConnectionStatus		O [required if the connection is a GTP connection]		working / failed indicator value		Current connection state at reporting time				GSTool DPI Enumerations				"

		gtpTunnelStatus		O [required if the connection is a GTP connection]		working / failed indicator value		Current tunnel state at reporting time				LTE EPC DA - Plat KPI //
LTE EPC DA - Appl KPI //
LTE EPC DA - Svc KPI //
GSTool - 3.1.18, 3.1.19		number of packets transmitted per physical interface //
number of packets transmitted per UE / APN //
number of packets transmitted per QoS queue. //
The Flow Record feature shall be capable to retrieving total number of client to server / server to client packets including retransmissions starting from the Ethernet header for the flow record ...

		ipTosCountList		O		vector of integers		Number of packets for each combination of IP ToS values observed for this flow during this reporting interval, as a vector of integers				LTE EPC DA - Appl KPI //
LTE EPC DA - Appl KPI //
GSTool -3.1.18, 3.1.19		number of packets received per physical interface //
number of packets received per UE / APN //
number of packets received per QoS queue. //
The Flow Record feature shall be capable to retrieving total number of client to server / server to client packets including retransmissions starting from the Ethernet header for the flow record ...

		ipTosList		O		vector of strings		IP ToS values observed for this flow during this reporting interval, as a vector of abbreviations corresponding to the observed TCP values

		largePacketRTT		O		integer milliseconds		Large packet round trip time				LTE EPC DA - Plat KPI		total number of errors
total number of errors per VLAN interface

		largePacketThreshold		O		integer		Large packet threshold being applied

		maxPacketDelayVariation		R		integer milliseconds		Maximum packet delay variation (jitter) for received packets: Maximum of the difference between the packet timestamp and time received for all pairs of consecutive packets				LTE EPC DA - Plat KPI		total number of errors
total number of errors per VLAN interface

		maxReceiveBitRate		O		integer kbps		maximum receive bit rate				LTE EPC DA - Plat KPI //
LTE EPC DA - Appl KPI		number of packets dropped due to errors per physical / VLAN interface //
number of packets dropped due to errors per UE

		maxTransmitBitRate		O		integer kbps		maximum transmit bit rate				GSTool - 8.1.10		TCP Out of Order / TCP loss captured in Packets in addition to bytes. …

		mobileQciCosCountList		O		vector of integers		Number of packets for each LTE QCI or UMTS class of service value observed for this flow during this reporting interval, as a vector of integers				GSTool - 8.1.10		TCP Out of Order / TCP loss captured in Packets in addition to bytes. …

		mobileQciCosList		O 		vector of strings		LTE QCI or UMTS class of service value observed for this flow during this reporting interval, as a vector of abbreviations corresponding to the observed TCP values				LTE EPC DA - Plat KPI //
LTE EPC DA - Appl KPI		the link status per physical interface
VLAN status //
VLAN status for Ga/Gz for each OFCS

		numActivationFailures		R		integer		Number of failed activation requests, as observed by the reporting node				LTE EPC DA - Plat KPI //
LTE EPC DA - Appl KPI		mean transmit throughput per physical / VLAN interface //
mean transmit throughput per UE

		numBitErrors		R		integer		number of errored bits				LTE EPC DA - Plat KPI //
LTE EPC DA - Appl KPI		mean receive throughput per physical / VLAN interface //
mean receive throughput per UE

		numBytesReceived		R		integer		number of bytes received, including retransmissions				LTE EPC DA - Appl KPI		number of retries on RADIUS for each RADIUS server
number of retries on Ga/Gz for each OFCS
number of retries on Gy for each OCS

		numBytesTransmitted		R		integer		number of bytes transmitted, including retransmissions				LTE EPC DA - Appl KPI		number of timeouts on Ga/Gz for each OFCS

		numDroppedPackets		R		integer		number of received packets dropped due to errors per virtual interface				LTE EPC DA - Appl KPI		average latency on Gy for each OCS
average PDN-CDR delivery latency on Ga for each OFCS

		numGtpEchoFailures		O [required if the connection is a GTP connection]		integer		Number of failed Echo request (Path failure) (failed paths defined in 3GPP TS 29.281 sec 7.2.1 and 3GPP TS 29.060 sec. 11.2)				GSTool 3.1.31, GSTool DPI Enumerations		The Flow Record feature shall be capable to retrieving the tcp round trip time in the client to server / server to client direction for the flow record …
Currently we use both the TCP SYN/SYNACK and SYNACK/ACK delays.

		numGtpTunnelErrors		O [required if the connection is a GTP connection]		integer		Number of Error indications (Tunnel error) (errors defined in 3GPP TS 29.281 sec 7.3.1 and 3GPP TS 29.060 sec. 11.1)								[Needed in order to correctly interpret "large" packet count]

		numHttpErrors		O [required if remote endpoint is addressed by HTTP]		integer		Count of HTTP errors				GSTool - 3.1.53		The Flow Record feature shall be capable for retrieving large packet round trip time. The large packet round trip time should be from the UE to the GGSN/S-GW and from the GGSN/S-GW to the Server as two separate counters.The large packet RTT will be calculated for 100 % of the flow records based on rules AT&T has provided when it is possible.

		numL7BytesReceived		R		integer		number of tunneled layer 7 bytes received, including retransmissions

		numL7BytesTransmitted		R		integer		number of tunneled layer 7 bytes transmitted, excluding retransmissions

		numLostPackets		R		integer		number of lost packets 				GSTool - 3.1.50		The Flow Record feature shall be capable of retrieving the TCP Flags for the flow record … . All combinations of TCP flag that occurs during the flow should be included in the flow record.		[All combinations will require a vector of values, or multiple records with a common flow ID]

		numOutOfOrderPackets		R		integer		number of out-of-order packets 				GSTool - 3.1.50		The Flow Record feature shall be capable of retrieving the TCP Flags for the flow record … . All combinations of TCP flag that occurs during the flow should be included in the flow record.

		numPacketErrors		R		integer		number of errored packets				GSTool - 3.1.48, 3.1.49		The Flow Record feature shall be capable to retrieving the Downlink /Uplink Maximum Bitrate in Kbps for the current bearer ...		Max uplink / downrate bit rates can also be derived from the specified QOS

		numPacketsReceivedExclRetrans		R		integer		number of packets received, excluding retransmissions				GSTool - 3.1.48, 3.1.49

		numPacketsReceivedInclRetrans		R		integer		number of packets received, including retransmissions				GSTool - 3.1.46, 3.1.47		The Flow Record feature shall be capable to retrieving the GTP Traffic Handling Priority (1,2 or3) applicable for 3G network with GTPV1 protocol / GTP QOS Class Identifier for the current bearer for LTE network for GTPV2 protocol for the mobile session for the flow record								qosDetail

		numPacketsTransmittedInclRetrans		R		integer		number of packets transmitted, including retransmissions														qosDetail

		numRetries		R		integer		number of packet retries				GSTool - 8.1.7		... HTTP errors count ...

		numTimeouts		R		integer		number of packet timeouts														gtpDetail

		numTunneledL7BytesReceived		R		integer		number of tunneled layer 7 bytes received, excluding retransmissions														gtpDetail

		roundTripTime		R		integer milliseconds		round trip time														gtpDetail

		tcpFlagList		O		vector of strings		TCP flags observed for this flow during this reporting interval, as a vector of abbreviations corresponding to the observed TCP values														gtpDetail

		tcpFlatCountList		O		vector of integers		Number of packets for each combination of TCP flags observed for this flow during this reporting interval, as a vector of integers														gtpDetail

		timeToFirstByte		R		integer milliseconds		Time between the connection activation and first byte received														gtpDetail

		Additional Notes

		This tab lists information elements used to report the status of connections and data flows between two VFs.

		The gray columns are explanatory.

		The IE Group is a set of related information elements that ECOMP may request from a VF either individually or as a group. If the group is requested, the group is to be reported as a whole

		This is a solid draft and ready to be more widely reviewed.

		Field Name		Opt/Man		Enriched @ Broker		Source		Format		Format Example		Description		Comments

		name		M		VN		VNF/VNFC/VM		String

		value		M		VN		VNF/VNFC/VM		String

registration for Mfvs_vMrf

Constants: the values of domain, eventName, priority, version

measurementFieldsVersion, additionalMeasurements.namedArrayOfFields.name,

Variables (to be supplied at runtime) include: eventId, reportingEntityName, sequence,

sourceName, start/lastEpochMicrosec, measurementInterval, concurrentSessions, requestRate,

numberOfMediaPortsInUse,

cpuUsageArray.cpuUsage,cpuUsage.cpuIdentifier, cpuUsage.percentUsage,

additionalMeasurements.namedArrayOfFields.arrayOfFields,

vNicPerformance.receivedOctetsAccumulated, vNicPerformance.transmittedOctetsAccumulated,

vNicPerformance.receivedTotalPacketsAccumulated, vNicPerformance.transmittedTotalPacketsAccumulated,

vNicPerformance.vNicIdentifier, vNicPerformance.receivedOctetsDelta,

vNicPerformance.receivedTotalPacketsDelta, vNicPerformance.transmittedOctetsDelta,

vNicPerformance.transmittedTotalPacketsDelta, vNicPerformance.valuesAreSuspect,

memoryUsageArray.memoryUsage, memoryUsage.memoryConfigured, memoryUsage.vmIdentifier,

memoryUsage.memoryUsed, memoryUsage.memoryFree

event: {presence: required, structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: measurementsForVfScaling},

 eventName: {presence: required, value: Mfvs_vMrf},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 measurementsForVfScalingFields: {presence: required, structure: {

 measurementFieldsVersion: {presence: required, value: 2.0},

 measurementInterval: {presence: required, range: [60, 3600], default: 300},

 concurrentSessions: {presence: required, range: [0, 100000]},

 requestRate: {presence: required, range: [0, 100000]},

 numberOfMediaPortsInUse: {presence: required, range: [0, 100000]},

 cpuUsageArray: {presence: required, array: [

 cpuUsage: {presence: required, structure: {

 cpuIdentifier: {presence: required},

 percentUsage: {presence: required, range: [0, 100], action: [80, up, CpuUsageHigh, RECO-scaleOut], action: [10, down, CpuUsageLow, RECO-scaleIn]

 }

 }}

]},

 memoryUsageArray: {presence: required, array: [

 memoryUsage: {presence: required, structure: {

 memoryConfigured: {presence: required, value: 33554432},

 memoryFree: {presence: required, range: [0, 33554432], action: [100, down, FreeMemLow, RECO-scaleOut], action: [30198989, up, FreeMemHigh, RECO-scaleIn]},

 memoryUsed: {presence: required, range: [0, 33554432]},

 vmIdentifier: {presence: required}

 }}

]},

 additionalMeasurements: {presence: required, array: [

 namedArrayOfFields: {presence: required, structure: {

 name: {presence: required, value: licenseUsage},

 arrayOfFields: {presence: required, array: [

 field: {presence: required, structure: {

 name: {presence: required, value: G711AudioPort},

 value: {presence: required, range: [0, 100000]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: G729AudioPort},

 value: {presence: required, range: [0, 100000]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: G722AudioPort},

 value: {presence: required, range: [0, 100000]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: AMRAudioPort},

 value: {presence: required, range: [0, 100000]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: AMRWBAudioPort},

 value: {presence: required, range: [0, 100000]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: OpusAudioPort},

 value: {presence: required, range: [0, 100000]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: H263VideoPort},

 value: {presence: required, range: [0, 100000]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: H264NonHCVideoPort},

 value: {presence: required, range: [0, 100000]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: H264HCVideoPort},

 value: {presence: required, range: [0, 100000]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: MPEG4VideoPort},

 value: {presence: required, range: [0, 100000]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: VP8NonHCVideoPort},

 value: {presence: required, range: [0, 100000]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: VP8HCVideoPort},

 value: {presence: required, range: [0, 100000]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: PLC},

 value: {presence: required, range: [0, 100000]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: AEC},

 value: {presence: required, range: [0, 100000]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: NR},

 value: {presence: required, range: [0, 100000]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: NG},

 value: {presence: required, range: [0, 100000]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: NLD},

 value: {presence: required, range: [0, 100000]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: G711FaxPort},

 value: {presence: required, range: [0, 100000]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: T38FaxPort},

 value: {presence: required, range: [0, 100000]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: RFactor},

 value: {presence: required, range: [0, 100000]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: T140TextPort},

 value: {presence: required, range: [0, 100000]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: EVSAudioPort},

 value: {presence: required, range: [0, 100000]}

 }}

]}

 }},

 namedArrayOfFields: {presence: required, structure: {

 name: {presence: required, value: mediaCoreUtilization},

 arrayOfFields: {presence: required, array: [

 field: {presence: required, structure: {

 name: {presence: required, value: actualAvgAudio},

 value: {presence: required, range: [0, 255], action: [80, up, AudioCoreUsageHigh, RECO-scaleOut], action: [10, down, AudioCoreUsageLow, RECO-scaleIn]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: modelAvgAudio},

 value: {presence: required, range: [0, 100], action: [80, up, AudioCoreUsageHigh, RECO-scaleOut], action: [10, down, AudioCoreUsageLow, RECO-scaleIn]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: actualMaxAudio},

 value: {presence: required, range: [0, 255]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: modelMaxAudio},

 value: {presence: required, range: [0, 100]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: actualAvgVideo},

 value: {presence: required, range: [0, 255], action: [80, up, VideoCoreUsageHigh, RECO-scaleOut], action: [10, down, VideoCoreUsageLow, RECO-scaleIn]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: modelAvgVideo},

 value: {presence: required, range: [0, 100], action: [80, up, VideoCoreUsageHigh, RECO-scaleOut], action: [10, down, VideoCoreUsageLow, RECO-scaleIn]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: actualMaxVideo},

 value: {presence: required, range: [0, 255]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: modelMaxVideo},

 value: {presence: required, range: [0, 100]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: actualAvgHcVideo},

 value: {presence: required, range: [0, 255], action: [80, up, HcVideoCoreUsageHigh, RECO-scaleOut], action: [10, down, HcVideoCoreUsageLow, RECO-scaleIn]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: modelAvgHcVideo},

 value: {presence: required, range: [0, 100], action: [80, up, HcVideoCoreUsageHigh, RECO-scaleOut], action: [10, down, HcVideoCoreUsageLow, RECO-scaleIn]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: actualMaxHcVideo},

 value: {presence: required, range: [0, 255]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: modelMaxHcVideo},

 value: {presence: required, range: [0, 100]}

 }}

]}

 }}

]},

 vNicPerformanceArray: {presence: required, array: [

 vNicPerformance: {presence: required, structure: {

 receivedOctetsAccumulated: {presence: required, range: [0, 18446744073709551615]},

 receivedTotalPacketsAccumulated: {presence: required, range: [0, 18446744073709551615]},

 receivedOctetsDelta: {presence: required}, range: [0, 18446744073709551615],

 receivedTotalPacketsDelta: {presence: required, range: [0, 18446744073709551615]},

 transmittedOctetsDelta: {presence: required, range: [0, 18446744073709551615]},

 transmittedOctetsAccumulated: {presence: required, range: [0, 18446744073709551615]},

 transmittedTotalPacketsAccumulated: {presence: required, range: [0, 18446744073709551615]},

 transmittedTotalPacketsDelta: {presence: required, range: [0, 18446744073709551615]},

 valuesAreSuspect: {presence: required, value: [true, false]},

 vNicIdentifier: {presence: required}

 }}

]}

 }}

}}

...

#Rules

Rules: [

 rule: {

 trigger: CpuUsageHigh || FreeMemLow || AudioCoreUsageHigh || VideoCoreUsageHigh || HcVideoCoreUsageHigh,

 microservices: [scaleOut]

 },

 rule: {

 trigger: CpuUsageLow && FreeMemHigh && AudioCoreUsageLow && VideoCoreUsageLow && HcVideoCoreUsageLow,

 microservices: [scaleIn]

 }

]

...

registration for Heartbeat_vMrf

Constants: the values of domain, eventName, priority,

version

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec, reportingEntityId,

reportingEntityName, sequence, sourceId, sourceName, startEpochMicrosec

event: {presence: required, heartbeatAction: [3, vnfDown, RECO-rebuildVnf], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: heartbeat},

 eventName: {presence: required, value: Heartbeat_vMrf},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 heartbeatFields: {presence: optional, structure:{

 heartbeatFieldsVersion: {presence: required, value: 1.0},

 heartbeatInterval: {presence: required, range: [15, 300], default: 60 }

 }}

}}

...

registration for Syslog_vMrf

Constants: the values of domain, eventName, priority,

lastEpochMicrosec, version, syslogFields.syslogFieldsVersion, syslogFields.syslogTag

Variables include: eventId, lastEpochMicrosec, reportingEntityId,

reportingEntityName, sequence, sourceId, sourceName, startEpochMicrosec,

syslogFields.eventSourceHost, syslogFields.eventSourceType,

syslogFields.syslogFacility, syslogFields.syslogMsg

event: {presence: required, structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: syslog},

 eventName: {presence: required, value: Syslog_vMrf},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0},

 }},

 syslogFields: {presence: required, structure: {

 eventSourceHost: {presence: required},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 syslogFacility: {presence: required, range: [16, 23]},

 syslogSev: {presence: required, value: [0, 1, 2, 3, 4]},

 syslogFieldsVersion: {presence: required, value: 3.0},

 syslogMsg: {presence: required},

 syslogTag: {presence: required, value: vMRF},

 }}

}}

...

registration for Fault_vMrf_alarm003

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm003, RECO-rebuildVnf], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm003},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm003},

 eventSeverity: {presence: required, value: MAJOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Configuration file was corrupt or not present"},

 vfStatus: {presence: required, value: "Requesting Termination"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm003Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm003, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm003Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm003},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Valid configuration file found"},

 vfStatus: {presence: required, value: "Requesting Termination"}

 }}

}}

...

registration for Fault_vMrf_alarm005

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm005, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm005},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm005},

 eventSeverity: {presence: required, value: MAJOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Failed mounting external file server X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm005Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm005, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm005Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm005},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Mount failure alarm cleared for external file server: X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm009

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm009, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm009},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm009},

 eventSeverity: {presence: required, value: MAJOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Invalid local hostname configured on slot X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm009Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm009, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm009Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm009},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Local hostname is valid on slot X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm016

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm016, RECO-selfRebootNotification], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm016},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm016},

 eventSeverity: {presence: required, value: MAJOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Cause of the last reboot is unknown on slot X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm016Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm016, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm016Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm016},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Alarm cleared on slot X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm017

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm017, RECO-selfRebootNotification], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm017},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm017},

 eventSeverity: {presence: required, value: MINOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Cause of the last reboot was a watchdog timeout on slot X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm017Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm017, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm017Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm017},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Alarm cleared on slot X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm018

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm018, RECO-selfRebootNotification], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm018},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm018},

 eventSeverity: {presence: required, value: MAJOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Reboot due to exception for process: xxx where xxx is the process name"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm018Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm018, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm018Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm018},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Alarm cleared on slot X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm019

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm019, RECO-userRebootNotification], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm019},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm019},

 eventSeverity: {presence: required, value: MINOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Last reboot was user-initiated on slot X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm019Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm019, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm019Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm019},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Alarm cleared on slot X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm025

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm025, RECO-selfRebootNotification], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm025},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm025},

 eventSeverity: {presence: required, value: MAJOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Reboot due to DSP watchdog timeout for DSP number: xxx where xxx is the number of the DSP that caused the watchdog timeout"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm025Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm025, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm025Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm025},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "DSP online on MPC X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm029

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm029, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm029},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm029},

 eventSeverity: {presence: required, value: MAJOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Download failed for card type X where X is 6 for SCC2 or SCC3 or CMS1000 CMS3000;X is 3 for MPC2 and X is 11 for MPC3"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm029Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm029, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm029Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm029},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Alarm cleared for card type X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm033

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm033, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm033},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm033},

 eventSeverity: {presence: required, value: MAJOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Audio clip download failed"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm033Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm033, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm033Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm033},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: ""},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm034

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm034, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm034},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm034},

 eventSeverity: {presence: required, value: MAJOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Error saving audio segment configuration to disk"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm034Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm034, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm034Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm034},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Audio segment configuration status restored"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm041

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm041, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm041},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm041},

 eventSeverity: {presence: required, value: MAJOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "The upgrade operation has failed where current firmware version is X.Y.Z"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm041Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm041, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm041Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm041},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Alarm cleared"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm043

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm043, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm043},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm043},

 eventSeverity: {presence: required, value: MAJOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "HTTP cache overflow on slot X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm043Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm043, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm043Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm043},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Alarm cleared on slot X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm044

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm044, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm044},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm044},

 eventSeverity: {presence: required, value: MAJOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Resource usage exceeded call overload threshold on slot X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm044Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm044, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm044Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm044},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Resource usage below call overload threshold for the past minute on slot X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm045

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm045, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm045},

 eventId: {presence: required},

 priority: {presence: required, value: High},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm045},

 eventSeverity: {presence: required, value: CRITICAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Resource usage below service overload threshold for the past minute on slot X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm045Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm045, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm045Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: High},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm045},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Resource usage below service overload threshold for the past minute on slot X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm047

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm047, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm047},

 eventId: {presence: required},

 priority: {presence: required, value: High},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm047},

 eventSeverity: {presence: required, value: CRITICAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "The system is in service overload situation continuously on slot X"},

 vfStatus: {presence: required, value: "Preparing to Terminate"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm047Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm047, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm047Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: High},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm047},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Overload reboot alarm cleared on startup on slot X"},

 vfStatus: {presence: required, value: "Preparing to Terminate"}

 }}

}}

...

registration for Fault_vMrf_alarm048

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm048, RECO-selfRebootNotification], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm048},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm048},

 eventSeverity: {presence: required, value: MAJOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "The last reboot was caused by overload protection on slot X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm048Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm048, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm048Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm048},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Alarm cleared on slot X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm049

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm049, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm049},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm049},

 eventSeverity: {presence: required, value: MAJOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Failed to get health check response from external file server: X where X is the hostname"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm049Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm049, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm049Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm049},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Health check alarm cleared for external file server: X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm060

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm060, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm060},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm060},

 eventSeverity: {presence: required, value: MINOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Log package exists in the system on slot X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm060Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm060, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm060Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm060},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "No log package exists in the flash on slot X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm063

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm063, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm063},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm063},

 eventSeverity: {presence: required, value: MINOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "ICMP error : <variable text> where <variable text> is < IPv4 address:pppp or [[IPv6 address]:pppp> < reason> and <reason> can be dest unreachable or pkt too big "},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm063Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm063, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm063Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm063},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Alarm cleared on slot X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm064

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm064, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm064},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm064},

 eventSeverity: {presence: required, value: MAJOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "HTTP server timeout XXX YYYms where XXX is the Server name or IPv4/IPv6 address and YYY is the Timeout period in ms"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm064Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm064, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm064Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm064},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Alarm cleared on slot X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm065

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm065, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm065},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm065},

 eventSeverity: {presence: required, value: MINOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Dropped audio stream due to: XXX where XXX is either no media or buffer overrun"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm065Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm065, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm065Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm065},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Alarm cleared on slot X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm070

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm070, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm070},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm070},

 eventSeverity: {presence: required, value: MINOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Network interface below 100BASE-T full duplex: <device name> where <device name> is (Platform Agent -> Network Interface Group -> deviceName)"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm070Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm070, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm070Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm070},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Network interface restored to at least 100BASE-T full duplex"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm071

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm071, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm071},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm071},

 eventSeverity: {presence: required, value: MINOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Network interface below 100BASE-T full duplex: <device name> where <device name> is (Platform Agent -> Network Interface Group -> deviceName)"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm071Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm071, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm071Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm071},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Network interface restored to at least 100BASE-T full duplex"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm072

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm072, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm072},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm072},

 eventSeverity: {presence: required, value: MINOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Network interface below 100BASE-T full duplex: <device name> where <device name> is (Platform Agent -> Network Interface Group -> deviceName)"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm072Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm072, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm072Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm072},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Network interface restored to at least 100BASE-T full duplex"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm073

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm073, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm073},

 eventId: {presence: required},

 priority: {presence: required, value: High},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm073},

 eventSeverity: {presence: required, value: CRITICAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Network interface is down: <device name> where <device name> is (Platform Agent -> Network Interface Group -> deviceName)"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm073Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm073, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm073Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: High},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm073},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Network interface link restored"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm074

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm074, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm074},

 eventId: {presence: required},

 priority: {presence: required, value: High},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm074},

 eventSeverity: {presence: required, value: CRITICAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Network interface is down: <device name> where <device name> is (Platform Agent -> Network Interface Group -> deviceName)"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm074Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm074, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm074Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: High},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm074},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Network interface link restored"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm075

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm075, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm075},

 eventId: {presence: required},

 priority: {presence: required, value: High},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm075},

 eventSeverity: {presence: required, value: CRITICAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Network interface is down: <device name> where <device name> is (Platform Agent -> Network Interface Group -> deviceName)"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm075Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm075, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm075Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: High},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm075},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Network interface link restored"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm076

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm076, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm076},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm076},

 eventSeverity: {presence: required, value: MINOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Clip partition disk usage threshold exceeded"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm076Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm076, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm076Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm076},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Alarm cleared"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm077

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm077, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm077},

 eventId: {presence: required},

 priority: {presence: required, value: High},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm077},

 eventSeverity: {presence: required, value: CRITICAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Hardware configuration not supported"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm077Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm077, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm077Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: High},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm077},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Alarm cleared"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm078

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm078, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm078},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm078},

 eventSeverity: {presence: required, value: MAJOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "OS distribution or version not supported"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm078Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm078, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm078Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm078},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Alarm cleared"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm079

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm079, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm079},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm079},

 eventSeverity: {presence: required, value: MAJOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Required packages or versions are unavailable"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm079Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm079, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm079Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm079},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Alarm cleared"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm080

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm080, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm080},

 eventId: {presence: required},

 priority: {presence: required, value: High},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm080},

 eventSeverity: {presence: required, value: CRITICAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "The node license key is invalid"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm080Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm080, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm080Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: High},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm080},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "The node license key is valid"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm089

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm089, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm089},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm089},

 eventSeverity: {presence: required, value: MAJOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Failed to connect to ASR server X where X is the configured name for the ASR server"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm089Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm089, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm089Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm089},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Alarm cleared for ASR server X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm090

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm090, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm090},

 eventId: {presence: required},

 priority: {presence: required, value: High},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm090},

 eventSeverity: {presence: required, value: CRITICAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Failed to connect to all ASR servers on slot X where X is the slot number for the alarm"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm090Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm090, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm090Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: High},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm090},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Connection established with an ASR server on slot X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm091

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm091, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm091},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm091},

 eventSeverity: {presence: required, value: MAJOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Failed to connect to TTS server X where X is the configured name for the TTS server"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm091Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm091, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm091Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm091},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Alarm cleared for TTS server X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm092

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm092, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm092},

 eventId: {presence: required},

 priority: {presence: required, value: High},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm092},

 eventSeverity: {presence: required, value: CRITICAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Failed to connect to all TTS servers on slot X where X is the slot number for the alarm"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm092Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm092, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm092Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: High},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm092},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Connection established with a TTS server on slot X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm103

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm103, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm103},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm103},

 eventSeverity: {presence: required, value: MAJOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "MS allocated cores exceeds capacity"},

 vfStatus: {presence: required, value: "Requesting Termination"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm103Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm103, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm103Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm103},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Alarm cleared"},

 vfStatus: {presence: required, value: "Requesting Termination"}

 }}

}}

...

registration for Fault_vMrf_alarm106

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm106, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm106},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm106},

 eventSeverity: {presence: required, value: MAJOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "DSP resource alarm: <variable text> where <variable text> specifies the actual resource that has trigger the alarm; for example RTP Input Minstrel or DSP Load or Network bandwidth and the MP is the actual MP that has exceeded this value"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm106Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm106, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm106Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm106},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Alarm cleared on slot X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm107

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm107, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm107},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm107},

 eventSeverity: {presence: required, value: MINOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "SIP response code alarm: <variable text> where <variable text> is specified to contain the actual response code that triggered the alarm and the SIP call agent"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm107Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm107, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm107Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm107},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Alarm cleared on slot X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm108

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm108, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm108},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm108},

 eventSeverity: {presence: required, value: MINOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "MSML response code alarm: <variable text> where the variable text is specified to contain the actual response code that triggered the alarm and the requester identification"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm108Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm108, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm108Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm108},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Alarm cleared on slot X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm113

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm113, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm113},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm113},

 eventSeverity: {presence: required, value: MAJOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "No connection with Radius Server X where X is the hostname"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm113Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm113, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm113Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm113},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Alarm cleared"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm148

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm148, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm148},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm148},

 eventSeverity: {presence: required, value: MINOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Network interface below 100BASE-T full duplex: <device name> where <device name> is (Platform Agent -> Network Interface Group -> deviceName)"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm148Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm148, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm148Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm148},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Network interface restored to at least 100BASE-T full duplex"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm149

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm149, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm149},

 eventId: {presence: required},

 priority: {presence: required, value: High},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm149},

 eventSeverity: {presence: required, value: CRITICAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Network interface is down: <device name> where <device name> is (Platform Agent -> Network Interface Group -> deviceName)"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm149Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm149, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm149Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: High},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm149},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Network interface link restored"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm152

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm152, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm152},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm152},

 eventSeverity: {presence: required, value: MAJOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Resource Server offline: X where X is the FQDN of RS"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm152Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm152, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm152Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm152},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Resource Server offline alarm cleared: X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm153

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm153, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm153},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm153},

 eventSeverity: {presence: required, value: MAJOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Minimum hardware configuration has not met"},

 vfStatus: {presence: required, value: "Requesting Termination"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm153Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm153, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm153Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm153},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Alarm cleared"},

 vfStatus: {presence: required, value: "Requesting Termination"}

 }}

}}

...

registration for Fault_vMrf_alarm154

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm154, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm154},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm154},

 eventSeverity: {presence: required, value: MINOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "License will expire in X days"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm154Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm154, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm154Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm154},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Alarm cleared"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm155

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm155, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm155},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm155},

 eventSeverity: {presence: required, value: MAJOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "License expired"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm155Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm155, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm155Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm155},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Alarm cleared"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm156

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm156, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm156},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm156},

 eventSeverity: {presence: required, value: MINOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Port limit warning for Y feature"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm156Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm156, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm156Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm156},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Alarm cleared for Y feature"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm157

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm157, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm157},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm157},

 eventSeverity: {presence: required, value: MAJOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Port limit hit for Y feature"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm157Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm157, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm157Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm157},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Alarm cleared for Y feature"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm158

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm158, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm158},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm158},

 eventSeverity: {presence: required, value: MAJOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "RTP Packet loss alarm: <variable text> where <variable text> is the RTP Packet loss rate"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm158Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm158, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm158Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm158},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Alarm cleared on Slot X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm159

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm159, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm159},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm159},

 eventSeverity: {presence: required, value: MINOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Auto transfer of Management Activity Log failed to host: <variable text> where <variable text> is the remote ip/host name "},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm159Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm159, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm159Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm159},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Alarm cleared on host: X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm160

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm160, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm160},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm160},

 eventSeverity: {presence: required, value: MINOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Connection lost with CDR ftp server: X where X is the ip or host of the FTP server configured for CDR transfer"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm160Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm160, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm160Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm160},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Alarm cleared on CDR ftp server: X"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm161

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm161, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm161},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm161},

 eventSeverity: {presence: required, value: MAJOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Connection lost with all the CDR ftp server"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm161Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm161, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm161Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm161},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "alarm cleared"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for Fault_vMrf_alarm162

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm162, RECO-contactTac], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm162},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm162},

 eventSeverity: {presence: required, value: MAJOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "The auto transfer of CDR files failed"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm162Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm162, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm162Cleared},

 eventId: {presence: required},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm162},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "alarm cleared"},

 vfStatus: {presence: required, value: "Active"}

 }}

}}

...

[image: 2arc2_top300]

AT&T Service Specification

Service: VES Event Listener

		Document Number

		xxxx

		Revision

		5.4

		Revision Date

		September 12, 2017

		Author

		Rich Erickson

[image: 2arc2_top300]

© 2009 AT&T Intellectual Property. All rights reserved. AT&T and AT&T logo are trademarks of

AT&T Intellectual Property.

 © 2017 AT&T Intellectual Property. All rights reserved. AT&T and AT&T logo are trademarks of

 AT&T Intellectual Property.

[image: 2arc2_bottom300]

© 2017, AT&T Intellectual Property. All other rights reserved. AT&T and AT&T logos are trademarks of AT&T Intellectual Property. All marks, trademarks, and product names used in this document are the property of their respective owners.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

3. [bookmark: _Ref471490593]All advertising materials mentioning features or use of this software must display the following acknowledgement: This product includes software developed by the AT&T.

4. Neither the name of AT&T nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY AT&T INTELLECTUAL PROPERTY ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL AT&T INTELLECTUAL PROPERTY BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This document and the information contained herein (collectively, the "Information") is provided to you (both the individual receiving this document and any legal entity on behalf of which such individual is acting) ("You" and "Your") by AT&T, on behalf of itself and its affiliates ("AT&T") for informational purposes only. AT&T is providing the Information to You because AT&T believes the Information may be useful to You. The Information is provided to You solely on the basis that You will be responsible for making Your own assessments of the Information and are advised to verify all representations, statements and information before using or relying upon any of the Information. Although AT&T has exercised reasonable care in providing the Information to You, AT&T does not warrant the accuracy of the Information and is not responsible for any damages arising from Your use of or reliance upon the Information. You further understand and agree that AT&T in no way represents, and You in no way rely on a belief, that AT&T is providing the Information in accordance with any standard or service (routine, customary or otherwise) related to the consulting, services, hardware or software industries.

[image: 2arc2_top300]Legal Disclaimer

AT&T DOES NOT WARRANT THAT THE INFORMATION IS ERROR-FREE. AT&T IS PROVIDING THE INFORMATION TO YOU "AS IS" AND "WITH ALL FAULTS." AT&T DOES NOT WARRANT, BY VIRTUE OF THIS DOCUMENT, OR BY ANY COURSE OF PERFORMANCE, COURSE OF DEALING, USAGE OF TRADE OR ANY COLLATERAL DOCUMENT HEREUNDER OR OTHERWISE, AND HEREBY EXPRESSLY DISCLAIMS, ANY REPRESENTATION OR WARRANTY OF ANY KIND WITH RESPECT TO THE INFORMATION, INCLUDING, WITHOUT LIMITATION, ANY REPRESENTATION OR WARRANTY OF DESIGN, PERFORMANCE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, OR ANY REPRESENTATION OR WARRANTY THAT THE INFORMATION IS APPLICABLE TO OR INTEROPERABLE WITH ANY SYSTEM, DATA, HARDWARE OR SOFTWARE OF ANY KIND. AT&T DISCLAIMS AND IN NO EVENT SHALL BE LIABLE FOR ANY LOSSES OR DAMAGES OF ANY KIND, WHETHER DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL, PUNITIVE, SPECIAL OR EXEMPLARY, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, LOSS OF GOODWILL, COVER, TORTIOUS CONDUCT OR OTHER PECUNIARY LOSS, ARISING OUT OF OR IN ANY WAY RELATED TO THE PROVISION, NON-PROVISION, USE OR NON-USE OF THE INFORMATION, EVEN IF AT&T HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH LOSSES OR DAMAGES.

[image: 2arc2_bottom300]

xxxx Rev. 5.4		4

© 2017 AT&T Intellectual Property

All rights reserved.

AT&T and AT&T logos are trademarks of AT&T Intellectual Property.

All marks, trademarks, and product names used in this document are the property of their respective owners.

Change Log for the latest version of the document (for historical change logs, see the Appendix)

		Date

		Revision

		Description

		9/12/2017

		v5.4

		· Note: There no changes to any data structures or operations in this version.

· JSON Schema: created v28.4 embedded at the top of section 4:

· Added a reference to eventList in the properties defined under the schema title. This enables the schema to correctly validate event batches in addition to just events.

· Moved the schema title to the top of the schema and changed the text from “Event Listener” to “VES Event Listener”

· Added a schema header block under the title to clearly communicate the schema version, associated API and last-modified information

· Changed the date in the copyright notice to 2017

1	Introduction	1

1.1	Event Registration	1

1.2	Naming Standards for eventName	1

1.3	Support for Protocols Other Than HTTPS	2

1.4	Versioning	3

2	Security	4

2.1.1	Sample Request and Response	4

2.1.1.1	Sample Request	4

2.1.1.2	Sample Success Response	5

3	Resource Structure	6

4	Common Event Format	7

4.1	Common Event Datatypes	7

4.1.1	Command List Processing Datatypes	7

4.1.1.1	Datatype: command	7

4.1.1.2	Datatype: commandList	7

4.1.1.3	Datatype: eventDomainThrottleSpecification	8

4.1.1.4	Datatype: eventDomainThrottleSpecificationList	8

4.1.1.5	Datatype: eventThrottlingState	8

4.1.1.6	Datatype: suppressedNvPairs	8

4.1.2	Common Event Datatypes	9

4.1.2.1	Datatype: event	9

4.1.2.2	Datatype: eventList	9

4.1.2.3	Datatype: field	9

4.1.2.4	Datatype: jsonObject	10

4.1.2.5	Datatype: jsonObjectInstance	10

4.1.2.6	Datatype: key	10

4.1.2.7	Datatype: namedArrayOfFields	11

4.1.2.8	Datatype: requestError	11

4.1.2.9	Datatype: vendorVnfNameFields	11

4.1.3	‘Common Event Header’ Datatypes	12

4.1.3.1	Datatype: commonEventHeader	12

4.1.3.2	Datatype: internalHeaderFields	13

4.2	Technology Independent Datatypes	13

4.2.1	‘Fault’ Domain Datatypes	13

4.2.1.1	Datatype: faultFields	13

4.2.2	‘Heartbeat’ Domain Datatypes	14

4.2.2.1	Datatype: heartbeatFields	14

4.2.3	‘Measurements For VF Scaling’ Domain Datatypes	14

4.2.3.1	Datatype: codecsInUse	14

4.2.3.2	Datatype: cpuUsage	14

4.2.3.3	Datatype: diskUsage	15

4.2.3.4	Datatype: featuresInUse	18

4.2.3.5	Datatype: filesystemUsage	18

4.2.3.6	Datatype: latencyBucketMeasure	19

4.2.3.7	Datatype: measurementsForVfScalingFields	19

4.2.3.8	Datatype: memoryUsage	20

4.2.3.9	Datatype: vNicPerformance	21

4.2.4	‘Other’ Domain Datatypes	23

4.2.4.1	Datatype: otherFields	23

4.2.5	‘State Change’ Domain Datatypes	24

4.2.5.1	Datatype: stateChangeFields	24

4.2.6	‘Syslog’ Domain Datatypes	24

4.2.6.1	Datatype: syslogFields	24

4.2.7	‘Threshold Crossing Alert’ Domain Datatypes	26

4.2.7.1	Datatype: counter	26

4.2.8	Datatype: thresholdCrossingAlertFields	26

4.3	Technology Specific Datatypes	27

4.3.1	‘Mobile Flow’ Domain Datatypes	27

4.3.1.1	Datatype: gtpPerFlowMetrics	27

4.3.1.2	Datatype: mobileFlowFields	30

4.3.2	‘SipSignaling’ Domain Datatypes	32

4.3.2.1	Datatype: sipSignalingFields	32

4.3.3	‘Voice Quality’ Domain Datatypes	32

4.3.3.1	Datatype: endOfCallVqmSummaries	32

4.3.3.2	Datatype: voiceQualityFields	33

5	Exceptions	34

5.1	RESTful Web Services Exceptions	34

5.2	Service Exceptions	34

5.3	Policy Exceptions	35

6	RESTful Web Services Definition	37

6.1	REST Operation Overview	37

6.1.1	REST Operation Summary	37

6.1.2	Api Version	37

6.1.3	Commands Toward Event Source Clients	37

6.1.4	Buffering of Events	39

6.2	Operation: publishAnyEvent	39

6.2.1	Functional Behavior	39

6.2.2	Call Flow	40

6.2.3	Input Parameters	40

6.2.4	Output Parameters	41

6.2.5	HTTP Status Codes	42

6.2.6	Sample Request and Response	42

6.2.6.1	Sample Request	42

6.2.6.2	Sample Success Response #1	43

6.2.6.3	Sample Success Response #2	43

6.2.6.4	Sample Error Responses	44

6.3	Operation: publishEventBatch	45

6.3.1	Functional Behavior	45

6.3.2	Call Flow	46

6.3.3	Input Parameters	46

6.3.4	Output Parameters	47

6.3.5	HTTP Status Codes	48

6.3.6	Sample Request and Response	48

6.3.6.1	Sample Request	48

6.3.6.2	Sample Success Response #1	50

6.3.6.3	Sample Success Response #2	50

6.3.6.4	Sample Error Responses	51

6.4	Operation: provideThrottlingState	52

6.4.1	Functional Behavior	52

6.4.2	Call Flow	52

6.4.3	Input Parameters	52

6.4.4	Output Parameters	53

6.4.5	HTTP Status Codes	53

6.4.6	Sample Request and Response	54

6.4.6.1	Sample Request	54

6.4.6.2	Sample Success Response	55

6.4.6.3	Sample Error Responses	55

7	Appendix: Historical Change Log	57

Figures

Figure 1 – REST Resource Structure	6

Figure 2 - publishAnyEvent Call Flow	40

Figure 3 – publishEventBatch Call Flow	46

Figure 4 - provideClientThrottlingState Call Flow	52

Tables

Table 1 - Service Exceptions	35

Table 2 - Policy Exceptions	36

Table 3 - REST Operation Summary	37

[image: 2arc2_top300]Table of Contents

[bookmark: _Ref442971897][bookmark: _Toc485913929]Introduction

This document describes the RESTful interface for the VES (Virtual function Event Streaming) Event Listener. The VES Event Listener is capable of receiving any event sent in the VES Common Event Format. The Common Event Format is a JSON structure consisting of a required Common Event Header Block accompanied by zero or more event domain blocks. A JSON Schema of the VES Common Event Format is provided in Section 4 of this document.

It should be understood that events are well structured packages of information, identified by an eventName, which are asynchronously communicated to subscribers who are interested in the eventName. Events can convey measurements, faults, syslogs, threshold crossing alerts and others types of information. Events are simply a way of communicating well-structured packages of information to one or more instances of an Event Listener service.

This document describes a RESTful connectionless push event listener that is capable of receiving single events or batches of events in the Common Event Format. In future, additional documents may describe other transports which make use of persistent TCP connections for high volumes of streaming events.

[bookmark: _Toc485913930]Event Registration

All events must be compliant with the common event format, but specific events identified by their eventNames, may require that certain fields, which are optional in the common event format, be present when they are published. For example, a specific eventName may require that specific name-value pairs be present in the extensible structures provided within the Common Event Format.

Events are registered using an extensible YAML format (defined in a separate document), which specifies, for each eventName, the fields that are required, what field values may be sent, and any special handling that should be performed on those eventNames.

[bookmark: _Toc485913931]Naming Standards for eventName

To prevent naming collisions, eventNames sent as part of the commonEventHeader, should conform to the following naming convention designed to summarize the purpose and type of the event, and to ensure the uniqueness of the eventName:

{DomainAbbreviation}_{AsdcModel or ApplicationPlatform}_{DescriptionOfInfoBeingConveyed}

Domain abbreviations are derived from the ‘domain’ field in the commonEventHeader, as specified below:

· ‘Fault’ for the fault domain

· ‘Heartbeat’ for the heartbeat domain

· ‘Mfvs’ for the measurementsForVfScaling domain

· ‘MobileFlow’ for the mobileFlow domain

· ‘Other’ for the other domain

· ‘SipSignaling’ for the sipSignaling domain

· ‘StateChange’ for the stateChange domain

· ‘Syslog’ for the syslog domain

· ‘Tca’ for the thresholdCrossingAlert domain

· ‘voiceQuality’ for the voiceQuality domain

ASDC (the AT&T Service Design and Creation environment) defines and catalogs specific services, VNFs, VF modules and other entities, which are generically referred to as ‘ASDC models’. The ASDC model that an event is associated with should be indicated in the second subfield within the eventName. If the event is not associated with an ASDC model but is instead being generated by an application platform like MSO, then a string identifying the Application Platform may be used instead. In either case, all subfield names should be converted to camel case format (with no spaces, hyphens or underscores).

The final subfield of the eventName name should describe, in a compact camel case format (with no spaces, hyphens or underscores), the specific information being conveyed by the event. In some cases, this final subfield will not be required (e.g., in the case of Heartbeats or in the case of an event source which, for a domain like syslog, defines only one eventName to support it):

Examples of eventNames following the naming standards are provided below:

· Fault_MobileCallRecording_PilotNumberPoolExhaustion

· Heartbeat_vIsbcMmc

· Other_WanBonding_InstantiationPart1Complete

· Syslog_vDbe

· Tca_vDbe_CpuThresholdExceeded

· Other_Mso_InstantiationPhase1Complete

Any questions about the naming of eventNames should be resolved as part of service and resource onboarding to the AT&T Service Design and Creation environment (i.e., ASDC).

[bookmark: _Toc485913932]Support for Protocols Other Than HTTPS

This API specification describes an HTTPS RESTful interface using the JSON content-type.

Alternative specifications may be provided in future using Websockets, which would establish a permanent TCP socket, or Apache Avro which provides a binary format over an RPC protocol to be defined. Both would leverage the JSON schema provided in this document.

[bookmark: _Contact_Management_Service_][bookmark: _Toc485913933][bookmark: _Toc350194293]Versioning

Three types of version numbers supported by this specification:

· The API specification itself is versioned. Going forward, the major number of the specification version will be incremented whenever any change could break an existing client (e.g., a field name is deleted or changed). All other changes to the spec (e.g., a field name is added or text changes are made to the specification itself) will increment only the minor number. Note that the major number appears in REST resource URLs as v# (where ‘#’ is the major number).

· The JSON schema is versioned. Going forward, the major number of the JSON schema will be incremented whenever any change could break an existing client (e.g., a field name is deleted or changed). All other changes to the schema (e.g., a field name is added or text changes are made to the field descriptions) will increment only the minor number.

· The field blocks are versioned. Field blocks include the commonEventHeader and the domain blocks (e.g., the faultFields block). Going forward, the major number of each field block will be incremented whenever any change to that block could break an existing client (e.g., a field name is deleted or changed). All other changes to that block (e.g., a field name is added or text changes are made to the field descriptions) will increment only the minor number.

[bookmark: _Toc485913934]Security

Event sources must identify themselves to the VES Event Listener.

Event source credentials are passed using HTTP Basic Authentication.

Credentials must not be passed on the query string. Credentials must be sent in an Authorization header as follows:

1. The username and password are formed into one string as “username:password”

2. The resulting string is Base64 encoded to produce the encoded credential.

3. The encoded credential is communicated in the header after the string “Authorization: Basic “

Because the credentials are merely encoded but not encrypted, HTTPS (rather than HTTP) should be used. HTTPS will also encrypt and protect event contents.

Examples are provided below.

[bookmark: _Toc485913935]Sample Request and Response

0. [bookmark: _Toc485913936]Sample Request

		POST /eventListener/v5 HTTPS/1.1

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

content-type: application/json

content-length: 12345
{

 "event": {

 "commonEventHeader": {

 "version": 3.0,

 "domain": "heartbeat",

 "eventName": "Heartbeat_vIsbcMmc",

 "eventId": "ab305d54-85b4-a31b-7db2-fb6b9e546015",

 "sequence": 0,

 "priority": "Normal",

 "reportingEntityId": "cc305d54-75b4-431b-adb2-eb6b9e541234",

 "reportingEntityName": "EricssonOamVf",

 "sourceId": "de305d54-75b4-431b-adb2-eb6b9e546014",

 "sourceName": "ibcx0001vm002ssc001",

 "nfNamingCode": "ibcx",

 "nfcNamingCode": "ssc",

 "startEpochMicrosec": 1413378172000000,

 "lastEpochMicrosec": 1413378172000000

 }

 }

}

0. [bookmark: _Toc485913937]Sample Success Response

		HTTPS/1.1 202 Accepted

[bookmark: _Ref471490730][bookmark: _Ref471490767][bookmark: _Toc485913938]Resource Structure

REST resources are defined with respect to a ServerRoot:

	ServerRoot = https://{Domain}:{Port}/{optionalRoutingtPath}

The resource structure is provided below:

[image:]

[bookmark: _Toc433831124][bookmark: _Toc451790948][bookmark: _Toc485223912]Figure 1 – REST Resource Structure

The {Domain} or FQDN above is typically provisioned into each eventsource when it is instantiated. The {Port} above is typically 8443.

[bookmark: _Ref476744264][bookmark: _Toc485913939]Common Event Format

A JSON schema describing the Common Event Format is provided below and is reproduced in the tables that follow.

[bookmark: _Toc485913940]Common Event Datatypes

[bookmark: _Toc485913941]Command List Processing Datatypes

[bookmark: _Toc485913942]Datatype: command

The command datatype is used by an event collector to request changes in the behavior of an event source (for more information, see 6.1.3); it consists of the following fields:

		Field

		Type

		Required?

		Description

		commandType

		string

		Yes

		Enumeration: ‘heartbeatIntervalChange’, ‘measurementIntervalChange’,

‘provideThrottlingState’, ‘throttllingSpecification’

		eventDomainThrottle Specification

		eventDomainThrottleSpecification

		No

		If commandType is ‘throttlingSpecification’, the fields to suppress within an event domain

		heartbeatInterval

		integer

		No

		If commandType is ‘heartbeatIntervalChange’, the heartbeatInterval duration to use in seconds

		measurementInterval

		integer

		No

		If commandType is ‘measurementIntervalChange’, the measurementInterval duration to use in seconds

[bookmark: _Toc485913943]Datatype: commandList

The commandList datatype is an array of commands from an event collector toward an event source; it consists of the following fields:

		Field

		Type

		Required?

		Description

		commandList

		Command []

		Yes

		List of commands from an event collector toward an event source

[bookmark: _Toc451784799][bookmark: _Toc485913944]Datatype: eventDomainThrottleSpecification

The eventDomainThrottleSpecification datatype specifies what fields to suppress within an event domain; it consists of the following fields common to all events:

		Field

		Type

		Required?

		Description

		eventDomain

		string

		Yes

		Event domain enum from the commonEventHeader domain field

		suppressedFieldNames

		string []

		No

		List of optional field names in the event block that should not be sent to the Event Listener

		suppressedNvPairsList

		suppressedNvPairs []

		No

		Optional list of specific NvPairsNames to suppress within a given Name-Value Field

[bookmark: _Toc485913945]Datatype: eventDomainThrottleSpecificationList

The eventDomainThrottleSpecificationList datatype consists of the following fields:

		Field

		Type

		Required?

		Description

		eventDomainThrottleSpecificationList

		eventDomainThrottleSpecification []

		Yes

		Array of eventDomainThrottleSpecifications

[bookmark: _Toc451784801][bookmark: _Toc485913946]Datatype: eventThrottlingState

The eventThrottlingState datatype reports the throttling in force at the event source; it consists of the following fields:

		Field

		Type

		Required?

		Description

		eventThrottlingMode

		string

		Yes

		Enumeration: ‘normal’, ‘throttled’

		eventDomainThrottleSpecificationList

		eventDomainThrottleSpecificationList

		No

		A list of eventDomainThrottleSpecifications currently in force at the event source, if the eventManagerMode is ‘throttled’

[bookmark: _Toc451784803][bookmark: _Toc485913947]Datatype: suppressedNvPairs

The suppressedNvPairs datatype is a list of specific NvPairsNames to suppress within a given Name-Value Field (for event throttling); it consists of the following fields:

		Field

		Type

		Required?

		Description

		nvPairFieldName

		string

		Yes

		Name of the field within which are the nvpair names to suppress

		suppressedNvPairNames

		string []

		Yes

		Array of nvpair names to suppress (within the nvpairFieldName)

[bookmark: _Toc485913948]Common Event Datatypes

[bookmark: _Toc485913949]Datatype: event

The event datatype consists of the following fields which constitute the ‘root level’ of the common event format:

		Field

		Type

		Required?

		Description

		commonEventHeader

		commonEventHeader

		Yes

		Fields common to all events

		faultFields

		faultFields

		No

		Fields specific to fault events

		heartbeatFields

		heartbeatFields

		No

		Fields specific to heartbeat events

		measurementsForVfScalingFields

		measurementsForVfScalingFields

		No

		Fields specific to measurementsForVfScaling events

		mobileFlowFields

		mobileFlowFields

		No

		Fields specific to mobility flow events

		otherFields

		otherFields

		No

		Fields specific to other types of events

		sipSignalingFields

		sipSignalingFields

		No

		Fields specific to sipSignaling events

		stateChangeFields

		stateChangeFields

		No

		Fields specific to state change events

		syslogFields

		syslogFields

		No

		Fields specific to syslog events

		thresholdCrossingAlertFields

		thresholdCrossingAlertFields

		No

		Fields specific to threshold crossing alert events

		voiceQualityFields

		voiceQualityFields

		No

		Fields specific to voiceQuality events

[bookmark: _Toc485913950]Datatype: eventList

The eventList datatype consists of the following fields:

		Field

		Type

		Required?

		Description

		eventList

		event []

		Yes

		Array of events

[bookmark: _Toc485913951]Datatype: field

The field datatype consists of the following fields:

		Field

		Type

		Required?

		Description

		name

		string

		Yes

		Name of the field

		value

		string

		Yes

		Value of the named field

[bookmark: _Toc485913952][bookmark: _Toc447094158]Datatype: jsonObject

The jsonObject datatype provides a json object schema, name and other meta-information along with one or more object instances that conform to the schema:

		Field

		Type

		Required?

		Description

		objectInstances

		JsonObjectInstance []

		Yes

		Contains one or more instances of the json object

		objectName

		string

		Yes

		Name of the json object

		objectSchema

		string

		No

		json schema for the object

		objectSchemaUrl

		string

		No

		URL to the json schema for the object

		nfSubscribedObjectName

		string

		No

		Name of the object associated with the nfSubscriptionId

		nfSubscriptionId

		string

		No

		Identifies an openConfig telemetry subscription on a network function, which configures the network function to send complex object data associated with the jsonObject

[bookmark: _Toc485913953]Datatype: jsonObjectInstance

The jsonObjectInstance datatype provides meta-information about an instance of a jsonObject along with the actual object instance:

		Field

		Type

		Required?

		Description

		objectInstance

		object

		Yes

		Contains an instance conforming to the jsonObject schema

		objectInstanceEpochMicrosec

		number

		No

		the unix time, aka epoch time, associated with this objectInstance--as microseconds elapsed since 1 Jan 1970 not including leap seconds

		objectKeys

		key []

		No

		An ordered set of keys that identifies this particular instance of jsonObject (e.g., that places it in a hierarchy)

[bookmark: _Toc485913954]Datatype: key

The key datatype is a tuple which provides the name of a key along with its value and relative order; it consists of the following fields:

		Field

		Type

		Required?

		Description

		keyName

		string

		Yes

		Name of the key

		keyOrder

		Integer

		No

		Relative sequence or order of the key (with respect to other keys)

		keyValue

		string

		No

		Value of the key

[bookmark: _Toc485913955]Datatype: namedArrayOfFields

The namedArrayOfFields datatype is an array of name value pairs along with a name for the array; it consists of the following fields:

		Field

		Type

		Required?

		Description

		name

		string

		Yes

		Name for the array of name-value pairs

		arrayOfFields

		field []

		Yes

		Name-value pairs

[bookmark: _Toc485913956]Datatype: requestError

The requestError datatype defines the standard request error data structure:

		Field

		Type

		Required?

		Description

		messageId

		string

		Yes

		Unique message identifier of the format ‘ABCnnnn’ where ‘ABC’ is either ‘SVC’ for Service Exceptions or ‘POL’ for Policy Exception. Exception numbers may be in the range of 0001 to 9999 where 0001 to 2999 are defined by OMA (see section 5.1) and 3000-9999 are available and undefined.

		text

		string

		Yes

		Message text, with replacement variables marked with %n, where n is an index into the list of <variables> elements, starting at 1

		url

		string

		No

		Hyperlink to a detailed error resource e.g., an HTML page for browser user agents

		variables

		string

		No

		List of zero or more strings that represent the contents of the variables used by the message text

[bookmark: _Toc485913957]Datatype: vendorVnfNameFields

The vendorVnfNameFields provides vendor, vnf and vfModule identifying information:

		Field

		Type

		Required?

		Description

		vendorName

		string

		Yes

		VNF vendor name

		vfModuleName

		string

		No

		The ASDC vfModuleName for the vfModule generating the event

		vnfName

		string

		No

		The ASDC modelName for the VNF generating the event

[bookmark: _Toc485913958]‘Common Event Header’ Datatypes

[bookmark: _Ref442971881][bookmark: _Ref442971905][bookmark: _Ref442971976][bookmark: _Toc485913959]Datatype: commonEventHeader

The commonEventHeader datatype consists of the following fields common to all events:

		Field

		Type

		Required?

		Description

		version

		number

		Yes

		Version of the event header (currently: 3.0)

		eventName

		string

		Yes

		Unique event name (see section 1 for more information)

		domain

		string

		Yes

		Event domain enumeration: ‘fault’, ‘heartbeat’, ‘measurementsForVfScaling’, ‘mobileFlow’, ‘other’, ‘sipSignaling’, ‘stateChange’, ‘syslog’, ‘thresholdCrossingAlert’, ‘voiceQuality’

		eventId

		string

		Yes

		Event key that is unique to the event source

		eventType

		string

		No

		For example: ‘applicationVnf’, ‘guestOS’, ‘hostOS’, ‘platform’

		nfcNamingCode

		string

		No

		Network function component type: 3 characters (aligned with vfc naming standards)

		nfNamingCode

		string

		No

		Network function type: 4 characters (aligned with vnf naming standards)

		sourceId

		string

		No

		UUID identifying the entity experiencing the event issue (note: the AT&T internal enrichment process shall ensure that this field is populated)

		sourceName

		string

		Yes

		Name of the entity experiencing the event issue

		reportingEntityId

		string

		No

		UUID identifying the entity reporting the event, for example an OAM VM (note: the AT&T internal enrichment process shall ensure that this field is populated)

		reportingEntityName

		string

		Yes

		Name of the entity reporting the event, for example, an EMS name. May be the same as the sourceName. For synthetic events generated by DCAE, it is the name of the app generating the event.

		priority

		string

		Yes

		Processing priority enumeration: ‘High’, ‘Medium’, ‘Normal’, ‘Low’

		startEpochMicrosec

		number

		Yes

		the earliest unix time aka epoch time associated with the event from any component--as microseconds elapsed since 1 Jan 1970 not including leap seconds

		lastEpochMicrosec

		number

		Yes

		the latest unix time aka epoch time associated with the event from any component--as microseconds elapsed since 1 Jan 1970 not including leap seconds

		sequence

		integer

		Yes

		Ordering of events communicated by an event source instance (or 0 if not needed)

		internalHeader Fields

		internalHeader Fields

		No

		Fields (not supplied by event sources) that the VES Event Listener service can use to enrich the event if needed for efficient internal processing. This is an empty object which is intended to be defined separately by each provider implementing the VES Event Listener.

[bookmark: _Toc485913960]Datatype: internalHeaderFields

The internalHeaderFields datatype is an undefined object which can contain arbitrarily complex JSON structures. It is intended to be defined separately by each provider implementing the VES Event Listener. The fields in internalHeaderFields are not provided by any event source but instead are added by the VES Event Listener service itself as part of an event enrichment process necessary for efficient internal processing of events received by the VES Event Listener:

[bookmark: _Toc485913961]Technology Independent Datatypes

[bookmark: _Toc485913962]‘Fault’ Domain Datatypes

[bookmark: _Toc485913963]Datatype: faultFields

The faultFields datatype consists of the following fields:

		Field

		Type

		Required?

		Description

		faultFieldsVersion

		number

		Yes

		Version of the faultFields block (currently: 2.0)

		eventSeverity

		string

		Yes

		Event severity enumeration: ‘CRITICAL’, ‘MAJOR’, ‘MINOR’, ‘WARNING’, ‘NORMAL’

		eventSourceType

		string

		Yes

		Examples: ‘card’, ‘host’, ‘other’, ‘port’, ‘portThreshold’, ‘router’, ‘slotThreshold’, ‘switch’, ‘virtualMachine’, ‘virtualNetworkFunction’

		eventCategory

		string

		No

		Event category, for example: ‘license’, ‘link’, ‘routing’, ‘security’, ‘signaling’

		alarmCondition

		string

		Yes

		Alarm condition reported by the device (e.g., ‘tpLgCgiNotInConfig’)

		specificProblem

		string

		Yes

		Short description of the alarm or problem (e.g., ‘This event is sent when the LG is asked to perform a location for a CGI that is not in its configuration’)

		vfStatus

		string

		Yes

		Virtual function status enumeration: ‘Active’, ‘Idle’, ‘Preparing to terminate’, ‘Ready to terminate’, ‘Requesting Termination’

		alarmInterfaceA

		string

		No

		Card, port, channel or interface name of the device generating the alarm

		alarmAdditional Information

		field []

		No

		Additional alarm information (note: for SNMP mapping to VES, for name use OID of varbind, for value use incoming data for that varbind)

[bookmark: _Toc485913964]‘Heartbeat’ Domain Datatypes

[bookmark: _Toc485913965]Datatype: heartbeatFields

The heartbeatFields datatype is an optional field block for fields specific to heartbeat events; it consists of the following fields:

		Field

		Type

		Required?

		Description

		heartbeatFieldsVersion

		number

		Yes

		Version of the heartbeatFields block (currently: 1.0)

		additionalFields

		field []

		No

		Additional expansion fields if needed

		heartbeatInterval

		Integer

		Yes

		Current heartbeatInterval in seconds

[bookmark: _Toc485913966] ‘Measurements For VF Scaling’ Domain Datatypes

[bookmark: _Toc485913967]Datatype: codecsInUse

The codecsInUse datatype consists of the following fields describing the number of times an identified codec was used over the measurementInterval:

		Field

		Type

		Required?

		Description

		codecIdentifer

		string

		Yes

		Description of the codec

		numberInUse

		integer

		Yes

		Number of such codecs in use

[bookmark: _Toc485913968]Datatype: cpuUsage

The cpuUsage datatype defines the usage of an identifier CPU and consists of the following fields:

		Field

		Type

		Required?

		Description

		cpuIdentifier

		string

		Yes

		CPU Identifier

		cpuIdle

		number

		No

		Percentage of CPU time spent in the idle task

		cpuUsageInterrupt

		number

		No

		Percentage of time spent servicing interrupts

		cpuUsageNice

		number

		No

		Percentage of time spent running user space processes that have been niced

		cpuUsageSoftIrq

		number

		No

		Percentage of time spent handling soft irq interrupts

		cpuUsageSteal

		number

		No

		Percentage of time spent in involuntary wait which is neither user, system or idle time and is effectively time that went missing

		cpuUsageSystem

		number

		No

		Percentage of time spent on system tasks running the kernel

		cpuUsageUser

		number

		No

		Percentage of time spent running un-niced user space processes

		cpuWait

		number

		No

		Percentage of CPU time spent waiting for I/O operations to complete

		percentUsage

		number

		Yes

		Aggregate cpu usage of the virtual machine on which the VNFC reporting the event is running

[bookmark: _Toc485913969]Datatype: diskUsage

The diskUsage datatype defines the usage of a disk and consists of the following fields:

		Field

		Type

		Required?

		Description

		diskIdentifier

		string

		Yes

		Disk Identifier

		diskIoTimeAvg

		number

		No

		Milliseconds spent doing input/output operations over 1 sec; treat this metric as a device load percentage where 1000ms matches 100% load; provide the average over the measurement interval

		diskIoTimeLast

		number

		No

		Milliseconds spent doing input/output operations over 1 sec; treat this metric as a device load percentage where 1000ms matches 100% load; provide the last value measurement within the measurement interval

		diskIoTimeMax

		number

		No

		Milliseconds spent doing input/output operations over 1 sec; treat this metric as a device load percentage where 1000ms matches 100% load; provide the maximum value measurement within the measurement interval

		diskIoTimeMin

		number

		No

		Milliseconds spent doing input/output operations over 1 sec; treat this metric as a device load percentage where 1000ms matches 100% load; provide the minimum value measurement within the measurement interval

		diskMergedReadAvg

		number

		No

		Number of logical read operations that were merged into physical read operations, e.g., two logical reads were served by one physical disk access; provide the average measurement within the measurement interval

		diskMergedReadLast

		number

		No

		Number of logical read operations that were merged into physical read operations, e.g., two logical reads were served by one physical disk access; provide the last value measurement within the measurement interval

		diskMergedReadMax

		number

		No

		Number of logical read operations that were merged into physical read operations, e.g., two logical reads were served by one physical disk access; provide the maximum value measurement within the measurement interval

		diskMergedReadMin

		number

		No

		Number of logical read operations that were merged into physical read operations, e.g., two logical reads were served by one physical disk access; provide the minimum value measurement within the measurement interval

		diskMergedWriteAvg

		number

		No

		Number of logical write operations that were merged into physical write operations, e.g., two logical writes were served by one physical disk access; provide the average measurement within the measurement interval

		diskMergedWriteLast

		number

		No

		Number of logical write operations that were merged into physical write operations, e.g., two logical writes were served by one physical disk access; provide the last value measurement within the measurement interval

		diskMergedWriteMax

		number

		No

		Number of logical write operations that were merged into physical write operations, e.g., two logical writes were served by one physical disk access; provide the maximum value measurement within the measurement interval

		diskMergedWriteMin

		number

		No

		Number of logical write operations that were merged into physical write operations, e.g., two logical writes were served by one physical disk access; provide the minimum value measurement within the measurement interval

		diskOctetsRead Avg

		number

		No

		Number of octets per second read from a disk or partition; provide the average measurement within the measurement interval

		diskOctetsRead

Last

		number

		No

		Number of octets per second read from a disk or partition; provide the last measurement within the measurement interval

		diskOctetsRead Max

		number

		No

		Number of octets per second read from a disk or partition; provide the maximum measurement within the measurement interval

		diskOctetsRead Min

		number

		No

		Number of octets per second read from a disk or partition; provide the minimum measurement within the measurement interval

		diskOctetsWrite Avg

		number

		No

		Number of octets per second written to a disk or partition; provide the average measurement within the measurement interval

		diskOctetsWrite Last

		number

		No

		Number of octets per second written to a disk or partition; provide the last measurement within the measurement interval

		diskOctetsWriteMax

		number

		No

		Number of octets per second written to a disk or partition; provide the maximum measurement within the measurement interval

		diskOctetsWriteMin

		number

		No

		Number of octets per second written to a disk or partition; provide the minimum measurement within the measurement interval

		diskOpsReadAvg

		number

		No

		Number of read operations per second issued to the disk; provide the average measurement within the measurement interval

		diskOpsReadLast

		number

		No

		Number of read operations per second issued to the disk; provide the last measurement within the measurement interval

		diskOpsReadMax

		number

		No

		Number of read operations per second issued to the disk; provide the maximum measurement within the measurement interval

		diskOpsReadMin

		number

		No

		Number of read operations per second issued to the disk; provide the minimum measurement within the measurement interval

		diskOpsWriteAvg

		number

		No

		Number of write operations per second issued to the disk; provide the average measurement within the measurement interval

		diskOpsWriteLast

		number

		No

		Number of write operations per second issued to the disk; provide the last measurement within the measurement interval

		diskOpsWrite Max

		number

		No

		Number of write operations per second issued to the disk; provide the maximum measurement within the measurement interval

		diskOpsWriteMin

		number

		No

		Number of write operations per second issued to the disk; provide the minimum measurement within the measurement interval

		diskPendingOperationsAvg

		number

		No

		Queue size of pending I/O operations per second; provide the average measurement within the measurement interval

		diskPendingOperationsLast

		number

		No

		Queue size of pending I/O operations per second; provide the last measurement within the measurement interval

		diskPendingOperationsMax

		number

		No

		Queue size of pending I/O operations per second; provide the maximum measurement within the measurement interval

		diskPendingOperationsMin

		number

		No

		Queue size of pending I/O operations per second; provide the minimum measurement within the measurement interval

		diskTimeReadAvg

		number

		No

		Milliseconds a read operation took to complete; provide the average measurement within the measurement interval

		diskTimeRead Last

		number

		No

		Milliseconds a read operation took to complete; provide the last measurement within the measurement interval

		diskTimeRead Max

		number

		No

		Milliseconds a read operation took to complete; provide the maximum measurement within the measurement interval

		diskTimeRead Min

		number

		No

		Milliseconds a read operation took to complete; provide the minimum measurement within the measurement interval

		diskTimeWrite Avg

		number

		No

		Milliseconds a write operation took to complete; provide the average measurement within the measurement interval

		diskTimeWrite Last

		number

		No

		Milliseconds a write operation took to complete; provide the last measurement within the measurement interval

		diskTimeWrite Max

		number

		No

		Milliseconds a write operation took to complete; provide the maximum measurement within the measurement interval

		diskTimeWrite Min

		number

		No

		Milliseconds a write operation took to complete; provide the minimum measurement within the measurement interval

[bookmark: _Toc485913970]Datatype: featuresInUse

The featuresInUse datatype consists of the following fields which describe the number of times an identified feature was used over the measurementInterval:

		Field

		Type

		Required?

		Description

		featureIdentifer

		string

		Yes

		Description of the feature

		featureUtilization

		integer

		Yes

		Number of times the identified feature was used

[bookmark: _Toc485913971]Datatype: filesystemUsage

The filesystemUsage datatype consists of the following fields:

		Field

		Type

		Required?

		Description

		filesystemName

		string

		Yes

		File system name

		blockConfigured

		number

		Yes

		Configured block storage capacity in GB

		blockIops

		number

		Yes

		Block storage input-output operations per second

		blockUsed

		number

		Yes

		Used block storage capacity in GB

		ephemeralConfigured

		number

		Yes

		Configured ephemeral storage capacity in GB

		ephemeralIops

		number

		Yes

		Ephemeral storage input-output operations per second

		ephemeralUsed

		number

		Yes

		Used ephemeral storage capacity in GB

[bookmark: _Toc485913972]Datatype: latencyBucketMeasure

The latencyBucketMeasure datatype consists of the following fields which describe the number of counts falling within a defined latency bucket:

		Field

		Type

		Required?

		Description

		countsInTheBucket

		number

		Yes

		Number of counts falling within a defined latency bucket

		highEndOfLatencyBucket

		number

		No

		High end of bucket range (typically in ms)

		lowEndOfLatencyBucket

		number

		No

		Low end of bucket range (typically in ms)

[bookmark: _Toc485913973]Datatype: measurementsForVfScalingFields

The measurementsForVfScalingFields datatype consists of the following fields:

		Field

		Type

		Required?

		Description

		measurementsForVfScalingVersion

		number

		Yes

		Version of the measurementsForVfScalingFields block (currently: 2.0)

		additionalFields

		field []

		No

		Additional measurement fields if needed

		additionalMeasurements

		namedArrayOfFields []

		No

		Array of named name-value-pair arrays if needed

		additionalObjects

		jsonObject []

		No

		Array of JSON objects described by name, schema and other meta-information, if needed

		codecUsageArray

		codecsInUse []

		No

		Array of codecs in use

		concurrentSessions

		integer

		No

		Peak concurrent sessions for the VM or VNF (depending on the context) over the measurementInterval

		configuredEntities

		integer

		No

		Depending on the context over the measurementInterval: peak total number of users, subscribers, devices, adjacencies, etc., for the VM, or peak total number of subscribers, devices, etc., for the VNF

		cpuUsageArray

		cpuUsage []

		No

		Usage of an array of CPUs

		diskUsageArray

		diskUsage []

		No

		Usage of an array of disks

		featureUsageArray

		featuresInUse []

		No

		Array of features in use

		filesystemUsageArray

		filesystemUsage []

		No

		Filesystem usage of the VM on which the VNFC reporting the event is running

		latencyDistribution

		latencyBucketMeasure []

		No

		Array of integers representing counts of requests whose latency in milliseconds falls within per-VNF configured ranges; where latency is the duration between a service request and its fulfillment.

		meanRequestLatency

		number

		No

		Mean seconds required to respond to each request for the VM on which the VNFC reporting the event is running

		measurementInterval

		number

		Yes

		Interval over which measurements are being reported in seconds

		memoryUsageArray

		memoryUsage []

		No

		Memory usage of an array of VMs

		numberOfMediaPortsInUse

		integer

		No

		Number of media ports in use

		requestRate

		number

		No

		Peak rate of service requests per second to the VNF over the measurementInterval

		vnfcScalingMetric

		integer

		No

		Represents busy-ness of the VNF from 0 to 100 as reported by the VNFC

		vNicPerformanceArray

		vNicPerformance []

		No

		Performance metrics of an array of virtual network interface cards

[bookmark: _Toc485913974]Datatype: memoryUsage

The memoryUsage datatype defines the memory usage of a virtual machine and consists of the following fields:

		Field

		Type

		Required?

		Description

		memoryBuffered

		number

		No

		Kibibytes of temporary storage for raw disk blocks

		memoryCached

		number

		No

		Kibibytes of memory used for cache

		memoryConfigured

		number

		No

		Kibibytes of memory configured in the virtual machine on which the VNFC reporting the event is running

		memoryFree

		number

		Yes

		Kibibytes of physical RAM left unused by the system

		memorySlabRecl

		number

		No

		The part of the slab that can be reclaimed such as caches measured in kibibytes

		memorySlabUnrecl

		number

		No

		The part of the slab that cannot be reclaimed even when lacking memory measure in kibibytes

		memoryUsed

		number

		Yes

		Total memory minus the sum of free, buffered, cached and slab memory measured in kibibytes

		vmIdentifier

		string

		Yes

		Virtual Machine identifier associated with the memory metrics

[bookmark: _Toc485913975]Datatype: vNicPerformance

The vNicPerformance datatype consists of the following fields which describe the performance and errors of an of an identified virtual network interface card:

		Field

		Type

		Required?

		Description

		receivedBroadcastPacketsAccumulated

		number

		No

		Cumulative count of broadcast packets received as read at the end of the measurement interval

		receivedBroadcastPacketsDelta

		number

		No

		Count of broadcast packets received within the measurement interval

		receivedDiscardedPacketsAccumulated

		number

		No

		Cumulative count of discarded packets received as read at the end of the measurement interval

		receivedDiscardedPacketsDelta

		number

		No

		Count of discarded packets received within the measurement interval

		receivedErrorPacketsAccumulated

		number

		No

		Cumulative count of error packets received as read at the end of the measurement interval

		receivedErrorPacketsDelta

		number

		No

		Count of error packets received within the measurement interval

		receivedMulticastPacketsAccumulated

		number

		No

		Cumulative count of multicast packets received as read at the end of the measurement interval

		receivedMulticastPacketsDelta

		number

		No

		Count of multicast packets received within the measurement interval

		receivedOctetsAccumulated

		number

		No

		Cumulative count of octets received as read at the end of the measurement interval

		receivedOctetsDelta

		number

		No

		Count of octets received within the measurement interval

		receivedTotalPacketsAccumulated

		number

		No

		Cumulative count of all packets received as read at the end of the measurement interval

		receivedTotalPacketsDelta

		number

		No

		Count of all packets received within the measurement interval

		receivedUnicastPacketsAccumulated

		number

		No

		Cumulative count of unicast packets received as read at the end of the measurement interval

		receivedUnicastPacketsDelta

		number

		No

		Count of unicast packets received within the measurement interval

		transmittedBroadcastPacketsAccumulated

		number

		No

		Cumulative count of broadcast packets transmitted as read at the end of the measurement interval

		transmittedBroadcastPacketsDelta

		number

		No

		Count of broadcast packets transmitted within the measurement interval

		transmittedDiscardedPacketsAccumulated

		number

		No

		Cumulative count of discarded packets transmitted as read at the end of the measurement interval

		transmittedDiscardedPacketsDelta

		number

		No

		Count of discarded packets transmitted within the measurement interval

		transmittedErrorPacketsAccumulated

		number

		No

		Cumulative count of error packets transmitted as read at the end of the measurement interval

		transmittedErrorPacketsDelta

		number

		No

		Count of error packets transmitted within the measurement interval

		transmittedMulticastPacketsAccumulated

		number

		No

		Cumulative count of multicast packets transmitted as read at the end of the measurement interval

		transmittedMulticastPacketsDelta

		number

		No

		Count of multicast packets transmitted within the measurement interval

		transmittedOctetsAccumulated

		number

		No

		Cumulative count of octets transmitted as read at the end of the measurement interval

		transmittedOctetsDelta

		number

		No

		Count of octets transmitted within the measurement interval

		transmittedTotalPacketsAccumulated

		number

		No

		Cumulative count of all packets transmitted as read at the end of the measurement interval

		transmittedTotalPacketsDelta

		number

		No

		Count of all packets transmitted within the measurement interval

		transmittedUnicastPacketsAccumulated

		number

		No

		Cumulative count of unicast packets transmitted as read at the end of the measurement interval

		transmittedUnicastPacketsDelta

		number

		No

		Count of unicast packets transmitted within the measurement interval

		valuesAreSuspect

		string

		Yes

		Enumeration: ‘true’ or ‘false’. If ‘true’ then the vNicPerformance values are likely inaccurate due to counter overflow or other condtions.

		vNicIdentifier

		string

		Yes

		vNic identification

[bookmark: _Toc485913976]‘Other’ Domain Datatypes

[bookmark: _Toc485913977]Datatype: otherFields

The otherFields datatype defines fields for events belonging to the 'other' domain of the commonEventHeader domain enumeration; it consists of the following fields:

		Field

		Type

		Required?

		Description

		otherFieldsVersion

		number

		Yes

		Version of the otherFields block (currently: 1.1)

		hashOfNameValuePairArrays

		namedArrayOfFields []

		No

		Array of named name-value-pair arrays

		jsonObjects

		jsonObject []

		No

		Array of JSON objects described by name, schema and other meta-information

		nameValuePairs

		field []

		No

		Array of name-value pairs

[bookmark: _Toc485913978]‘State Change’ Domain Datatypes

[bookmark: _Toc485913979]Datatype: stateChangeFields

The stateChangeFields datatype consists of the following fields:

		Field

		Type

		Required?

		Description

		stateChangeFieldsVersion

		number

		Yes

		Version of the stateChangeFields block (currently: 2.0)

		additionalFields

		field []

		No

		Additional stateChange fields if needed

		newState

		string

		Yes

		New state of the entity: ‘inService’, ‘maintenance’, ‘outOfService’

		oldState

		string

		Yes

		Previous state of the entity: ‘inService’, ‘maintenance’, ‘outOfService’

		stateInterface

		string

		Yes

		Card or port name of the entity that changed state

[bookmark: _Toc485913980]‘Syslog’ Domain Datatypes

[bookmark: _Toc485913981]Datatype: syslogFields

The syslogFields datatype consists of the following fields:

		Field

		Type

		Required?

		Description

		syslogFieldsVersion

		number

		Yes

		Version of the syslogFields block (currently: 3.0)

		additionalFields

		string

		No

		Additional syslog fields if needed, provided as name=value delimited by a pipe ‘|’ symbol, for example: “name1=value1|name2=value2|…”

		eventSourceHost

		string

		No

		Hostname of the device

		eventSourceType

		string

		Yes

		Examples: ‘other’, ‘router’, ‘switch’, ‘host’, ‘card’, ‘port’, ‘slotThreshold’, ‘portThreshold’, ‘virtualMachine’, ‘virtualNetworkFunction’

		syslogFacility

		integer

		No

		Numeric code from 0 to 23 for facility:

 0 kernel messages

 1 user-level messages

 2 mail system

 3 system daemons

 4 security/authorization messages

 5 messages generated internally by syslogd

 6 line printer subsystem

 7 network news subsystem

 8 UUCP subsystem

 9 clock daemon

 10 security/authorization messages

 11 FTP daemon

 12 NTP subsystem

 13 log audit

 14 log alert

 15 clock daemon (note 2)

 16 local use 0 (local0)

 17 local use 1 (local1)

 18 local use 2 (local2)

 19 local use 3 (local3)

 20 local use 4 (local4)

 21 local use 5 (local5)

 22 local use 6 (local6)

 23 local use 7 (local7)

		syslogMsg

		string

		Yes

		Syslog message

		syslogPri

		integer

		No

		0-192

Combined Severity and Facility

		syslogProc

		string

		No

		Identifies the application that originated the message

		syslogProcId

		number

		No

		A change in the value of this field indicates a discontinuity in syslog reporting

		syslogSData

		string

		No

		Syslog structured data consisting of a structured data Id followed by a set of key value pairs (see below for an example)

**Note: SD-ID may not be present if syslogSdId is populated

		syslogSdId

		string

		No

		0-32 char in format name@number,

i.e., ourSDID@32473

		syslogSev

		string

		No

		Level-of-severity enumeration in quotes below:

 ‘Emergency’: system is unusable

 ‘Alert’ : action must be taken immediately

 ‘Critical’ : critical conditions

 ‘Error’ : error conditions

 ‘Warning’ : warning conditions

 ‘Notice’ : normal but significant condition

 ‘Info’ : Informational: informational messages

 ‘Debug’ : debug-level messages

		syslogTag

		string

		Yes

		MsgId indicating the type of message such as ‘TCPOUT’ or ‘TCPIN’; ‘NILVALUE’ should be used when no other value can be provided

		syslogVer

		number

		No

		IANA assigned version of the syslog protocol specification (typically ‘1’)

Example of syslogSData:

STRUCTURED-DATA = NILVALUE / 1*SD-ELEMENT

 SD-ELEMENT = "[" SD-ID *(SP SD-PARAM) "]"

 SD-PARAM = PARAM-NAME "=" %d34 PARAM-VALUE %d34

 SD-ID = SD-NAME

 PARAM-NAME = SD-NAME

 PARAM-VALUE = UTF-8-STRING ; characters '"', '\' and

 ; ']' MUST be escaped.

 SD-NAME = 1*32PRINTUSASCII

 ; except '=', SP, ']', %d34 (")

[bookmark: _Toc485913982]‘Threshold Crossing Alert’ Domain Datatypes

[bookmark: _Toc485913983]Datatype: counter

The counter datatype consists of the following fields:

		Field

		Type

		Required?

		Description

		name

		string

		Yes

		Name of the counter

		value

		string

		Yes

		Current value of the counter

		threshholdCrossed

		string

		Yes

		Last threshold that was crossed

		criticality

		string

		Yes

		Enumeration: ‘CRIT’, ‘MAJ’

[bookmark: _Toc485913984]Datatype: thresholdCrossingAlertFields

The thresholdCrossingAlertFields datatype consists of the following fields:

		Field

		Type

		Required?

		Description

		thresholdCrossing FieldsVersion

		number

		Yes

		Version of the thresholdCrossingAlertFields block (currently: 2.0)

		additionalFields

		field []

		No

		Additional threshold crossing alert fields if needed

		additionalParameters

		counter []

		Yes

		Array of performance counters

		alertAction

		string

		Yes

		Enumeration: ‘SET’, ‘CONT’, ‘CLEAR’

		alertDescription

		string

		Yes

		Unique short alert description (e.g., NE-CPUMEM)

		alertType

		string

		Yes

		Enumeration: ‘CARD-ANOMALY’, ‘INTERFACE-ANOMALY’, ELEMENT-ANOMALY’, ‘SERVICE-ANOMALY’

		alertValue

		string

		No

		Calculated API value (if applicable)

		associatedAlertIdList

		string []

		No

		List of eventIds associated with the event being reported

		collectionTimestamp

		string

		Yes

		Time when the performance collector picked up the data; with RFC 2822 compliant format: ‘Sat, 13 Mar 2010 11:29:05 -0800’

		dataCollector

		string

		No

		Specific performance collector instance used

		elementType

		string

		No

		Type of network element (internal AT&T field)

		eventSeverity

		string

		Yes

		Event severity or priority enumeration: ‘CRITICAL’, ‘MAJOR’, ‘MINOR’, ‘WARNING’, ‘NORMAL’

		eventStartTimestamp

		string

		Yes

		Time closest to when the measurement was made; with RFC 2822 compliant format: ‘Sat, 13 Mar 2010 11:29:05 -0800’

		interfaceName

		string

		No

		Physical or logical port or card (if applicable)

		networkService

		string

		No

		Network name (internal AT&T field)

		possibleRootCause

		string

		No

		Reserved for future use

[bookmark: _Toc485913985]Technology Specific Datatypes

[bookmark: _Toc485913986] ‘Mobile Flow’ Domain Datatypes

[bookmark: _Toc485913987]Datatype: gtpPerFlowMetrics

The gtpPerFlowMetrics datatype consists of the following fields:

		Field

		Type

		Required?

		Description

		avgBitErrorRate

		number

		Yes

		Average bit error rate

		avgPacketDelayVariation

		number

		Yes

		Average packet delay variation or jitter in milliseconds for received packets: Average difference between the packet timestamp and time received for all pairs of consecutive packets

		avgPacketLatency

		number

		Yes

		Average delivery latency

		avgReceiveThroughput

		number

		Yes

		Average receive throughput

		avgTransmitThroughput

		number

		Yes

		Average transmit throughput

		durConnectionFailedStatus

		number

		No

		Duration of failed state in milliseconds, computed as the cumulative time between a failed echo request and the next following successful error request, over this reporting interval

		durTunnelFailedStatus

		number

		No

		Duration of errored state, computed as the cumulative time between a tunnel error indicator and the next following non-errored indicator, over this reporting interval

		flowActivatedBy

		string

		No

		Endpoint activating the flow

		flowActivationEpoch

		number

		Yes

		Time the connection is activated in the flow (connection) being reported on, or transmission time of the first packet if activation time is not available

		flowActivationMicrosec

		number

		Yes

		Integer microseconds for the start of the flow connection

		flowActivationTime

		string

		No

		Time the connection is activated in the flow being reported on, or transmission time of the first packet if activation time is not available; with RFC 2822 compliant format: ‘Sat, 13 Mar 2010 11:29:05 -0800’

		flowDeactivatedBy

		string

		No

		Endpoint deactivating the flow

		flowDeactivationEpoch

		number

		Yes

		Time for the start of the flow connection, in integer UTC epoch time aka UNIX time

		flowDeactivationMicrosec

		number

		Yes

		Integer microseconds for the start of the flow connection

		flowDeactivationTime

		string

		Yes

		Transmission time of the first packet in the flow connection being reported on; with RFC 2822 compliant format: ‘Sat, 13 Mar 2010 11:29:05 -0800’

		flowStatus

		string

		Yes

		Connection status at reporting time as a working / inactive / failed indicator value

		gtpConnectionStatus

		string

		No

		Current connection state at reporting time

		gtpTunnelStatus

		string

		No

		Current tunnel state at reporting time

		ipTosCountList

		associative array

		No

		Array of key: value pairs where the keys are drawn from the IP Type-of-Service identifiers which range from '0' to '255', and the values are the count of packets that had those ToS identifiers in the flow

		ipTosList

		string

		No

		Array of unique IP Type-of-Service values observed in the flow where values range from '0' to '255'

		largePacketRtt

		number

		No

		large packet round trip time

		largePacketThreshold

		number

		No

		large packet threshold being applied

		maxPacketDelayVariation

		number

		Yes

		Maximum packet delay variation or jitter in milliseconds for received packets: Maximum of the difference between the packet timestamp and time received for all pairs of consecutive packets

		maxReceiveBitRate

		number

		No

		maximum receive bit rate"

		maxTransmitBitRate

		number

		No

		maximum transmit bit rate

		mobileQciCosCountList

		associative array

		No

		array of key: value pairs where the keys are drawn from LTE QCI or UMTS class of service strings, and the values are the count of packets that had those strings in the flow

		mobileQciCosList

		string

		No

		Array of unique LTE QCI or UMTS class-of-service values observed in the flow

		numActivationFailures

		number

		Yes

		Number of failed activation requests, as observed by the reporting node

		numBitErrors

		number

		Yes

		number of errored bits

		numBytesReceived

		number

		Yes

		number of bytes received, including retransmissions

		numBytesTransmitted

		number

		Yes

		number of bytes transmitted, including retransmissions

		numDroppedPackets

		number

		Yes

		number of received packets dropped due to errors per virtual interface

		numGtpEchoFailures

		number

		No

		Number of Echo request path failures where failed paths are defined in 3GPP TS 29.281 sec 7.2.1 and 3GPP TS 29.060 sec. 11.2

		numGtpTunnelErrors

		number

		No

		Number of tunnel error indications where errors are defined in 3GPP TS 29.281 sec 7.3.1 and 3GPP TS 29.060 sec. 11.1

		numHttpErrors

		number

		No

		Http error count

		numL7BytesReceived

		number

		Yes

		number of tunneled layer 7 bytes received, including retransmissions

		numL7BytesTransmitted

		number

		Yes

		number of tunneled layer 7 bytes transmitted, excluding retransmissions

		numLostPackets

		number

		Yes

		number of lost packets

		numOutOfOrderPackets

		number

		Yes

		number of out-of-order packets

		numPacketErrors

		number

		Yes

		number of errored packets

		numPacketsReceivedExclRetrans

		number

		Yes

		number of packets received, excluding retransmission

		numPacketsReceivedInclRetrans

		number

		Yes

		number of packets received, including retransmission

		numPacketsTransmittedInclRetrans

		number

		Yes

		number of packets transmitted, including retransmissions

		numRetries

		number

		Yes

		number of packet retrie

		numTimeouts

		number

		Yes

		number of packet timeouts

		numTunneledL7BytesReceived

		number

		Yes

		number of tunneled layer 7 bytes received, excluding retransmissions

		roundTripTime

		number

		Yes

		Round Trip time

		tcpFlagCountList

		associative array

		No

		Array of key: value pairs where the keys are drawn from TCP Flags and the values are the count of packets that had that TCP Flag in the flow

		tcpFlagList

		string

		No

		Array of unique TCP Flags observed in the flow

		timeToFirstByte

		number

		Yes

		Time in milliseconds between the connection activation and first byte received

[bookmark: _Toc485913988]Datatype: mobileFlowFields

The mobileFlowFields datatype consists of the following fields:

		Field

		Type

		Required?

		Description

		mobileFlowFieldsVersion

		number

		Yes

		Version of the mobileFlowFields block (currently: 2.0)

		additionalFields

		field []

		No

		Additional mobileFlow fields if needed

		applicationType

		string

		No

		Application type inferred

		appProtocolType

		string

		No

		Application protocol

		appProtocolVersion

		string

		No

		Application version

		cid

		string

		No

		Cell Id

		connectionType

		string

		No

		Abbreviation referencing a 3GPP reference point e.g., S1-U, S11, etc

		ecgi

		string

		No

		Evolved Cell Global Id

		flowDirection

		string

		Yes

		Flow direction, indicating if the reporting node is the source of the flow or destination for the flow

		gtpPerFlowMetrics

		gtpPer FlowMetrics

		Yes

		Mobility GTP Protocol per flow metrics

		gtpProtocolType

		string

		No

		GTP protocol

		gtpVersion

		string

		No

		GTP protocol version

		httpHeader

		string

		No

		HTTP request header, if the flow connects to a node referenced by HTTP

		imei

		string

		No

		IMEI for the subscriber UE used in this flow, if the flow connects to a mobile device

		imsi

		string

		No

		IMSI for the subscriber UE used in this flow, if the flow connects to a mobile device

		ipProtocolType

		string

		Yes

		IP protocol type e.g., TCP, UDP, RTP...

		ipVersion

		string

		Yes

		IP protocol version e.g., IPv4, IPv6

		lac

		string

		No

		Location area code

		mcc

		string

		No

		Mobile country code

		mnc

		string

		No

		Mobile network code

		msisdn

		string

		No

		MSISDN for the subscriber UE used in this flow, as an integer, if the flow connects to a mobile device

		otherEndpointIpAddress

		string

		Yes

		IP address for the other endpoint, as used for the flow being reported on

		otherEndpointPort

		integer

		Yes

		IP Port for the reporting entity, as used for the flow being reported on

		otherFunctionalRole

		string

		No

		Functional role of the other endpoint for the flow being reported on e.g., MME, S-GW, P-GW, PCRF...

		rac

		string

		No

		Routing area code

		radioAccessTechnology

		string

		No

		Radio Access Technology e.g., 2G, 3G, LTE

		reportingEndpointIpAddr

		string

		Yes

		IP address for the reporting entity, as used for the flow being reported on

		reportingEndpointPort

		integer

		Yes

		IP port for the reporting entity, as used for the flow being reported on

		sac

		string

		No

		Service area code

		samplingAlgorithm

		integer

		No

		Integer identifier for the sampling algorithm or rule being applied in calculating the flow metrics if metrics are calculated based on a sample of packets, or 0 if no sampling is applied

		tac

		string

		No

		Transport area code

		tunnelId

		string

		No

		Tunnel identifier

		vlanId

		string

		No

		VLAN identifier used by this flow

[bookmark: _Toc468361320][bookmark: _Toc485913989] ‘SipSignaling’ Domain Datatypes

[bookmark: _Toc485913990]Datatype: sipSignalingFields

The sipSignalingFields datatype communicates information about sip signaling messages, parameters and signaling state; it consists of the following fields:

		Field

		Type

		Required?

		Description

		sipSignalingFieldsVersion

		number

		Yes

		Version of the sipSignalingFields block (currently: 1.0)

		additionalInformation

		field []

		No

		Additional sipSignaling fields

		compressedSip

		string

		No

		The full SIP request/response including headers and bodies

		correlator

		string

		Yes

		Constant across all events on this call

		localIpAddress

		string

		Yes

		Ip address on VNF

		localPort

		string

		Yes

		Port on VNF

		remoteIpAddress

		string

		Yes

		IP address of peer endpoint

		remotePort

		string

		Yes

		Port of peer endpoint

		summarySip

		string

		No

		The SIP Method or Response (‘INVITE’, ‘200 OK’, ‘BYE’, etc)

		vendorVnfNameFields

		vendorVnfNameFields

		Yes

		Vendor, VNF and VfModule names

[bookmark: _Toc485913991] ‘Voice Quality’ Domain Datatypes

[bookmark: _Toc468361297][bookmark: _Toc485913992][bookmark: _Toc468361319]Datatype: endOfCallVqmSummaries

The endOfCallVqmSummaries datatype provides end of call voice quality metrics; it consists of the following fields:

		Field

		Type

		Required?

		Description

		adjacencyName

		string

		Yes

		Adjacency name

		endpointDescription

		string

		Yes

		Enumeration: ‘Caller’, ‘Callee’

		endpointJitter

		number

		No

		Endpoint jitter

		endpointRtpOctetsDiscarded

		number

		No

		Endpoint RTP octets discarded

		endpointRtpOctetsReceived

		number

		No

		Endpoint RTP octets received

		endpointRtpOctetsSent

		number

		No

		Endpoint RTP octets sent

		endpointRtpPacketsDiscarded

		number

		No

		Endpoint RTP packets discarded

		endpointRtpPacketsReceived

		number

		No

		Endpoint RTP packets received

		endpointRtpPacketsSent

		number

		No

		Endpoint RTP packets sent

		localJitter

		number

		No

		Local jitter

		localRtpOctetsDiscarded

		number

		No

		Local RTP octets discarded

		localRtpOctetsReceived

		number

		No

		Local RTP octets received

		localRtpOctetsSent

		number

		No

		Local RTP octets sent

		localRtpPacketsDiscarded

		number

		No

		Local RTP packets discarded

		localRtpPacketsReceived

		number

		No

		Local RTP packets received

		localRtpPacketsSent

		number

		No

		Local RTP packets sent

		mosCqe

		number

		No

		Decimal range from 1 to 5 (1 decimal place)

		packetsLost

		number

		No

		Packets lost

		packetLossPercent

		number

		No

		Calculated percentage packet loss based on endpoint RTP packets lost (as reported in RTCP) and local RTP packets sent. Direction is based on endpoint description (Caller, Callee). Decimal (2 decimal places)

		rFactor

		number

		No

		rFactor from 0 to 100

		roundTripDelay

		number

		No

		Round trip delay in milliseconds

[bookmark: _Toc485913993]Datatype: voiceQualityFields

The voiceQualityFields datatype provides statistics related to customer facing voice products; consists of the following fields:

		Field

		Type

		Required?

		Description

		voiceQualityFieldsVersion

		number

		Yes

		Version of the voiceQualityFields block (currently: 1.0)

		additionalInformation

		field []

		No

		Additional voice quality fields

		calleeSideCodec

		string

		Yes

		Callee codec for the call

		callerSideCodec

		string

		Yes

		Caller codec for the call

		correlator

		string

		Yes

		Constant across all events on this call

		endOfCallVqmSummaries

		endOfCallVqm Summaries

		No

		End of call voice quality metric summaries

		phoneNumber

		string

		No

		Phone number associated with the correlator

		midCallRtcp

		string

		Yes

		Base64 encoding of the binary RTCP data (excluding Eth/IP/UDP headers)

		vendorVnfNameFields

		vendorVnfNameFields

		Yes

		Vendor, VNF and VfModule names

[bookmark: _Toc485913994]Exceptions

0. [bookmark: _Toc485913995]RESTful Web Services Exceptions

RESTful services generate and send exceptions to clients in response to invocation errors. Exceptions send HTTP status codes (specified later in this document for each operation). HTTP status codes may be followed by an optional JSON exception structure described below. Two types of exceptions may be defined: service exceptions and policy exceptions.

		Field Name

		Data Type

		Required?

		Description

		messageId

		xs:string

		Yes

		Unique message identifier of the format ‘ABCnnnn’ where ‘ABC’ is either ‘SVC’ for Service Exceptions or ‘POL’ for Policy Exception.

 Exception numbers may be in the range of 0001 to 9999 where :

· 0001 to 2999 are defined by OMA (see OMA’s Common definitions for RESTful Network APIs for details)

· 3000-9999 are available and undefined

		text

		xs:string

		Yes

		Message text, with replacement variables marked with %n, where n is an index into the list of <variables> elements, starting at 1

		variables

		xs:string [0..unbounded]

		No

		List of zero or more strings that represent the contents of the variables used by the message text.

		url

		xs:anyUrl

		No

		Hyperlink to a detailed error resource (e.g., an HTML page for browser user agents).

[bookmark: _Toc485913996]Service Exceptions

When a service is not able to process a request, and retrying the request with the same information will also result in a failure, and the issue is not related to a service policy issue, then the service will issue a fault using the service exception fault message. Examples of service exceptions include invalid input, lack of availability of a required resource or a processing error.

A service exception uses the letters 'SVC' at the beginning of the message identifier. ‘SVC’ service exceptions used by the VES Event Listener API are defined below.

		MessageId

		Description / Comment

		Text

		Variables

		Parent HTTP Code

		SVC0001

		General service error (see SVC2000)

		<custom error message>

		None

		400

		SVC0002

		Bad parameter

		Invalid input value for message part %1

		%1: message part

		400

		SVC1000

		No server resources

		No server resources available to process the request

		None

		500

		SVC2000

		More elaborate version of SVC0001

		The following service error occurred: %1. Error code is %2.

		%1: human readable description of the error

%2: error code

		400

[bookmark: _Toc485223916]Table 1 - Service Exceptions

[bookmark: _Toc485913997]Policy Exceptions

When a service is not able to complete because the request fails to meet a policy criteria, then the service will issue a fault using the policy exception fault message. To clarify how a policy exception differs from a service exception, consider that all the input to an operation may be valid as meeting the required input for the operation (thus no service exception), but using that input in the execution of the service may result in conditions that require the service not to complete. Examples of policy exceptions include privacy violations, requests not permitted under a governing service agreement or input content not acceptable to the service provider.

A Policy Exception uses the letters 'POL' at the beginning of the message identifier. ‘POL’ policy exceptions used by the VES Event Listener API are defined below.

		MessageId

		Description / Comment

		Text

		Variables

		Parent HTTP Code

		POL0001

		General policy error (see POL2000)

		A policy error occurred.

		None

		401

		POL1009

		User not provisioned for service

		User has not been provisioned for service

		None

		401

		POL1010

		User suspended from service

		User has been suspended from service

		None

		401

		POL2000

		More elaborate version of POL0001

		The following policy error occurred: %1. Error code is %2.

		%1: human readable description of the error

%2: error code

		401

		POL9003

		Message size exceeds limit

		Message content size exceeds the allowable limit

		None

		400

[bookmark: _Toc485223917]Table 2 - Policy Exceptions

[bookmark: _Toc485913998]RESTful Web Services Definition

[bookmark: _Toc270383177][bookmark: _Toc270383580][bookmark: _Toc270383774][bookmark: _Toc485913999]REST Operation Overview

[bookmark: _Toc485914000]REST Operation Summary

		Operation Action

		HTTP

Verb

		Resource URL relative to {ServerRoot}, which is defined in section 3

		publishAnyEvent

		POST

		/eventListener/v{apiVersion}

		publishEventBatch

		POST

		/eventListener/v{apiVersion}/eventBatch

		provideClientThrottlingState

		POST

		/eventListener/v{apiVersion}/clientThrottlingState

[bookmark: _Toc485223918]Table 3 - REST Operation Summary

[bookmark: _Toc485914001]Api Version

apiVersion is used to describe the major version number of the event listener API (which is the same as the major version number of this specification). When this number changes, the implication is: clients of older versions will break in some way, if they try to use the new API without modification (e.g., unmodified v1 clients would not be able to use v2 without error).

[bookmark: _Ref461811030][bookmark: _Toc485914002]Commands Toward Event Source Clients

Note: Vendors are not currently required to implement support for command processing; in addition, command processing may be supported by an App-C interface in future.

[bookmark: _Toc270383181][bookmark: _Toc270383584][bookmark: _Toc270383778][bookmark: _Toc449443127]This specification supports commands from event consumers back toward event source clients. This enables the event consumer (e.g., AT&T event collectors) to command event sources to change their measurement intervals or throttle the information they are sending to the event consumer. Note that commands are sent as part of the synchronous response to events sent by the event source toward the event consumer. This is done so that the event source does not need to host a service to listen for commands from events consumers. The following commands are currently supported:

		Command

		Description

		heartbeatInterval Change

		Commands the event source to change the interval (in seconds) it waits between heartbeat events sent to the VES Event Listener. If ‘0’ is provided, the event source should return to its default heartbeatInterval.

		measurementIntervalChange

		Commands the event source to change its measurementInterval to the number provided (in seconds). If ‘0’ is provided, the event source should return to its default measurementInterval.

		provideThrottlingState

		Commands the event source to invoke the provideThrottlingState operation on the event consumer.

		throttlingSpecification

		Commands the event source to throttle events as specified by the provided eventDomainThrottlingSpecification. This specification identifies the fields to suppress within the domain and even supports identification of subfields to suppress within objects or name-value pair structures. Note that required fields should not be suppressed and may result in errors being thrown by the event consumer back toward the event source when events without the required fields are sent to the event consumer. Other notes for event sources:

· the default throttling state is *off* for all domains

· the throttling state for a domain is altered only by receipt of an eventDomainThrottleSpecification for that domain

· the presence of the optional suppressedFieldNames replaces any existing list of suppressed field names

· if suppressedFieldNames is not provided, then any existing list of suppressed field names shall be discarded

· the presence of the optional suppressedNvPairsList replaces the any existing list of suppressed name-value pairs

· if suppressedNvPairsList is not provided, then any existing list of suppressed name-value pairs shall be discarded

[bookmark: _Toc485914003]Buffering of Events

{ServerRoot} is defined in section 3 of this document, which defines the REST resource URL. One or more FQDNs may be provisioned in an event source when it is instantiated or updated. If an event source is unable to reach any of the provisioned FQDNs, it should buffer the event data specified below, up to a maximum of 1 hour, until a connection can be established and the events can be successfully delivered to the VES Event Listener service.

During such an outage, only the following events should be buffered:

· Faults with eventSeverity of “MINOR”, “MAJOR” or “CRITICAL”

· Syslogs with syslogSev of 0-5

· All MeasurementsForVfScaling events

VNFs acting as event sources should not send syslog events to the VES Event Listener during debug mode (which is controlled via the Netconf management interface), but should store syslog events locally for access, and possible FTP transfer, via the VNF console (e.g., command line interface).

If the internal event source event buffer or local storage should overflow, then the event source should send a Fault event, and should discard events in a first-in, first-out (FIFO) manner (i.e., discard oldest events first).

[bookmark: _Toc485914004]Operation: publishAnyEvent

[bookmark: _Toc449443128][bookmark: _Toc485914005]Functional Behavior

Allows authorized clients to publish any single event to the VES event listener.

· Supports only secure HTTPS (one way SSL) access.

· Uses the HTTP verb POST

· Supports JSON content types

· Provides HTTP response codes as well as Service and Policy error messages

· Allows the event collector to use the HTTP response to command the event source to throttle event messages it may send in the future.

[bookmark: _Toc449443129][bookmark: _Toc485914006]Call Flow

[image:]

[bookmark: _Toc449443157][bookmark: _Toc485223913] Figure 2 - publishAnyEvent Call Flow

[bookmark: _Toc449443130][bookmark: _Toc485914007]Input Parameters

Header Fields (note: all parameter names shall be treated as case-insensitive):

		Parameter

		Data Type

		Required?

		Brief description

		Accept

		string

		No

		Determines the format of the body of the response. Valid values are:

· application/json

		Authorization

		string

		Yes

		The username and password are formed into one string as “username:password”. This string is then Base64 encoded to produce the encoded credential which is communicated in the header after the string “Authorization: Basic “. See examples below. If the Authorization header is missing, then an HTTP 400 Invalid Request message shall be returned. If the string supplied is invalid, then an HTTP 401 Unauthorized message shall be returned.

		Content-length

		integer

		No

		Note that content length is limited to 1Megabyte.

		Content-type

		string

		Yes

		Must be set to one of the following values:

· application/json

Body Fields:

		Parameter

		Data Type

		Required?

		Brief description

		Event

		event

		Yes

		Contains the JSON structure of the common event format.

[bookmark: _Toc449443131]

[bookmark: _Toc485914008]Output Parameters

Header fields:

		Parameter

		Data Type

		Required?

		Brief description

		Content-length

		integer

		No

		Used only in error conditions.

		Content-type

		string

		No

		Used only in error conditions

		Date

		datetime

		Yes

		Date time of the response in GMT

Body Fields (for success responses without a commandList): no content is provided and the header fields are not required.

Body Fields (for success responses with one or more commands from the event collector toward the event source):

		Parameter

		Data Type

		Required?

		Brief description

		[bookmark: _Toc449443132]commandList

		commandList

		No

		Array of commands (e.g., measurement Interval changes and/or what fields to suppress within specified event domains and/or a request to report the state of event throttling by event domain that is currently in force in the event source). Note: for ‘provideThrottlingState’ commands, the client should subsequently provide the throttling state by calling the provideThrottlingState operation.

Body Fields (for error Responses):

		Parameter

		Data Type

		Required?

		Brief description

		requestError

		requestError

		Yes (for errors)

		Used only in error conditions.

[bookmark: _Toc485914009]HTTP Status Codes

		Code

		Reason Phrase

		Description

		202

		Accepted

		The request has been accepted for processing

		400

		Bad Request

		Many possible reasons not specified by the other codes (e.g., missing required parameters or incorrect format). The response body may include a further exception code and text. HTTP 400 errors may be mapped to SVC0001 (general service error), SVC0002 (bad parameter), SVC2000 (general service error with details) or PO9003 (message content size exceeds the allowable limit).

		401

		Unauthorized

		Authentication failed or was not provided. HTTP 401 errors may be mapped to POL0001 (general policy error) or POL2000 (general policy error with details).

		404

		Not Found

		The server has not found anything matching the Request-URI. No indication is given of whether the condition is temporary or permanent.

		405

		Method Not Allowed

		A request was made of a resource using a request method not supported by that resource (e.g., using PUT on a REST resource that only supports POST).

		500

		Internal Server Error

		The server encountered an internal error or timed out; please retry (general catch-all server-side error).HTTP 500 errors may be mapped to SVC1000 (no server resources).

[bookmark: _Toc449443133][bookmark: _Toc485914010]Sample Request and Response

0. [bookmark: _Toc449443134][bookmark: _Toc485914011]Sample Request

		POST /eventListener/v5 HTTPS/1.1

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

content-type: application/json

content-length: 12345
{

 "event": {

 "commonEventHeader": {

 "version": 3.0,

 "domain": "fault",

 "eventName": "Fault_MobileCallRecording_PilotNumberPoolExhaustion",

 "eventId": "ab305d54-85b4-a31b-7db2-fb6b9e546015",

 "sequence": 0,

 "priority": "High",

 "reportingEntityId": "cc305d54-75b4-431b-adb2-eb6b9e541234",

 "reportingEntityName": "EricssonOamVf",

 "sourceId": "de305d54-75b4-431b-adb2-eb6b9e546014",

 "sourceName": "scfx0001vm002cap001",

 "nfNamingCode": "scfx",

 "nfcNamingCode": "ssc",

 "startEpochMicrosec": 1413378172000000,

 "lastEpochMicrosec": 1413378172000000

 },

 "faultFields": {

 "faultFieldsVersion": 2.0,

 "alarmCondition": "PilotNumberPoolExhaustion",

 "eventSourceType": "other",

 "specificProblem": "Calls cannot complete - pilot numbers are unavailable",

 "eventSeverity": "CRITICAL",

 "vfStatus": "Active",

 "alarmAdditionalInformation": [

 {

 "name": "PilotNumberPoolSize",

 "value": "1000"

 }

]

 }

 }

}

0. [bookmark: _Toc485914012][bookmark: _Toc449443135]Sample Success Response #1

For success responses without a provided command list:

		HTTPS/1.1 202 Accepted

0. [bookmark: _Toc485914013]Sample Success Response #2

For success responses with a provided command list:

		HTTPS/1.1 202 Accepted

content-type: application/json

content-length: nnn

date: Sat, 04 Jul 2015 02:03:15 GMT

{

 “commandList”: [

 {

 “commandType”: “throttlingSpecification”,

 “eventDomainThrottleSpecification”: {

 “eventDomain”: “fault”,

 “suppressedFieldNames”: [

 “alarmInterfaceA”,

 “alarmAdditionalInformation”

]

 }

 },

 {

 “commandType”: “throttlingSpecification”,

 “eventDomainThrottleSpecification”: {

 “eventDomain”: “thresholdCrossingAlert”,

 “suppressedFieldNames”: [

 “associatedAlertIdList”,

 “possibleRootCause”

],

 “suppressedNvPairs” {

 “nvPairFieldName”: additionalParameters”,

 “suppressedNvPairNames”: [

 “someCounterName”,

 “someOtherCounterName”

]

 }

 }

 },

 {

 “commandType”: “measurementIntervalChange”,

 “measurementInterval”: 600

 },

 {

 “commandType”: “heartbeatIntervalChange”,

 “heartbeatInterval”: 90

 },

 {

 “commandType”: “provideThrottlingState”

 }

]

}

[bookmark: _Toc270383188][bookmark: _Toc270383591][bookmark: _Toc270383785]

0. [bookmark: _Toc449443136][bookmark: _Toc485914014]Sample Error Responses

3. Sample Policy Exception

		HTTPS/1.1 400 Bad Request

content-type: application/json

content-length: 12345

Date: Thu, 04 Jun 2009 02:51:59 GMT

{

 “requestError”: {

 “policyException”: {

 “messageId”: “POL9003”,

 “text”: “Message content size exceeds the allowable limit”,

 }

 }

}

3. Sample Service Exception

		HTTPS/1.1 400 Bad Request

content-type: application/json

content-length: 12345

Date: Thu, 04 Jun 2009 02:51:59 GMT

{

 “requestError”: {

 “serviceException”: {

 “messageId”: “SVC2000”,

 “text”: “Missing Parameter: %1. Error code is %2”

 “variables”: [

 “severity”,

 “400”

]

 }

 }

}

[bookmark: _Toc449443147][bookmark: _Toc485914015]Operation: publishEventBatch

[bookmark: _Toc449443148][bookmark: _Toc485914016]Functional Behavior

Allows authorized clients to publish any single event to the VES event listener.

· Supports only secure HTTPS (one way SSL) access.

· Uses the HTTP verb POST

· Supports JSON content types

· Provides HTTP response codes as well as Service and Policy error messages

· Allows the event collector to use the HTTP response to command the event source to throttle event messages it may send in the future.

[bookmark: _Toc449443149][bookmark: _Toc485914017]Call Flow

[image:]

[bookmark: _Toc449443159][bookmark: _Toc485223914] Figure 3 – publishEventBatch Call Flow

[bookmark: _Toc449443150][bookmark: _Toc485914018]Input Parameters

Header Fields (note: all parameter names shall be treated as case-insensitive):

		Parameter

		Data Type

		Required?

		Brief description

		Accept

		string

		No

		Determines the format of the body of the response. Valid values are:

· application/json

		Authorization

		string

		Yes

		The username and password are formed into one string as “username:password”. This string is then Base64 encoded to produce the encoded credential which is communicated in the header after the string “Authorization: Basic “. See examples below. If the Authorization header is missing, then an HTTP 400 Invalid Request message shall be returned. If the string supplied is invalid, then an HTTP 401 Unauthorized message shall be returned.

		Content-length

		integer

		No

		Note that content length is limited to 1Megabyte.

		Content-type

		string

		Yes

		Must be set to one of the following values:

· application/json

Body Fields:

		Parameter

		Data Type

		Required?

		Brief description

		eventList

		eventList

		Yes

		Array of events conforming to the common event format.

[bookmark: _Toc485914019][bookmark: _Toc449443151]Output Parameters

Header fields:

		Parameter

		Data Type

		Required?

		Brief description

		Content-length

		integer

		No

		Used only in error conditions.

		Content-type

		string

		No

		Used only in error conditions

		Date

		datetime

		Yes

		Date time of the response in GMT

Body Fields (for success responses without a commandList): no content is provided and the header fields are not required.

Body Fields (for success responses with one or more commands from the event collector toward the event source):

		Parameter

		Data Type

		Required?

		Brief description

		commandList

		commandList

		No

		Array of commands (e.g., measurement Interval changes and/or what fields to suppress within specified event domains and/or a request to report the state of event throttling by event domain that is currently in force in the event source). Note: for ‘provideThrottlingState’ commands, the client should subsequently provide the throttling state by calling the provideThrottlingState operation.

Body Fields (for error Responses):

		Parameter

		Data Type

		Required?

		Brief description

		requestError

		requestError

		Yes (for errors)

		Used only in error conditions.

[bookmark: _Toc485914020]HTTP Status Codes

		Code

		Reason Phrase

		Description

		202

		Accepted

		The request has been accepted for processing

		400

		Bad Request

		Many possible reasons not specified by the other codes (e.g., missing required parameters or incorrect format). The response body may include a further exception code and text. HTTP 400 errors may be mapped to SVC0001 (general service error), SVC0002 (bad parameter), SVC2000 (general service error with details) or PO9003 (message content size exceeds the allowable limit).

		401

		Unauthorized

		Authentication failed or was not provided. HTTP 401 errors may be mapped to POL0001 (general policy error) or POL2000 (general policy error with details).

		404

		Not Found

		The server has not found anything matching the Request-URI. No indication is given of whether the condition is temporary or permanent.

		405

		Method Not Allowed

		A request was made of a resource using a request method not supported by that resource (e.g., using PUT on a REST resource that only supports POST).

		500

		Internal Server Error

		The server encountered an internal error or timed out; please retry (general catch-all server-side error).HTTP 500 errors may be mapped to SVC1000 (no server resources).

[bookmark: _Toc485914021]Sample Request and Response

0. [bookmark: _Toc485914022]Sample Request

		POST /eventListener/v5/eventBatch HTTPS/1.1

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

content-type: application/json

content-length: 12345
{

 "eventList": [

 {

 "commonEventHeader": {

 "version": 3.0,

 "domain": "fault",

 "eventName": "Fault_MobileCallRecording_PilotNumberPoolExhaustion",

 "eventId": "ab305d54-85b4-a31b-7db2-fb6b9e546015",

 "sequence": 0,

 "priority": "High",

 "reportingEntityId": "cc305d54-75b4-431b-adb2-eb6b9e541234",

 "reportingEntityName": "EricssonOamVf",

 "sourceId": "de305d54-75b4-431b-adb2-eb6b9e546014",

 "sourceName": "scfx0001vm002cap001",

 "nfNamingCode": "scfx",

 "nfcNamingCode": "ssc",

 "startEpochMicrosec": 1413378172000000,

 "lastEpochMicrosec": 1413378172000000

 },

 "faultFields": {

 "faultFieldsVersion": 2.0,

 "alarmCondition": "PilotNumberPoolExhaustion",

 "eventSourceType": "other",

 "specificProblem": "Calls cannot complete - pilot numbers are unavailable",

 "eventSeverity": "CRITICAL",

 "vfStatus": "Active",

 "alarmAdditionalInformation": [

 {

 "name": "PilotNumberPoolSize",

 "value": "1000"

 }

]

 }

 },

 {

 "commonEventHeader": {

 "version": 3.0,

 "domain": "fault",

 "eventName": "Fault_MobileCallRecording_RecordingServerUnreachable",

 "eventId": "ab305d54-85b4-a31b-7db2-fb6b9e546025",

 "sequence": 0,

 "priority": "High",

 "reportingEntityId": "cc305d54-75b4-431b-adb2-eb6b9e541234",

 "reportingEntityName": "EricssonOamVf",

 "sourceId": "de305d54-75b4-431b-adb2-eb6b9e546014",

 "sourceName": "scfx0001vm002cap001",

 "nfNamingCode": "scfx",

 "nfcNamingCode": "ssc",

 "startEpochMicrosec": 1413378172000010,

 "lastEpochMicrosec": 1413378172000010

 },

 "faultFields": {

 "faultFieldsVersion": 2.0,

 "alarmCondition": "RecordingServerUnreachable",

 "eventSourceType": "other",

 "specificProblem": "Recording server unreachable",

 "eventSeverity": "CRITICAL",

 "vfStatus": "Active"

 }

 }

]

}

0. [bookmark: _Toc485914023]Sample Success Response #1

For success responses without a provided commandList:

		HTTPS/1.1 202 Accepted

0. [bookmark: _Toc485914024]Sample Success Response #2

For success responses with a provided commandList:

		HTTPS/1.1 202 Accepted

content-type: application/json

content-length: nnn

date: Sat, 04 Jul 2015 02:03:15 GMT

{

 “commandList”: [

 {

 “commandType”: “throttlingSpecification”,

 “eventDomainThrottleSpecification”: {

 “eventDomain”: “fault”,

 “suppressedFieldNames”: [

 “alarmInterfaceA”,

 “alarmAdditionalInformation”

]

 }

 },

 {

 “commandType”: “throttlingSpecification”,

 “eventDomainThrottleSpecification”: {

 “eventDomain”: “thresholdCrossingAlert”,

 “suppressedFieldNames”: [

 “associatedAlertIdList”,

 “possibleRootCause”

],

 “suppressedNvPairs” {

 “nvPairFieldName”: additionalParameters”,

 “suppressedNvPairNames”: [

 “someCounterName”,

 “someOtherCounterName”

]

 }

 }

 },

 {

 “commandType”: “measurementIntervalChange”,

 “measurementInterval”: 600

 },

 {

 “commandType”: “heartbeatIntervalChange”,

 “heartbeatInterval”: 90

 },

 {

 “commandType”: “provideThrottlingState”

 }

]

}

0. [bookmark: _Toc485914025]Sample Error Responses

7. Sample Policy Exception

		HTTPS/1.1 400 Bad Request

content-type: application/json

content-length: 12345

Date: Thu, 04 Jun 2009 02:51:59 GMT

{

 “requestError”: {

 “policyException”: {

 “messageId”: “POL9003”,

 “text”: “Message content size exceeds the allowable limit”,

 }

 }

}

7. Sample Service Exception

		HTTPS/1.1 400 Bad Request

content-type: application/json

content-length: 12345

Date: Thu, 04 Jun 2009 02:51:59 GMT

{

 “requestError”: {

 “serviceException”: {

 “messageId”: “SVC2000”,

 “text”: “Missing Parameter: %1. Error code is %2”

 “variables”: [

 “severity”,

 “400”

]

 }

 }

}

[bookmark: _Toc447094222][bookmark: _Toc451784840][bookmark: _Toc485914026]Operation: provideThrottlingState

[bookmark: _Toc447094223][bookmark: _Toc451784841][bookmark: _Toc485914027]Functional Behavior

Allows authorized event source clients to report the state of event throttling by event domain that is currently in force in the event source.

· Supports only secure HTTPS (one way SSL) access.

· Uses the HTTP verb POST

· Supports application/json content types

· Provides HTTP response codes as well as Service and Policy error messages

[bookmark: _Toc447094224][bookmark: _Toc451784842][bookmark: _Toc485914028]Call Flow

[image:]

[bookmark: _Toc447026810][bookmark: _Toc451784871][bookmark: _Toc485223915] Figure 4 - provideClientThrottlingState Call Flow

[bookmark: _Toc485914029][bookmark: _Toc447094226][bookmark: _Toc451784844]Input Parameters

Header Fields (note: all parameter names shall be treated as case-insensitive):

		Parameter

		Data Type

		Required?

		Brief description

		Accept

		string

		No

		Determines the format of the body of the response. Valid values are:

· application/json

		Authorization

		string

		Yes

		The username and password are formed into one string as “username:password”. This string is then Base64 encoded to produce the encoded credential which is communicated in the header after the string “Authorization: Basic “. See examples below. If the Authorization header is missing, then an HTTP 400 Invalid Request message shall be returned. If the string supplied is invalid, then an HTTP 401 Unauthorized message shall be returned.

		Content-length

		integer

		No

		Note that content length is limited to 1Megabyte.

		Content-type

		string

		Yes

		Must be set to one of the following values:

· application/json

Body Fields:

		Parameter

		Data Type

		Required?

		Brief description

		eventThrottlingState

		eventThrottlingState

		Yes

		Consists of an eventThrottlingMode enumeration which can be ‘normal’ or ‘throttled’ followed by an optional array of eventDomainThrottleSpecification structures

[bookmark: _Toc485914030]Output Parameters

[bookmark: _Toc447094227][bookmark: _Toc451784845]The only output parameters are an HTTP response code and message.

		Parameter

		Data Type

		Required?

		Brief description

		Content-length

		integer

		No

		Used only in error conditions.

		Content-type

		string

		No

		Used only in error conditions.

Body Fields:

		Parameter

		Data Type

		Required?

		Brief description

		requestError

		requestError

		No

		Used only in error conditions.

[bookmark: _Toc485914031]HTTP Status Codes

		Code

		Reason Phrase

		Description

		204

		No Content

		The throttling state update message has been accepted.

		400

		Bad Request

		Many possible reasons not specified by the other codes (e.g., missing required parameters or incorrect format). The response body may include a further exception code and text. HTTP 400 errors may be mapped to SVC0001 (general service error), SVC0002 (bad parameter), SVC2000 (general service error with details) or PO9003 (message content size exceeds the allowable limit).

		401

		Unauthorized

		Authentication failed or was not provided. HTTP 401 errors may be mapped to POL0001 (general policy error) or POL2000 (general policy error with details).

		404

		Not Found

		The server has not found anything matching the Request-URI. No indication is given of whether the condition is temporary or permanent.

		405

		Method Not Allowed

		A request was made of a resource using a request method not supported by that resource (e.g., using PUT on a REST resource that only supports POST).

		409

		Locked

		The request could not be completed due to a conflict with the current state of the resource.

		500

		Internal Server Error

		The server encountered an internal error or timed out; please retry (general catch-all server-side error).HTTP 500 errors may be mapped to SVC1000 (no server resources).

		503

		Service Unavailable

		The server is currently unable to handle the request due to a temporary overloading or maintenance of the server. The implication is that this is a temporary condition which will be alleviated after some delay.

		504

		Gateway Timeout

		The server, while acting as a gateway or proxy, did not receive a timely response from the upstream process.

[bookmark: _Toc447094228][bookmark: _Toc451784846][bookmark: _Toc485914032]Sample Request and Response

0. [bookmark: _Toc447094229][bookmark: _Toc451784847][bookmark: _Toc485914033]Sample Request

		POST /eventListener/v5/clientThrottlingState HTTPS/1.1

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

content-type: application/json

content-length: nnn

accept: application/json

{

 "eventThrottlingState": {

 "eventThrottlingMode": "throttled",

 "eventDomainThrottleSpecificationList": [

 {

 "eventDomain": "fault",

 "suppressedFieldNames": [

 "alarmInterfaceA",

 "alarmAdditionalInformation"

]

 },

 {

 "eventDomain": "thresholdCrossingAlert",

 "suppressedFieldNames": [

 "associatedAlertIdList",

 "possibleRootCause"

],

 "suppressedNvPairsList": [

 {

 "nvPairFieldName": "additionalParameters",

 "suppressedNvPairNames": [

 "someCounterName",

 "someOtherCounterName"

]

 }

]

 }

]

 }

}

0. [bookmark: _Toc447094230][bookmark: _Toc451784848][bookmark: _Toc485914034]Sample Success Response

		HTTPS/1.1 204 No Content

0. [bookmark: _Toc451784849][bookmark: _Toc485914035]Sample Error Responses

10. Sample Policy Exception

		HTTPS/1.1 400 Bad Request

content-type: application/json

content-length: 12345

Date: Thu, 04 Jun 2009 02:51:59 GMT

{

 “requestError”: {

 “policyException”: {

 “messageId”: “POL9003”,

 “text”: “Message content size exceeds the allowable limit”,

 }

 }

}

10. Sample Service Exception

		HTTPS/1.1 400 Bad Request

content-type: application/json

content-length: 12345

Date: Thu, 04 Jun 2009 02:51:59 GMT

{

 “requestError”: {

 “serviceException”: {

 “messageId”: “SVC2000”,

 “text”: “Missing Parameter: %1. Error code is %2”

 “variables”: [

 “severity”,

 “400”

]

 }

 }

}

[bookmark: _Toc485914036]Appendix: Historical Change Log

For the latest changes, see the Change Block just before the Table of Contents.

		Date

		Revision

		Description

		5/22/2015

		0.1

		Initial Release - Draft

		5/29/2015

		0.2

		· Introduction: removed all system names and references to internal AT&T components

· Security: changed ‘event publisher’ to ‘event source’

· Generic Event Format: updated the JSON schema per the below:

· eventHeader: clarified the description of id, made sourceId a required field, changed the datatype of timestamps to timestamp []

· performanceFields: removed overflowFields

· tmestamp: added a description of this datatype

· Exceptions: fixed indentation of sections

· Approvers: updated the list of approvers and added attuids

		6/3/2015

		0.3

		· Updated the security section to use HTTP Basic Authentication per AT&T REST standards. Updated the input parameters and messaging examples to use the new security scheme.

		6/5/2015

		0.4

		· Added otherFields sub section to the defined datatypes

· Added locale field to the eventHeader.

		6/5/2015

		0.5

		· Updated the embedded event format json schema to match the changes made in v0.4

		6/10/2015

		0.6

		· Updated the {ServerRoot} format to contain an optional routing path (for D2 service modules).

		7/7/2015

		0.7

		Common Event Format updates:

· EventHeader: added ‘measurement’ to the ‘domain’ enumeration; changed ‘locale’ to ‘location’ and clarified in the description that this should be a clli code

· Added a MeasurementFields datatype, which required the addition of the following datatypes: codecsInUse, cpuUsage, diskUsage, featuresInUse, memoryUsage

		7/15/2015

		1.0

		· Changed sourceInstance in the eventHeader to be an array of name value pairs

· Changed the performanceFields block to thresholdCrossingAlertFields. Updated the domain field of the eventHeader to match.

		7/23/2015

		v1.1

		Changes to eventHeader data format:

· moved sourceInstance to internalHeaderFields

· moved serviceInstanceId to internalHeaderFields

· moved productId to internalHeaderFields

· moved subscriberId to internalHeaderFields

· moved location to internalHeaderFields

· added the following new fields in internalHeaderFields: policyType, policyName, correlationEventType, correlationType, correlationName, correlationRootEventId

· Changes to faultFields data format:

· moved the eventSourceDeviceDescription to internalFaultFields and renamed it equipmentVendorModel

· moved eventSourceHostname to internalFaultFields

· changed alarmObjectInterface to alarmInterfaceA

· changed alarmRemoteObject to alarmRemoteObjectZ and moved it to internalFaultFields

· changed alarmRemoteObjectInterface to alarmInterfaceZ and moved it to internalFaultFields

· Changes to thresholdCrossingFields data format:

· changed several references from the old ‘performanceFields’ block to the new ‘thresholdCrossingFields’ block

· Other:

· Fixed several comma and colon syntax errors in the JSON schema as detected by a JSON schema syntax checker.

		8/11/2015

		v1.2

		Timestamp format:

· Section 4.18: added a note in the datetime field of the Timestamp datatype specifying the (GMT) format required

· Updated the JSON schema with the same information

Event Header Severity Enumeration:

· Section 4.8: modified the severity enumeration to remove the numbers in parentheses that followed the names. The names were not changed.

· Updated the JSON schema with the same information.

		8/20/2015

		v1.3

		JSON Schema rev’d to v9:

· Alphabetized all fields in the JSON schema

· Fixed the way arrays were specified (JSON schema syntax issue)

Sample Responses:

· 2.1.1.1: alphabetized fields, fixed timestamps array depiction, fixed severity enum value to conform to latest format

· 6.2.6.1: alphabetized fields, fixed timestamps array depiction, fixed severity enum value to conform to latest format

· 6.3.6.1: alphabetized fields, fixed timestamps array depiction, fixed severity enum value to conform to latest format

· 6.4.6.1: alphabetized fields, fixed timestamps array depiction, fixed eventList array depection, fixed severity enum value to conform to latest format

		9/16/2015

		v1.4

		JSON Schema rev’d to v10:

· Fixed an error in the way that the top level “event” object was specified in the v9 json schema. This was discovered when validating examples against the schema using this site: http://json-schema-validator.herokuapp.com/index.jsp.

· Changed the embedded json file in section 4

Sample Responses:

· Removed an extra comma after the timestamp brace in section 6.2.6 and 6.3.6.

		11/11/2015

		v1.5

		Section 4 was the only section changed: JSON Schema rev’d to v11 and Datatype tables were updated to match. Numerous data structure changes were made based on VNF vendor proof of concept feedback. Modified sample requests and responses to match.

		11/12/2015

		v1.6

		· The internalFaultFields were merged into the internalHeaderFields; then the internalFaultFields datatype was deleted.

· Updated the JSON schema to v12.

· Also corrected some background color issues in the sample requests and responses.

		1/18/2016

		v1.7

		· Section 2 changes: updated the sample request to conform with the changes below

· Section 4 datatype changes:

· Changed 'eventHeader' to 'commonEventHeader'

· Moved 'eventSeverity' from the 'commonEventHeader' to 'faultFields'

· Added 'priority' to 'commonEventHeader'

· moved 'vFstatus' to 'faultFields'

· removed 'firstDateTime' and 'lastDateTime' and changed 'firstEpoch' to 'startEpochMicrosec' and changed 'lastEpoch' to 'lastEpochMicrosec'.

· Added 'functionalRole' to the commonEventHeader

· In the commonEventHeader, changed the 'eventDomain' enumeration to remove 'measurements' and add 'measurementsForVfScaling'.

· Changed the 'measurementFields' to 'measurementsForVfScalingFields'

· In the commonEventHeader, changed the following fields:

· 'eventDomain' to 'domain'

· 'eventSequence' to 'sequence'

· 'eventSourceId' to 'sourceId'

· 'eventSounceName' to 'sourceName'

· Updated the JSON schema to v13

· Section 6 changes: updated the input parameters and sample requests to conform to the changes above.

· Section 7: changed the section from Approvers to Contributors.

		1/22/2016

		v1.8

		· Section 4: Added support for ‘mobileFlow’ in the commonEventHeader ‘domain’ enumeration. Added the mobileFlowFields datatype and the gtpPerFlowMetrics datatype referenced by that datatype.

· Section 7: alphabetized the contributors

		2/11/2016

		v1.9

		· Added section 1.3: Naming Standard for Event Types

		2/12/2016

		v2.0

		· Updated request – response examples to reflect the naming standards for event types introduced in v1.9.

· Added a paragraph on use of Avro as a transport in section 1.4

		3/11/2016

		v2.1

		· Updated the embedded JSON schema to v15 to fix a typo in the required fields for the measurementsForVfScalingFields, namely, changed ‘configuredEntites’ to ‘configuredEntities’. Additionally, added an ‘Event Listener’ title block at the bottom of the file with a single required event object.

		3/15/2016

		v2.2

		· Added mobileFlowFields to the event datatype definition in section 4.7 and updated the embedded json schema at the top of section 4 to v16.

		4/26/2016

		v2.3

		· Generic Event Format updates: 1) made ‘priority’ lowercase in the Word doc table for commonEventHeader; 2) added ‘requestError’ data structure to the Word doc and JSON schema (which is now at v17)

		4/27/2016

		v2.4

		· JSON Schema: In the 'event' data structure, changed 'thresholdCrossingFields' to 'thresholdCrossingAlertFields' to product v18 of the schema.

· 'codecsInUse' data structure: changed 'numberInUse' to 'codecUtilization’

		5/26/2016

		v2.5

		· Changed responses from ‘204 No Content’ to ‘202 Accepted’ and added a body to the response that enable AT&T to throttle the events being sent and/or to request the current state of throttling at the event source.

· Added new datatypes to support the above: eventDomainThrottleSpecification, eventDomainThrottleSpecificationList, eventThrottlingState, suppressedNvPairs

· Modifed the commonEventFormat json schema to v19

· Note: for the VendorEventListener: added new licensing language on the back of the title page; added an “attCopyrightNotice” definition at the top of the commonEventFormat_Vendors.json file; also removed all references to internalHeaderFields from this file and from the VendorEventListener spec.

		8/9/2016

		v2.6

		· commonHeader: added a note on the description of sourceId and sourceName in the commonHeader: "use reportingEntity for domains that provide more detailed source info"

· commonHeader: deleted the capacity, measurementsForVfScaling and usage domains in the domain enumeration

· commonHeader: added the following domains to the domain enumeration: licensingKci, scalingKpi, stateChange

· event: removed references to capacityFields, measurementsForVfScalingFields and usageFields and added references to licensingKciFields, scalingKpiFields, stateChangeFields

· licensingKciFields: added this section along with 'additionalMeasurements', which is an optional list of measurementGroup structures. Changed the name of kciFieldsVersion to licensingKciFieldsVersion.

· scalingKpiFields: added this section but changed measurementFieldsVersion to scalingKpiFieldsVersion

· stateChangeFields: added this section along with 'additionalFields', which is an optional list of name-value pairs. Other fields included newState and oldState which were enumerations of the following possible states: 'inService', 'maintenance', 'outOfService'

· sysLogFields: added 'additionalFields', which is an optional list of name-value pairs

· vNicUsage: added two required fields to the vNicUsage data structure: packetsIn and packetsOut

		8/10/2016

		v2.7

		· commonHeader: removed the note on the description of sourceId and sourceName in the commonHeader: "use reportingEntity for domains that provide more detailed source info"

· commonHeader: added measurementsForVfScaling domain back and removed the licensingKci and scalingKpi domains

· event: removed references to licensingKciFields and scalingKpiFields; added references to measurementsForVfScalingFields

· measurementsForVfScalingFields: combined the kciDetail and kpiDetail structures into the measurementsForVfScalingFields structure; referenced the errors structure

· errors: added a new structure to capture the receive and transmit errors for the measurements domain

· removed the following structures: kci, kpi, scalingKpiFields and licensingKciFields

· eventDomainThrottleSpecification: updated the reference to commonEventHeader domain field

· faultFields: removed the numbers from the enumerated strings for eventSourceType

· vNicUsage: made the broadcast, multicast and unicast fields optional

· contributors: updated Alok’s organizational area

		8/12/2016

		v2.8

		· commonHeader: copied the descriptions of sourceId and sourceName from the JSON schema into the word document tables.

· sample request examples: moved the reportingEntityId and reportingEntityNames to the same relative place in all sample requests in the document

· Fixed the sample request shown for publishEventBatch to take an eventList as input.

· Fixed the sample request shown for publishSpecificTopic to put the topic in the URL

· errors: changed the receiveErrors and transmitErrors fields to be datatype number

· codesInUse: changed 'codecUtilization' to 'numberinUse'

· vNicUsage: updated the description of the fields

		8/27/2016

		v2.9

		· Added a note "(currently: 1.1)" in the descriptions of the following fields: commonEventHeader:version, faultFields:faultFieldsVersion, measurementsForVfScalingFields:measurementsForVfScalingFieldsVersion, stateChangeFields:stateChangeFieldsVersion, sysLogFields:syslogFieldsVersion, thresholdCrossingAlertFields:thresholdCrossingFieldsVersion

· stateChangeFields: made stateInterface mandatory

· changed 'enum' to 'enumeration' throughout section 4 of the document (note: this can't be done in the JSON schema).

· measurementsForVfScalingFields: made the following fields optional: conurrentSessions, configuredEntitites, cpuUsageArray, fileSystemUsageArray, memoryConfigured, memoryUsed, requestRate, vNicUsageArray

· measurementsForVfScalingFields: concurrentSessions and configuredEntities: changed the description to support both VMs and VNFs

· measurementsFor VfScalingFields: clarified the descriptions of latencyDistribution, measurementInverval and requestRate

· syslogFields: clarified the descriptions of syslogSData, syslogTag, syslogVer

· thresholdCrossingAlertFields: made the following fields optional and clarified their descriptions: elementType, networkService

· command and commandList: created a list of command structures to enable the event collector to request changes of event sources. Commands consist of a commandType along with optional fields (whose presence is indicated by the commandType). Three command types are currently supported: 'measurementIntevalChange', ‘provideThrottlingState’ and 'throttlingSpecification'.

· eventDomainThrottleSpecificationList: removed this and replaced it with commandList.

· Operations and Sample Requests: modified the operations and samples to support the new command and commandList structures.

		9/1/2016

		v2.10

		· measurementsForVfScaling block: made the following fields optional: latencyDistribution (which is an array of latencyBucketMeasure structures) and meanRequestLatency. Updated the JSON schemas (now v24) to match.

		9/16/2016

		v2.11

		· 1 Introduction: updated the introduction to clarify the usage of eventTypes and the possibility of support for other protocols.

· 6.1 REST Operation Overview: added two new subsections (6.1.2 and 6.1.3) discussing Api Version and Commands Toward Event Source Clients.

· 6.2 publishAnyEvent: fixed the sample to conform to the latest changes

· 6.3 publishSpecificTopic: fixed the sample to conform to the latest changes

· 6.4 publishEventBatch: fixed the sample to conform to the latest changes

· 6.5 provideThrottlingState operation: added the Input Parameters section heading back and fixed the sample request to provide eventThrottlingState (instead of eventThrottlingClientState).

· The remaining bullets describe changes made to section 4 datatypes in alphabetical order:

· command datatype: referenced the new section 6.1.3 which provides an explanation of command state expectations and requirements for a given eventSource:

· commonEventHeader datatype:

· made sourceId and reportingEntityId fields optional (although the internal Generic Event Listener spec indicates, in the field descriptions, that the AT&T enrichment process shall ensure that these fields are populated)

· domain enumeration: changed measurementsForVfScalingFields to measurementsForVfScaling

· eventDomainThrottleSpecificationList: added this array of eventDomainThrottleSpecification stuctures back to the schema because it is used by the provideThrottlingState operation.

· eventList: added eventList back to the vendor version of the commonEventFormat. This is used by the publishEventBatch operation.

· faultFields datatype:

· eventSourceType: made this a string (and provided the previous enumerated values as examples)

· filesystemUsage datatype:

· changed vmIdentifier to filesystemName

· gtpPerFlowMetrics datatype:

· flowActivationTime: changed the format and description to be compliant with RFC 2822.

· flowDeactivationTime: changed the format and description to be compliant with RFC 2822.

· internalHeaderFields datatype:

· Added the following optional fields: firstDateTime, lastDateTime compliant with RFC 2822. Noted in the description that these fields must be supplied for events in the following domains: fault, thresholdCrossingAlerts and measurementsForVfScaling.

· ticketingTimestamp: changed the format and description to be compliant with RFC 2822.

· syslogFields datatype:

· eventSourceType: made this a string (and provided the previous enumerated values, without the numbers, as examples)

· thresholdCrossingAlerts dataypte:

· collectionTimestamp: changed the format and description to be compliant with RFC 2822.

· eventStartTimestamp: changed the format and description to be compliant with RFC 2822.

· added the same eventSeverity field as from the faultFields and made it required

		9/23/2016

		v2.12

		· Section 4 Datatypes: commonEventHeader: made reportingEntityName a required field (note: the JSON schema already had this field as required)

		11/29/2016

		v3.0

		· Introduction:

· Introductory paragraph: changed '...Common Event Header Block followed by zero or more event domain blocks' to '...Common Event Header Block accompanied by zero or more event domain blocks' since the order of the blocks on the wire is not guaranteed.

· Added Section 1.5 Versioning

· Section 4: codec processing:

· CommonEventFormat_Vendors schema only: codesInUse: changed required field from "codecUtilization" which was removed previously to "numberInUse" which is the new field name.

· added ‘codecSelected’ datatype

· added ‘codecSelectedTranscoding’ datatype

· Section 4 and section 6: command processing:

· Added commandListEntry which is an object that references the command object.

· commandList: changed commandList to contain an array of commandListEntry objects.

· Updated sample responses in section 6 where commands are used

· Section 4: commonEventHeader:

· Incremented version to 1.2

· added two new values to the ‘domain’ enumeration: ‘serviceEvents’ and ‘signaling

· Section 4: added endOfCallVqmSummaries datatype

· Section 4: ‘event’: added two fields: ‘serviceEventsFields’ and ‘signalingFields’

· Section 4: added ‘eventInstanceIdentifier’datatype

· Section 4: CommonEventListener only: internalHeaderFields:

· added ‘internalHeaderFieldsVersion’(initially set to 1.1)

· added ‘correlationFirstEpoch’

· added 'closedLoopControlName'

· added 'closedLoopFlag'

· added 'collectorTimeStamp'

· added 'eventTag'

· added ‘tenantName’

· changed 'operationalStatus' to 'inMaint'

· added required fields in the schema to match the word doc: 'equipmentNameCode', 'equipmentType', 'equipmentVendor', 'inMaint', 'provStatus'

· Section 4: added ‘marker’datatype

· Section 4: added ‘midCallRtcp’ datatype

· Section 4: mobileFlowFields:

· added ‘mobileFlowFieldsVersion’(initially set to 1.1)

· Section 4: added ‘serviceEventsFields’datatype

· Section 4: added ‘signalingFields’ datatype

· Section 4: syslogFields:

· Incremented syslogFieldsVersion to 1.2

· added 'syslogPri'

· added 'syslogSev'

· added ‘syslogSdId’

· Section 4: thresholdCrossingAlertFields:

· Incremented thresholdCrossingFieldsVersion to 1.2

· added 'additionalFields' which is an optional list of name value pairs.

· Section 4: schema v26.0 embedded reflecting the above changes.

· Section 6 and Section 2: changed all sample requests to use /v3 in the REST Resource URL.

		12/1/2016

		v3.1

		· Section 6: Updated the call flow diagrams to show ‘v3’

		1/5/2017

		v4.0

		· Combined the Generic Event Listener and Vendor Event Listener into a single API service specification with version 4.0.

· Changed the title to VES (Virtual Function Event Streaming) Listener.

· Changed references to 'generic event' to 'common event' or 'VES event' (depending on the context) throughout the document.

· Used the Legal Disclaimer from the Vendor Event Listener on the back of the title page.

· Section 1: Introduction changes:

· modified wording to reference 'VES'

· removed the 'Audience' section, which described various AT&T groups the documented was intended for

· tweaked the naming standards for event types to clarify the purpose of the naming conventions

· Section 3: Resource Structure: added a sentence describing the FQDN and port used in the resource URL.

· Section 4: Common Event Format changes:

· renamed the section to 'Common Event Format' from 'Generic Event Format'

· reorganized the datatypes into separate sections; sections were defined for each of the domains as well as for common event, common event header and command list processing

· codecSelected datatype: removed this datatype

· codecSelectedTranscoding datatype: removed this datatype

· command datatype: added an enumerated value to commandType: 'heartbeatIntervalChange'

· commonEventHeader: added internalHeaderFields to the commonEventHeader, defined as "Fields (not supplied by event sources) that the VES Event Listener service can use to enrich the event if needed for efficient internal processing. This is an empty object which is intended to be defined separately by each provider implementing the VES Event Listener."

· commonEventHeader: removed two enumerated values, 'serviceEvents' and 'signaling' from the domain enumeration

· commonEventHeader version: incremented the version to 2.0

· endOfCallVqmSummaries datatype: removed this datatype

· event: changed the description of the event datatype to: "fields which constitute the ‘root level’ of the common event format"

· event: removed 'serviceEventFields' and 'signalingFields' from the definition

· event: fixed a misspelling of ‘thresholdCrossingAlertFields’, which was only present in the Word document

· eventInstanceIdentifier datatype: removed this datatype

· internalHeaderFIelds datatype: defined this as follows: "The internalHeaderFields datatype is an undefined object which can contain arbitrarily complex JSON structures. It is intended to be defined separately by each provider implementing the VES Event Listener. The fields in internalHeaderFields are not provided by any event source but instead are added by the VES Event Listener service itself as part of an event enrichment process necessary for efficient internal processing of events received by the VES Event Listener"

· marker datatype: removed this datatype

· measurementsForVfScalingFields datatype: clarified that memoryConfigured and memoryUsed are measured in MB

· midCallRtcp datatype: removed this datatype

· mobileFlowFields datatype: added ‘additionalFields’

· mobileFlowFields datatype: incremented the version number for this field block to 1.2

· serviceEventsFields datatype: removed this datatype

· signalingFields datatype: removed this datatype

· syslogFields: added three fields to the schema that were previously described in the document but not incorporated into the schema: syslogPri, syslogSev, syslogSdId

· syslogFields version: incremented the version to 2.0

· Modified the Common Event Format JSON schema to v27.0 to incorporate the above changes. Also, added the AT&T Copyright Notice from the top of the retired CommonEventFormat_Vendors schema.

· Section 6 and 2: changed all sample requests to use /v4 in the REST Resource URL and call flow diagrams.

· Section 6.1.3: added a row to the table in this section describing the ‘heartbeatIntervalChange’ command.

· Section 6.1.4: added this new section describing expectations for buffering of events should all REST resource URL FQDNs be unreachable.

· Section 6 Sample Requests: modified all sample requests showing the return of a commandList toward the event source to incorporate a heartbeatIntervalChange command; also corrected the spelling in the samples for the measurementIntervalChange command.

· Section 7: Contributors: removed this section

		3/21/2017

		v4.1

		· JSON Schema changes to produce v27.2 (note: an earlier draft version of v27.1 had been distributed to a few individuals):

· To support use of the schema with event batches, removed the following statement near the end of the schema file:

“required”: [“event”]

· Fixed the characters used in some of the quotes

· Fixed some typos in the descriptions.

· Removed the booleans, which were non-essential and which were causing problems across different implementations.

· Section 4.5.7 measurementsForVfScalingFields:

· Fixed the spelling of measurementsForVfScalingFields in the Word document

· Section 2 and 6 sample requests and responses:

· Removed quotes from numbers: sequence, and first/lastEpochMicrosec.

· Fixed all quote characters, some of which were using unusual symbols that wouldn’t validate with the json-schema Python package.

· Section 6.2.6.1, 6.3.6.1, 6.4.6.1 sample requests:

· Added an alarmAdditionalInformation field array to the sample requests.

· Added missing commas.

· Section 6.5.6.1 provideThrottlingState sample requests:

· Fixed the eventDomainThrottleSpecificationList to pass an array of anonymous eventDomainThrottleSpecification objects.

· Added missing quotes.

· Fixed the suppressedNvPairsList to pass an array of anonymous suppressedNvPairs objects.

		4/14/2017

		v5.0

		· Section 1 Introduction:

· Clarified the Introduction (Section 1).

· Changed Section 1.1 title from ‘Terminology’ to 'Event Registration' and referenced the YAML event registration format, defined in a separate document.

· Clarified naming standards for eventName.

· Section 3: updated the REST resource structure

· Section 4.1 command list processing datatypes:

· Got rid of commandListEntry and returned commandList to a simple array of commands.

· Added heartbeatInterval to the command datatype.

· Changed the datatype of measurementInterval from number to integer.

· Section 4.2 common event datatypes:

· event dataType: Added heartbeatFields, sipSignalingFields and voiceQualityFields to the event datatype as optional field blocks

· Added jsonObject which provides a json object schema, name and other meta-information along with one or more object instances.

· Added jsonObjectInstance which provides meta-information about an instance of a jsonObject along with the actual object instance

· Added the ‘key’ datatype

· Added the namedArrayOfFields datatype

· Added vendorVnfNameFields

· Section 4.3 common event header fields:

· Add two new enumerations to domain: ‘sipSignaling’ and ‘voiceQuality’

· Renamed eventType to eventName. Note that the original usage of eventType was formally described in the Introduction back on 2/11/2016 with v1.9.

· Made eventName a required field

· Created a new field called eventType with a meaning that is different than the old eventType.

· Removed functionalRole, which was replaced by the following two fields.

· Added nfNamingCode

· Added nfcNamingCode

· Changed version to 3.0 (major version change) and made it a required field

· Section 4.4: faultFields:

· added one optional field: eventCategory

· made faultFieldsVersion a required field

· changed faultFieldsVersion to 2.0 (major version change)

· fixed a typo on the spelling of alarmInterfaceA

· clarified field descriptions

· Section 4.5: added heartbeatFields datatype which can be used to communicate heartbeatInterval. Note: this change was previously made in v4.2

· Section 4.6 measurements for vf scaling datatypes: changed the following datatypes from number to integer:

· In measurementsForVfScalingFields: concurrentSessions, configuredEntities, numberOfMediaPortsInUse, vnfcScalingMetric

· In codecsInUse: numberInUse

· In featuresInUse: featureUtilization

· Section 4.6.2 modified cpuUsage

· Section 4.6.3 added diskUsage

· Section 4.6.7 measurementsForVfScalingFields:

· fixed the spelling of the measurementsForVfScalingFields in the Word document

· added additionalFields, which is an array of fields (i.e., name-value pairs)

· changed additionalMeasurements to reference the common datatype namedArrayOfFields (instead of referencing measurementGroup)

· added additionalObjects which is an array of jsonObjects described by name, keys and schema

· deleted aggregateCpuUsage

· added diskUsageArray

· deleted measurementGroup (which was replaced by the common datatype: namedArrayOfFields

· added memoryUsageArray

· deleted memoryConfigured and memoryUsed

· deleted errors and vNicUsageArray

· added vNicPerformanceArray

· changed the measurementsForVfScalingVersion to 2.0 (major version change) and made it a required field. Also changed the name of this version field in the Word document to match that in the JSON schema.

· Section 4.6.8 added memoryUsage

· Section 4.6.9 vNicPerformance: replaced vNicUsage and errors with vNicPerformance

· Section 4.7 mobile flow fields changes:

· Made mobileFlowFieldsVersion a required field and changed the mobileFlowFieldsVersion to 2.0 (major version change).

· Changed the datatype of flowActivationTime and flowDeactivationTime in the Word doc to string.

· changed the following datatypes from number to integer: otherEndpointPort, reportingEndpointPort, samplingAlgorithm

· Section 4.8: otherFields:

· Added otherFieldsVersion (set at 1.1)

· Added hashOfNameValuePairArrays

· Added jsonObjects

· Added nameValuePairs

· Section 4.9: added sipSignaling domain datatypes with 4.8.1 sipSignalingFields. sipSignalingFieldsVersion is set at 1.0

· Section 4.10 stateChangeFields: made stateChangeFieldsVersion a required field and set it to 2.0 (major version change).

· Section 4.11 syslogFields:

· Changed the following datatypes from number to integer: syslogFacility, syslogPri

· Changed additionalFields from a field [] to a string which takes name=value pairs delimited by a pipe symbol.

· Changed syslogFieldsVersion to 3.0 (major version change) and made it a required field

· Made syslogSev an enumerated string (previously just a string)

· Section 4.12 thresholdCrossingAlertFields: made thresholdCrossingFieldsVersion a required field and set it to 2.0 (major version change).

· Section 4.132: added voice quality domain datatypes with 4.13.1 endOfCallVqmSummaries and 4.13.2 voiceQualityFields. voiceQualityFieldsVersion is set at 1.0

· JSON Schema: changed the schema to v28.0 and incorporated all of the changes above.

· Additional JSON Schema changes that are part of v28: Note: The following changes are provided relative to API Spec v4.0 (which embedded JSON schema v27.0), but they were also made in an interim release v4.1 (which embedded JSON schema v27.2):

· To support use of the schema with event batches, removed the following statement near the end of the schema file:

“required”: [“event”]

· Fixed the characters used in some of the quotes

· Fixed some typos in the descriptions.

· Removed the booleans, which were non-essential and which were causing problems across different implementations.

· Section 2 and 6 sample requests and responses (also incorporated in interim release 4.1):

· Removed quotes from numbers: sequence, and first/lastEpochMicrosec.

· Fixed all quote characters, some of which were using unusual symbols that wouldn’t validate with the json-schema Python package.

· Section 2 and 6 sample requests and responses (only in v5.0):

· Changed the version numbers in the URL string.

· Added nfNamingCode and nfcNamingCode and removed functionalRole

· Section 6 call flows: updated the version number (only in v5.0).

· Section 6: removed the publishSpecificTopic operation

· Section 6.1.4: Buffering: clarified event source expectations for buffering (only in v5.0).

· Section 6.2.6.1, 6.3.6.1 sample requests (also incorporated in interim release 4.1):

· Added an alarmAdditionalInformation field array to the sample requests.

· Added missing commas.

· Section 6.2.6.3, 6.3.6.3 commandList sample responses (only in v5.0):

· Fixed the commandList sample responses to pass an array of anonymous command objects (rather than an array of commandListEntry objects).

· Fixed the heartbeatIntervalChange commandType to pass a heartbeatInterval value instead of a measurementInterval value.

· Removed quotes from the measurementInterval and heartbeatInterval values since they are numbers.

· Section 6.4.6.1 provideThrottlingState sample requests (also incorporated in interim release 4.1):

· Fixed the eventDomainThrottleSpecificationList to pass an array of anonymous eventDomainThrottleSpecification objects.

· Added missing quotes.

· Fixed the suppressedNvPairsList to pass an array of anonymous suppressedNvPairs objects (also incorporated in interim release 4.1).

		5/22/2017

		v5.1

		· Footers: removed proprietary markings and updated copyrights to 2017

· Section 4.2.3: field:

· Changed the API spec to make ‘name’ and ‘value’ start with lowercase letters. Note: this did not affect the schema, which already had them as lowercase.

· JSON Schema:

· measurementGroup: deleted this object since it was replaced with ‘namedArrayOfFields’ in v28.0 and was no longer being used.

· namedArrayOfFields: Fixed an error in the specification of required fields: from ‘measurements’ to ‘arrayOfFields’.

· Changed the version of the JSON schema to 28.1

		6/14/2017

		v5.2

		· JSON Schema: created v28.2 by changing the field descriptions in the memoryUsage object to refer to ‘kibibytes’ instead of ‘kilobytes’. There were no changes to the 28.1 structure.

· Word Document: measurementsForVfScaling Domain: memoryUsage object: changed the field descriptions in this object to refer to ‘kibibytes’ instead of ‘kilobytes’. There were no changes to the memoryUsage structure.

· Reorganized the Word document to group the data structures in Section 4 into three broad categories to better align with the VNF Guidelines documentation that has been prepared for vendors:

· Common Event Datatypes:

· Command List Processing Datatypes

· Common Event Datatypes

· Common Event Header Datatypes

· Technology Independent Datatypes:

· ‘Fault Domain Datatypes

· ‘Heartbeat’ Domain Datatypes

· ‘Measurements For Vf Scaling’ Domain Datatypes

· ‘Other’ Domain Datatypes

· ‘State Change’ Domain Datatypes

· ‘Syslog’ Domain Datatypes

· ‘Threshold Crossing Alert’ Domain Datatypes

· Technology Specify Datatypes:

· ‘Mobile Flow’ Domain Datatypes

· ‘Sip Signaling’ Domain Datatypes

· ‘Voice Quality’ Domain Datatypes

· Section 6.1.3: Commands Toward Event Source Clients: Added a statement: “Note: Vendors are not currently required to implement support for command processing; in addition, command processing may be supported by an App-C interface in future.”

		6/22/2017

		v5.3

		· JSON Schema: created v28.3 by correcting an error in the sipSignalingFields: changed vnfVendorNameFields to vendorVnfNameFields. Embedded the new schema at the top of section 4.

[bookmark: _Detailed_XML_Schema][bookmark: _Detailed_XML_Schema_1][bookmark: _Details_of_response]

image3.png

image4.emf

CommonEventForma

t_28.4.json

CommonEventFormat_28.4.json

{
 "$schema": "http://json-schema.org/draft-04/schema#",
	"title": "VES Event Listener",
	"type": "object",
	"properties": {
 "event": {"$ref": "#/definitions/event"},
		"eventList": {"$ref": "#/definitions/eventList"}
 },
	
	"definitions": {
 "schemaHeaderBlock": {
 "description": "schema date, version, author and associated API",
 "type": "object",
 "properties": {
 "associatedApi": {
 "description": "VES Event Listener",
 "type": "string"
 },
 "lastUpdatedBy": {
 "description": "re2947",
 "type": "string"
 },
 "schemaDate": {
 "description": "September 12, 2017",
 "type": "string"
 },
 "schemaVersion": {
 "description": "28.4",
 "type": "number"
 }
 }
 },
	 "attCopyrightNotice": {
			"description": "Copyright (c) <2017>, AT&T Intellectual Property. All other rights reserved",
			"type": "object",
			"properties": {
				"useAndRedistribution": {
					"description": "Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:",
					"type": "string"
				},
				"condition1": {
					"description": "Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.",
					"type": "string"
				},
				"condition2": {
					"description": "Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.",
					"type": "string"
				},
				"condition3": {
					"description": "All advertising materials mentioning features or use of this software must display the following acknowledgement: This product includes software developed by the AT&T.",
					"type": "string"
				},
				"condition4": {
					"description": "Neither the name of AT&T nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.",
					"type": "string"
				},
				"disclaimerLine1": {
					"description": "THIS SOFTWARE IS PROVIDED BY AT&T INTELLECTUAL PROPERTY AS IS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS",
					"type": "string"
				},
				"disclaimerLine2": {
					"description": "FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL AT&T INTELLECTUAL PROPERTY BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES",
					"type": "string"
				},
				"disclaimerLine3": {
					"description": "(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,",
					"type": "string"
				},
				"disclaimerLine4": {
					"description": "WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.",
					"type": "string"
				}
			}
		},
 		"codecsInUse": {
			"description": "number of times an identified codec was used over the measurementInterval",
			"type": "object",
			"properties": {
				"codecIdentifier": { "type": "string" },
				"numberInUse": { "type": "integer" }
			},
			"required": ["codecIdentifier", "numberInUse"]
		},
 		"command": {
			"description": "command from an event collector toward an event source",
			"type": "object",
			"properties": {
				"commandType": {
					"type": "string",
					"enum": [
						"heartbeatIntervalChange",
						"measurementIntervalChange",
						"provideThrottlingState",
						"throttlingSpecification"
]
				},
				"eventDomainThrottleSpecification": { "$ref": "#/definitions/eventDomainThrottleSpecification" },
				"heartbeatInterval": { "type": "integer" },
				"measurementInterval": { "type": "integer" }
			},
			"required": ["commandType"]
		},
		"commandList": {
			"description": "array of commands from an event collector toward an event source",
			"type": "array",
			"items": {
			 "$ref": "#/definitions/command"
			},
			"minItems": 0
		},
		"commonEventHeader": {
			"description": "fields common to all events",
			"type": "object",
			"properties": {
				"domain": {
					"description": "the eventing domain associated with the event",
					"type": "string",
					"enum": [
						"fault",
						"heartbeat",
						"measurementsForVfScaling",
						"mobileFlow",
						"other",
						"sipSignaling",
						"stateChange",
						"syslog",
						"thresholdCrossingAlert",
						"voiceQuality"
]
				},
				"eventId": {
					"description": "event key that is unique to the event source",
					"type": "string"
				},
				"eventName": {
					"description": "unique event name",
					"type": "string"
				},
				"eventType": {
					"description": "for example - applicationVnf, guestOS, hostOS, platform",
					"type": "string"
				},
				"internalHeaderFields": { "$ref": "#/definitions/internalHeaderFields" },
				"lastEpochMicrosec": {
					"description": "the latest unix time aka epoch time associated with the event from any component--as microseconds elapsed since 1 Jan 1970 not including leap seconds",
					"type": "number"
				},
				"nfcNamingCode": {
					"description": "3 character network function component type, aligned with vfc naming standards",
					"type": "string"
				},
				"nfNamingCode": {
					"description": "4 character network function type, aligned with vnf naming standards",
					"type": "string"
				},
				"priority": {
					"description": "processing priority",
					"type": "string",
					"enum": [
						"High",
						"Medium",
						"Normal",
						"Low"
]
				},
				"reportingEntityId": {
					"description": "UUID identifying the entity reporting the event, for example an OAM VM; must be populated by the ATT enrichment process",
					"type": "string"
				},
				"reportingEntityName": {
					"description": "name of the entity reporting the event, for example, an EMS name; may be the same as sourceName",
					"type": "string"
				},
				"sequence": {
					"description": "ordering of events communicated by an event source instance or 0 if not needed",
					"type": "integer"
				},
				"sourceId": {
					"description": "UUID identifying the entity experiencing the event issue; must be populated by the ATT enrichment process",
					"type": "string"
				},
				"sourceName": {
					"description": "name of the entity experiencing the event issue",
					"type": "string"
				},
				"startEpochMicrosec": {
					"description": "the earliest unix time aka epoch time associated with the event from any component--as microseconds elapsed since 1 Jan 1970 not including leap seconds",
					"type": "number"
				},
				"version": {
					"description": "version of the event header",
					"type": "number"
				}
			},
			"required": ["domain", "eventId", "eventName", "lastEpochMicrosec",
						 "priority", "reportingEntityName", "sequence", "sourceName",
			 "startEpochMicrosec", "version"]
		},
		"counter": {
			"description": "performance counter",
			"type": "object",
			"properties": {
				"criticality": { "type": "string", "enum": ["CRIT", "MAJ"] },
				"name": { "type": "string" },
				"thresholdCrossed": { "type": "string" },
				"value": { "type": "string"}
			},
			"required": ["criticality", "name", "thresholdCrossed", "value"]
		},
		"cpuUsage": {
			"description": "usage of an identified CPU",
			"type": "object",
			"properties": {
				"cpuIdentifier": {
 "description": "cpu identifer",
 "type": "string"
 },
				"cpuIdle": {
 "description": "percentage of CPU time spent in the idle task",
 "type": "number"
 },
				"cpuUsageInterrupt": {
 "description": "percentage of time spent servicing interrupts",
 "type": "number"
 },
				"cpuUsageNice": {
 "description": "percentage of time spent running user space processes that have been niced",
 "type": "number"
 },
				"cpuUsageSoftIrq": {
 "description": "percentage of time spent handling soft irq interrupts",
 "type": "number"
 },
				"cpuUsageSteal": {
 "description": "percentage of time spent in involuntary wait which is neither user, system or idle time and is effectively time that went missing",
 "type": "number"
 },
				"cpuUsageSystem": {
 "description": "percentage of time spent on system tasks running the kernel",
 "type": "number"
 },
				"cpuUsageUser": {
 "description": "percentage of time spent running un-niced user space processes",
 "type": "number"
 },
				"cpuWait": {
 "description": "percentage of CPU time spent waiting for I/O operations to complete",
 "type": "number"
 },
				"percentUsage": {
 "description": "aggregate cpu usage of the virtual machine on which the VNFC reporting the event is running",
 "type": "number"
 }
			},
			"required": ["cpuIdentifier", "percentUsage"]
		},
		"diskUsage": {
			"description": "usage of an identified disk",
			"type": "object",
			"properties": {
				"diskIdentifier": {
 "description": "disk identifier",
 "type": "string"
 },
 "diskIoTimeAvg": {
 "description": "milliseconds spent doing input/output operations over 1 sec; treat this metric as a device load percentage where 1000ms matches 100% load; provide the average over the measurement interval",
 "type": "number"
 },
 "diskIoTimeLast": {
 "description": "milliseconds spent doing input/output operations over 1 sec; treat this metric as a device load percentage where 1000ms matches 100% load; provide the last value measurement within the measurement interval",
 "type": "number"
 },
 "diskIoTimeMax": {
 "description": "milliseconds spent doing input/output operations over 1 sec; treat this metric as a device load percentage where 1000ms matches 100% load; provide the maximum value measurement within the measurement interval",
 "type": "number"
 },
 "diskIoTimeMin": {
 "description": "milliseconds spent doing input/output operations over 1 sec; treat this metric as a device load percentage where 1000ms matches 100% load; provide the minimum value measurement within the measurement interval",
 "type": "number"
 },
 "diskMergedReadAvg": {
 "description": "number of logical read operations that were merged into physical read operations, e.g., two logical reads were served by one physical disk access; provide the average measurement within the measurement interval",
 "type": "number"
 },
 "diskMergedReadLast": {
 "description": "number of logical read operations that were merged into physical read operations, e.g., two logical reads were served by one physical disk access; provide the last value measurement within the measurement interval",
 "type": "number"
 },
 "diskMergedReadMax": {
 "description": "number of logical read operations that were merged into physical read operations, e.g., two logical reads were served by one physical disk access; provide the maximum value measurement within the measurement interval",
 "type": "number"
 },
 "diskMergedReadMin": {
 "description": "number of logical read operations that were merged into physical read operations, e.g., two logical reads were served by one physical disk access; provide the minimum value measurement within the measurement interval",
 "type": "number"
 },
 "diskMergedWriteAvg": {
 "description": "number of logical write operations that were merged into physical write operations, e.g., two logical writes were served by one physical disk access; provide the average measurement within the measurement interval",
 "type": "number"
 },
 "diskMergedWriteLast": {
 "description": "number of logical write operations that were merged into physical write operations, e.g., two logical writes were served by one physical disk access; provide the last value measurement within the measurement interval",
 "type": "number"
 },
 "diskMergedWriteMax": {
 "description": "number of logical write operations that were merged into physical write operations, e.g., two logical writes were served by one physical disk access; provide the maximum value measurement within the measurement interval",
 "type": "number"
 },
 "diskMergedWriteMin": {
 "description": "number of logical write operations that were merged into physical write operations, e.g., two logical writes were served by one physical disk access; provide the minimum value measurement within the measurement interval",
 "type": "number"
 },
 "diskOctetsReadAvg": {
 "description": "number of octets per second read from a disk or partition; provide the average measurement within the measurement interval",
 "type": "number"
 },
 "diskOctetsReadLast": {
 "description": "number of octets per second read from a disk or partition; provide the last measurement within the measurement interval",
 "type": "number"
 },
 "diskOctetsReadMax": {
 "description": "number of octets per second read from a disk or partition; provide the maximum measurement within the measurement interval",
 "type": "number"
 },
 "diskOctetsReadMin": {
 "description": "number of octets per second read from a disk or partition; provide the minimum measurement within the measurement interval",
 "type": "number"
 },
 "diskOctetsWriteAvg": {
 "description": "number of octets per second written to a disk or partition; provide the average measurement within the measurement interval",
 "type": "number"
 },
 "diskOctetsWriteLast": {
 "description": "number of octets per second written to a disk or partition; provide the last measurement within the measurement interval",
 "type": "number"
 },
 "diskOctetsWriteMax": {
 "description": "number of octets per second written to a disk or partition; provide the maximum measurement within the measurement interval",
 "type": "number"
 },
 "diskOctetsWriteMin": {
 "description": "number of octets per second written to a disk or partition; provide the minimum measurement within the measurement interval",
 "type": "number"
 },
 "diskOpsReadAvg": {
 "description": "number of read operations per second issued to the disk; provide the average measurement within the measurement interval",
 "type": "number"
 },
 "diskOpsReadLast": {
 "description": "number of read operations per second issued to the disk; provide the last measurement within the measurement interval",
 "type": "number"
 },
 "diskOpsReadMax": {
 "description": "number of read operations per second issued to the disk; provide the maximum measurement within the measurement interval",
 "type": "number"
 },
 "diskOpsReadMin": {
 "description": "number of read operations per second issued to the disk; provide the minimum measurement within the measurement interval",
 "type": "number"
 },
 "diskOpsWriteAvg": {
 "description": "number of write operations per second issued to the disk; provide the average measurement within the measurement interval",
 "type": "number"
 },
 "diskOpsWriteLast": {
 "description": "number of write operations per second issued to the disk; provide the last measurement within the measurement interval",
 "type": "number"
 },
 "diskOpsWriteMax": {
 "description": "number of write operations per second issued to the disk; provide the maximum measurement within the measurement interval",
 "type": "number"
 },
 "diskOpsWriteMin": {
 "description": "number of write operations per second issued to the disk; provide the minimum measurement within the measurement interval",
 "type": "number"
 },
 "diskPendingOperationsAvg": {
 "description": "queue size of pending I/O operations per second; provide the average measurement within the measurement interval",
 "type": "number"
 },
 "diskPendingOperationsLast": {
 "description": "queue size of pending I/O operations per second; provide the last measurement within the measurement interval",
 "type": "number"
 },
 "diskPendingOperationsMax": {
 "description": "queue size of pending I/O operations per second; provide the maximum measurement within the measurement interval",
 "type": "number"
 },
 "diskPendingOperationsMin": {
 "description": "queue size of pending I/O operations per second; provide the minimum measurement within the measurement interval",
 "type": "number"
 },
 "diskTimeReadAvg": {
 "description": "milliseconds a read operation took to complete; provide the average measurement within the measurement interval",
 "type": "number"
 },
 "diskTimeReadLast": {
 "description": "milliseconds a read operation took to complete; provide the last measurement within the measurement interval",
 "type": "number"
 },
 "diskTimeReadMax": {
 "description": "milliseconds a read operation took to complete; provide the maximum measurement within the measurement interval",
 "type": "number"
 },
 "diskTimeReadMin": {
 "description": "milliseconds a read operation took to complete; provide the minimum measurement within the measurement interval",
 "type": "number"
 },
 "diskTimeWriteAvg": {
 "description": "milliseconds a write operation took to complete; provide the average measurement within the measurement interval",
 "type": "number"
 },
 "diskTimeWriteLast": {
 "description": "milliseconds a write operation took to complete; provide the last measurement within the measurement interval",
 "type": "number"
 },
 "diskTimeWriteMax": {
 "description": "milliseconds a write operation took to complete; provide the maximum measurement within the measurement interval",
 "type": "number"
 },
 "diskTimeWriteMin": {
 "description": "milliseconds a write operation took to complete; provide the minimum measurement within the measurement interval",
 "type": "number"
 }
			},
			"required": ["diskIdentifier"]
		},
 "endOfCallVqmSummaries": {
 "description": "provides end of call voice quality metrics",
			"type": "object",
			"properties": {
 "adjacencyName": {
 "description": " adjacency name",
 "type": "string"
 },
 "endpointDescription": {
 "description": "Either Caller or Callee",
 "type": "string",
 "enum": ["Caller", "Callee"]
 },
 "endpointJitter": {
 "description": "",
 "type": "number"
 },
 "endpointRtpOctetsDiscarded": {
 "description": "",
 "type": "number"
 },
 "endpointRtpOctetsReceived": {
 "description": "",
 "type": "number"
 },
 "endpointRtpOctetsSent": {
 "description": "",
 "type": "number"
 },
 "endpointRtpPacketsDiscarded": {
 "description": "",
 "type": "number"
 },
 "endpointRtpPacketsReceived": {
 "description": "",
 "type": "number"
 },
 "endpointRtpPacketsSent": {
 "description": "",
 "type": "number"
 },
 "localJitter": {
 "description": "",
 "type": "number"
 },
 "localRtpOctetsDiscarded": {
 "description": "",
 "type": "number"
 },
 "localRtpOctetsReceived": {
 "description": "",
 "type": "number"
 },
 "localRtpOctetsSent": {
 "description": "",
 "type": "number"
 },
 "localRtpPacketsDiscarded": {
 "description": "",
 "type": "number"
 },
 "localRtpPacketsReceived": {
 "description": "",
 "type": "number"
 },
 "localRtpPacketsSent": {
 "description": "",
 "type": "number"
 },
 "mosCqe": {
 "description": "1-5 1dp",
 "type": "number"
 },
 "packetsLost": {
 "description": "",
 "type": "number"
 },
 "packetLossPercent": {
 "description" : "Calculated percentage packet loss based on Endpoint RTP packets lost (as reported in RTCP) and Local RTP packets sent. Direction is based on Endpoint description (Caller, Callee). Decimal (2 dp)",
 "type": "number"
 },
 "rFactor": {
 "description": "0-100",
 "type": "number"
 },
 "roundTripDelay": {
 "description": "millisecs",
 "type": "number"
 }
 },
 "required": ["adjacencyName", "endpointDescription"]
 },
 "event": {
 "description": "the root level of the common event format",
	 "type": "object",
	 "properties": {
		 "commonEventHeader": { "$ref": "#/definitions/commonEventHeader" },
		 "faultFields": { "$ref": "#/definitions/faultFields" },
		 "heartbeatFields": { "$ref": "#/definitions/heartbeatFields" },
		 "measurementsForVfScalingFields": { "$ref": "#/definitions/measurementsForVfScalingFields" },
				"mobileFlowFields": { "$ref": "#/definitions/mobileFlowFields" },
		 "otherFields": { "$ref": "#/definitions/otherFields" },
		 "sipSignalingFields": { "$ref": "#/definitions/sipSignalingFields" },
		 "stateChangeFields": { "$ref": "#/definitions/stateChangeFields" },
				"syslogFields": { "$ref": "#/definitions/syslogFields" },
		 "thresholdCrossingAlertFields": { "$ref": "#/definitions/thresholdCrossingAlertFields" },
		 "voiceQualityFields": { "$ref": "#/definitions/voiceQualityFields" }
 	},
 "required": ["commonEventHeader"]
 },
		"eventDomainThrottleSpecification": {
			"description": "specification of what information to suppress within an event domain",
			"type": "object",
			"properties": {
		 "eventDomain": {
			 "description": "Event domain enum from the commonEventHeader domain field",
			 "type": "string"
		 },
		 "suppressedFieldNames": {
			 "description": "List of optional field names in the event block that should not be sent to the Event Listener",
			 "type": "array",
					"items": {
					 "type": "string"
					}
		 },
				"suppressedNvPairsList": {
					"description": "Optional list of specific NvPairsNames to suppress within a given Name-Value Field",
			 "type": "array",
					"items": {
					 "$ref": "#/definitions/suppressedNvPairs"
					}
		 }
			},
			"required": ["eventDomain"]
		},
		"eventDomainThrottleSpecificationList": {
			"description": "array of eventDomainThrottleSpecifications",
			"type": "array",
			"items": {
			 "$ref": "#/definitions/eventDomainThrottleSpecification"
			},
			"minItems": 0
		},
		"eventList": {
			"description": "array of events",
			"type": "array",
			"items": {
				"$ref": "#/definitions/event"
			}
		},
		"eventThrottlingState": {
			"description": "reports the throttling in force at the event source",
			"type": "object",
			"properties": {
		 "eventThrottlingMode": {
			 "description": "Mode the event manager is in",
			 "type": "string",
					"enum": [
						"normal",
						"throttled"
]
		 },
				"eventDomainThrottleSpecificationList": { "$ref": "#/definitions/eventDomainThrottleSpecificationList" }
			},
			"required": ["eventThrottlingMode"]
		},
		"faultFields": {
			"description": "fields specific to fault events",
			"type": "object",
			"properties": {
				"alarmAdditionalInformation": {
					"description": "additional alarm information",
					"type": "array",
					"items": {
						"$ref": "#/definitions/field"
					}
				},
				"alarmCondition": {
					"description": "alarm condition reported by the device",
					"type": "string"
				},
				"alarmInterfaceA": {
					"description": "card, port, channel or interface name of the device generating the alarm",
					"type": "string"
				},
				"eventCategory": {
					"description": "Event category, for example: license, link, routing, security, signaling",
					"type": "string"
				},
				"eventSeverity": {
					"description": "event severity",
					"type": "string",
					"enum": [
						"CRITICAL",
						"MAJOR",
						"MINOR",
						"WARNING",
						"NORMAL"
]
				},
				"eventSourceType": {
					"description": "type of event source; examples: card, host, other, port, portThreshold, router, slotThreshold, switch, virtualMachine, virtualNetworkFunction",
					"type": "string"
				},
				"faultFieldsVersion": {
					"description": "version of the faultFields block",
					"type": "number"
				},
				"specificProblem": {
					"description": "short description of the alarm or problem",
					"type": "string"
				},
				"vfStatus": {
					"description": "virtual function status enumeration",
					"type": "string",
					"enum": [
						"Active",
						"Idle",
						"Preparing to terminate",
						"Ready to terminate",
						"Requesting termination"
]
				}
			},
			"required": ["alarmCondition", "eventSeverity", "eventSourceType",
			 "faultFieldsVersion", "specificProblem", "vfStatus"]
		},
		"featuresInUse": {
			"description": "number of times an identified feature was used over the measurementInterval",
			"type": "object",
			"properties": {
				"featureIdentifier": { "type": "string" },
				"featureUtilization": { "type": "integer" }
			},
			"required": ["featureIdentifier", "featureUtilization"]
		},
		"field": {
			"description": "name value pair",
			"type": "object",
			"properties": {
				"name": { "type": "string" },
				"value": { "type": "string" }
			},
			"required": ["name", "value"]
		},
		"filesystemUsage": {
			"description": "disk usage of an identified virtual machine in gigabytes and/or gigabytes per second",
			"type": "object",
			"properties": {
				"blockConfigured": { "type": "number" },
				"blockIops": { "type": "number" },
				"blockUsed": { "type": "number" },
				"ephemeralConfigured": { "type": "number" },
				"ephemeralIops": { "type": "number" },
				"ephemeralUsed": { "type": "number" },
				"filesystemName": { "type": "string" }
			},
			"required": ["blockConfigured", "blockIops", "blockUsed", "ephemeralConfigured",
			 "ephemeralIops", "ephemeralUsed", "filesystemName"]
		},
		"gtpPerFlowMetrics": {
			"description": "Mobility GTP Protocol per flow metrics",
			"type": "object",
			"properties": {
				"avgBitErrorRate": {
					"description": "average bit error rate",
					"type": "number"
				},
				"avgPacketDelayVariation": {
					"description": "Average packet delay variation or jitter in milliseconds for received packets: Average difference between the packet timestamp and time received for all pairs of consecutive packets",
					"type": "number"
				},
				"avgPacketLatency": {
					"description": "average delivery latency",
					"type": "number"
				},
				"avgReceiveThroughput": {
					"description": "average receive throughput",
					"type": "number"
				},
				"avgTransmitThroughput": {
					"description": "average transmit throughput",
					"type": "number"
				},
				"durConnectionFailedStatus": {
					"description": "duration of failed state in milliseconds, computed as the cumulative time between a failed echo request and the next following successful error request, over this reporting interval",
					"type": "number"
				},
				"durTunnelFailedStatus": {
					"description": "Duration of errored state, computed as the cumulative time between a tunnel error indicator and the next following non-errored indicator, over this reporting interval",
					"type": "number"
				},
				"flowActivatedBy": {
					"description": "Endpoint activating the flow",
					"type": "string"
				},
				"flowActivationEpoch": {
					"description": "Time the connection is activated in the flow (connection) being reported on, or transmission time of the first packet if activation time is not available",
					"type": "number"
				},
				"flowActivationMicrosec": {
					"description": "Integer microseconds for the start of the flow connection",
					"type": "number"
				},
				"flowActivationTime": {
					"description": "time the connection is activated in the flow being reported on, or transmission time of the first packet if activation time is not available; with RFC 2822 compliant format: Sat, 13 Mar 2010 11:29:05 -0800",
					"type": "string"
				},
				"flowDeactivatedBy": {
					"description": "Endpoint deactivating the flow",
					"type": "string"
				},
				"flowDeactivationEpoch": {
					"description": "Time for the start of the flow connection, in integer UTC epoch time aka UNIX time",
					"type": "number"
				},
				"flowDeactivationMicrosec": {
					"description": "Integer microseconds for the start of the flow connection",
					"type": "number"
				},
				"flowDeactivationTime": {
					"description": "Transmission time of the first packet in the flow connection being reported on; with RFC 2822 compliant format: Sat, 13 Mar 2010 11:29:05 -0800",
					"type": "string"
				},
				"flowStatus": {
					"description": "connection status at reporting time as a working / inactive / failed indicator value",
					"type": "string"
				},
				"gtpConnectionStatus": {
					"description": "Current connection state at reporting time",
					"type": "string"
				},
				"gtpTunnelStatus": {
					"description": "Current tunnel state at reporting time",
					"type": "string"
				},
				"ipTosCountList": {
					"description": "array of key: value pairs where the keys are drawn from the IP Type-of-Service identifiers which range from '0' to '255', and the values are the count of packets that had those ToS identifiers in the flow",
 "type": "array",
 "items": {
						"type": "array",
						"items": [
							{ "type": "string" },
							{ "type": "number" }
]
					}
				},
				"ipTosList": {
					"description": "Array of unique IP Type-of-Service values observed in the flow where values range from '0' to '255'",
					"type": "array",
					"items": {
						"type": "string"
					}
				},
				"largePacketRtt": {
					"description": "large packet round trip time",
					"type": "number"
				},
				"largePacketThreshold": {
					"description": "large packet threshold being applied",
					"type": "number"
				},
				"maxPacketDelayVariation": {
					"description": "Maximum packet delay variation or jitter in milliseconds for received packets: Maximum of the difference between the packet timestamp and time received for all pairs of consecutive packets",
					"type": "number"
				},
				"maxReceiveBitRate": {
					"description": "maximum receive bit rate",
					"type": "number"
				},
				"maxTransmitBitRate": {
					"description": "maximum transmit bit rate",
					"type": "number"
				},
				"mobileQciCosCountList": {
					"description": "array of key: value pairs where the keys are drawn from LTE QCI or UMTS class of service strings, and the values are the count of packets that had those strings in the flow",
 "type": "array",
 "items": {
						"type": "array",
						"items": [
							{ "type": "string" },
							{ "type": "number" }
]
					}
				},
				"mobileQciCosList": {
					"description": "Array of unique LTE QCI or UMTS class-of-service values observed in the flow",
					"type": "array",
					"items": {
						"type": "string"
					}
				},
				"numActivationFailures": {
					"description": "Number of failed activation requests, as observed by the reporting node",
					"type": "number"
				},
				"numBitErrors": {
					"description": "number of errored bits",
					"type": "number"
				},
				"numBytesReceived": {
					"description": "number of bytes received, including retransmissions",
					"type": "number"
				},
				"numBytesTransmitted": {
					"description": "number of bytes transmitted, including retransmissions",
					"type": "number"
				},
				"numDroppedPackets": {
					"description": "number of received packets dropped due to errors per virtual interface",
					"type": "number"
				},
				"numGtpEchoFailures": {
					"description": "Number of Echo request path failures where failed paths are defined in 3GPP TS 29.281 sec 7.2.1 and 3GPP TS 29.060 sec. 11.2",
					"type": "number"
				},
				"numGtpTunnelErrors": {
					"description": "Number of tunnel error indications where errors are defined in 3GPP TS 29.281 sec 7.3.1 and 3GPP TS 29.060 sec. 11.1",
					"type": "number"
				},
				"numHttpErrors": {
					"description": "Http error count",
					"type": "number"
				},
				"numL7BytesReceived": {
					"description": "number of tunneled layer 7 bytes received, including retransmissions",
					"type": "number"
				},
				"numL7BytesTransmitted": {
					"description": "number of tunneled layer 7 bytes transmitted, excluding retransmissions",
					"type": "number"
				},
				"numLostPackets": {
					"description": "number of lost packets",
					"type": "number"
				},
				"numOutOfOrderPackets": {
					"description": "number of out-of-order packets",
					"type": "number"
				},
				"numPacketErrors": {
					"description": "number of errored packets",
					"type": "number"
				},
				"numPacketsReceivedExclRetrans": {
					"description": "number of packets received, excluding retransmission",
					"type": "number"
				},
				"numPacketsReceivedInclRetrans": {
					"description": "number of packets received, including retransmission",
					"type": "number"
				},
				"numPacketsTransmittedInclRetrans": {
					"description": "number of packets transmitted, including retransmissions",
					"type": "number"
				},
				"numRetries": {
					"description": "number of packet retries",
					"type": "number"
				},
				"numTimeouts": {
					"description": "number of packet timeouts",
					"type": "number"
				},
				"numTunneledL7BytesReceived": {
					"description": "number of tunneled layer 7 bytes received, excluding retransmissions",
					"type": "number"
				},
				"roundTripTime": {
					"description": "round trip time",
					"type": "number"
				},
				"tcpFlagCountList": {
					"description": "array of key: value pairs where the keys are drawn from TCP Flags and the values are the count of packets that had that TCP Flag in the flow",
 "type": "array",
 "items": {
						"type": "array",
						"items": [
							{ "type": "string" },
							{ "type": "number" }
]
					}
				},
				"tcpFlagList": {
					"description": "Array of unique TCP Flags observed in the flow",
					"type": "array",
					"items": {
						"type": "string"
					}
				},
				"timeToFirstByte": {
					"description": "Time in milliseconds between the connection activation and first byte received",
					"type": "number"
				}
			},
			"required": ["avgBitErrorRate", "avgPacketDelayVariation", "avgPacketLatency",
 "avgReceiveThroughput", "avgTransmitThroughput",
						 "flowActivationEpoch", "flowActivationMicrosec",
 						 "flowDeactivationEpoch", "flowDeactivationMicrosec",
 "flowDeactivationTime", "flowStatus",
						 "maxPacketDelayVariation", "numActivationFailures",
 						 "numBitErrors", "numBytesReceived", "numBytesTransmitted",
						 "numDroppedPackets", "numL7BytesReceived",
						 "numL7BytesTransmitted", "numLostPackets",
						 "numOutOfOrderPackets", "numPacketErrors",
						 "numPacketsReceivedExclRetrans",
						 "numPacketsReceivedInclRetrans",
						 "numPacketsTransmittedInclRetrans",
						 "numRetries", "numTimeouts", "numTunneledL7BytesReceived",
						 "roundTripTime", "timeToFirstByte"
]
		},
		"heartbeatFields": {
			"description": "optional field block for fields specific to heartbeat events",
			"type": "object",
			"properties": {
				"additionalFields": {
					"description": "additional heartbeat fields if needed",
					"type": "array",
					"items": {
						"$ref": "#/definitions/field"
					}
				},
				"heartbeatFieldsVersion": {
					"description": "version of the heartbeatFields block",
					"type": "number"
				},
				"heartbeatInterval": {
					"description": "current heartbeat interval in seconds",
					"type": "integer"
				}
			},
			"required": ["heartbeatFieldsVersion", "heartbeatInterval"]
		},
		"internalHeaderFields": {
			"description": "enrichment fields for internal VES Event Listener service use only, not supplied by event sources",
			"type": "object"
		},
		"jsonObject": {
			"description": "json object schema, name and other meta-information along with one or more object instances",
			"type": "object",
			"properties": {
				"objectInstances": {
 "description": "one or more instances of the jsonObject",
 "type": "array",
 "items": {
 "$ref": "#/definitions/jsonObjectInstance"	
 }					
 },
				"objectName": {
 "description": "name of the JSON Object",
 "type": "string"
 },
				"objectSchema": {
 "description": "json schema for the object",
 "type": "string"
 },
				"objectSchemaUrl": {
 "description": "Url to the json schema for the object",
 "type": "string"
 },
				"nfSubscribedObjectName": {
 "description": "name of the object associated with the nfSubscriptonId",
 "type": "string"
 },
				"nfSubscriptionId": {
 "description": "identifies an openConfig telemetry subscription on a network function, which configures the network function to send complex object data associated with the jsonObject",
 "type": "string"
 }
			},
			"required": ["objectInstances", "objectName"]
		},
		"jsonObjectInstance": {
			"description": "meta-information about an instance of a jsonObject along with the actual object instance",
			"type": "object",
			"properties": {
				"objectInstance": {
 "description": "an instance conforming to the jsonObject schema",
 "type": "object"
 },
				"objectInstanceEpochMicrosec": {
 "description": "the unix time aka epoch time associated with this objectInstance--as microseconds elapsed since 1 Jan 1970 not including leap seconds",
 "type": "number"
 },
				"objectKeys": {
 "description": "an ordered set of keys that identifies this particular instance of jsonObject",
 "type": "array",
 "items": {
 "$ref": "#/definitions/key"
 }					
 }
			},
			"required": ["objectInstance"]
		},
		"key": {
			"description": "tuple which provides the name of a key along with its value and relative order",
			"type": "object",
			"properties": {
				"keyName": {
 "description": "name of the key",
				 "type": "string"
				},
				"keyOrder": {
 "description": "relative sequence or order of the key with respect to other keys",
				 "type": "integer"
				},
				"keyValue": {
 "description": "value of the key",
				 "type": "string"
				}
			},
			"required": ["keyName"]
		},
		"latencyBucketMeasure": {
			"description": "number of counts falling within a defined latency bucket",
			"type": "object",
			"properties": {
				"countsInTheBucket": { "type": "number" },
				"highEndOfLatencyBucket": { "type": "number" },
				"lowEndOfLatencyBucket": { "type": "number" }
			},
			"required": ["countsInTheBucket"]
		},
		"measurementsForVfScalingFields": {
			"description": "measurementsForVfScaling fields",
			"type": "object",
			"properties": {
				"additionalFields": {
					"description": "additional name-value-pair fields",
					"type": "array",
					"items": {
						"$ref": "#/definitions/field"
					}
				},
				"additionalMeasurements": {
					"description": "array of named name-value-pair arrays",
					"type": "array",
					"items": {
						"$ref": "#/definitions/namedArrayOfFields"
					}
				},
 "additionalObjects": {
 "description": "array of JSON objects described by name, schema and other meta-information",
					"type": "array",
					"items": {
 "$ref": "#/definitions/jsonObject"
					}
 },
				"codecUsageArray": {
					"description": "array of codecs in use",
					"type": "array",
					"items": {
						"$ref": "#/definitions/codecsInUse"
					}
				},
				"concurrentSessions": {
					"description": "peak concurrent sessions for the VM or VNF over the measurementInterval",
					"type": "integer"
				},
				"configuredEntities": {
					"description": "over the measurementInterval, peak total number of: users, subscribers, devices, adjacencies, etc., for the VM, or subscribers, devices, etc., for the VNF",
					"type": "integer"
				},
				"cpuUsageArray": {
					"description": "usage of an array of CPUs",
					"type": "array",
					"items": {
						"$ref": "#/definitions/cpuUsage"
					}
				},
 "diskUsageArray": {
					"description": "usage of an array of disks",
					"type": "array",
					"items": {
						"$ref": "#/definitions/diskUsage"
					}
				},
				"featureUsageArray": {
					"description": "array of features in use",
					"type": "array",
					"items": {
						"$ref": "#/definitions/featuresInUse"
					}
				},
				"filesystemUsageArray": {
					"description": "filesystem usage of the VM on which the VNFC reporting the event is running",
					"type": "array",
					"items": {
						"$ref": "#/definitions/filesystemUsage"
					}
				},
				"latencyDistribution": {
					"description": "array of integers representing counts of requests whose latency in milliseconds falls within per-VNF configured ranges",
					"type": "array",
					"items": {
						"$ref": "#/definitions/latencyBucketMeasure"
					}
				},
				"meanRequestLatency": {
					"description": "mean seconds required to respond to each request for the VM on which the VNFC reporting the event is running",
					"type": "number"
				},
				"measurementInterval": {
					"description": "interval over which measurements are being reported in seconds",
					"type": "number"
				},
				"measurementsForVfScalingVersion": {
					"description": "version of the measurementsForVfScaling block",
					"type": "number"
				},
				"memoryUsageArray": {
					"description": "memory usage of an array of VMs",
					"type": "array",
					"items": {
						"$ref": "#/definitions/memoryUsage"
					}
				},
				"numberOfMediaPortsInUse": {
					"description": "number of media ports in use",
					"type": "integer"
				},
				"requestRate": {
					"description": "peak rate of service requests per second to the VNF over the measurementInterval",
					"type": "number"
				},
				"vnfcScalingMetric": {
					"description": "represents busy-ness of the VNF from 0 to 100 as reported by the VNFC",
					"type": "integer"
				},
				"vNicPerformanceArray": {
					"description": "usage of an array of virtual network interface cards",
					"type": "array",
					"items": {
						"$ref": "#/definitions/vNicPerformance"
					}
				}
			},
			"required": ["measurementInterval", "measurementsForVfScalingVersion"]
		},
		"memoryUsage": {
			"description": "memory usage of an identified virtual machine",
			"type": "object",
			"properties": {
				"memoryBuffered": {
 "description": "kibibytes of temporary storage for raw disk blocks",
 "type": "number"
 },
				"memoryCached": {
 "description": "kibibytes of memory used for cache",
 "type": "number"
 },
				"memoryConfigured": {
 "description": "kibibytes of memory configured in the virtual machine on which the VNFC reporting the event is running",
 "type": "number"
 },
				"memoryFree": {
 "description": "kibibytes of physical RAM left unused by the system",
 "type": "number"
 },
				"memorySlabRecl": {
 "description": "the part of the slab that can be reclaimed such as caches measured in kibibytes",
 "type": "number"
 },
				"memorySlabUnrecl": {
 "description": "the part of the slab that cannot be reclaimed even when lacking memory measured in kibibytes",
 "type": "number"
 },
				"memoryUsed": {
 "description": "total memory minus the sum of free, buffered, cached and slab memory measured in kibibytes",
 "type": "number"
 },
				"vmIdentifier": {
 "description": "virtual machine identifier associated with the memory metrics",
 "type": "string"
 }
			},
			"required": ["memoryFree", "memoryUsed", "vmIdentifier"]
		},
		"mobileFlowFields": {
			"description": "mobileFlow fields",
			"type": "object",
			"properties": {
				"additionalFields": {
					"description": "additional mobileFlow fields if needed",
					"type": "array",
					"items": {
						"$ref": "#/definitions/field"
					}
				},
				"applicationType": {
					"description": "Application type inferred",
					"type": "string"
				},
				"appProtocolType": {
					"description": "application protocol",
					"type": "string"
				},
				"appProtocolVersion": {
					"description": "application protocol version",
					"type": "string"
				},
				"cid": {
					"description": "cell id",
					"type": "string"
				},
				"connectionType": {
					"description": "Abbreviation referencing a 3GPP reference point e.g., S1-U, S11, etc",
					"type": "string"
				},
				"ecgi": {
					"description": "Evolved Cell Global Id",
					"type": "string"
				},
				"flowDirection": {
					"description": "Flow direction, indicating if the reporting node is the source of the flow or destination for the flow",
					"type": "string"
				},
				"gtpPerFlowMetrics": { "$ref": "#/definitions/gtpPerFlowMetrics" },
				"gtpProtocolType": {
					"description": "GTP protocol",
					"type": "string"
				},
				"gtpVersion": {
					"description": "GTP protocol version",
					"type": "string"
				},
				"httpHeader": {
					"description": "HTTP request header, if the flow connects to a node referenced by HTTP",
					"type": "string"
				},
				"imei": {
					"description": "IMEI for the subscriber UE used in this flow, if the flow connects to a mobile device",
					"type": "string"
				},
				"imsi": {
					"description": "IMSI for the subscriber UE used in this flow, if the flow connects to a mobile device",
					"type": "string"
				},
				"ipProtocolType": {
					"description": "IP protocol type e.g., TCP, UDP, RTP...",
					"type": "string"
				},
				"ipVersion": {
					"description": "IP protocol version e.g., IPv4, IPv6",
					"type": "string"
				},
				"lac": {
					"description": "location area code",
					"type": "string"
				},
				"mcc": {
					"description": "mobile country code",
					"type": "string"
				},
				"mnc": {
					"description": "mobile network code",
					"type": "string"
				},
 "mobileFlowFieldsVersion": {
 "description": "version of the mobileFlowFields block",
 "type": "number"
 },
				"msisdn": {
					"description": "MSISDN for the subscriber UE used in this flow, as an integer, if the flow connects to a mobile device",
					"type": "string"
				},
				"otherEndpointIpAddress": {
					"description": "IP address for the other endpoint, as used for the flow being reported on",
					"type": "string"
				},
				"otherEndpointPort": {
					"description": "IP Port for the reporting entity, as used for the flow being reported on",
					"type": "integer"
				},
				"otherFunctionalRole": {
					"description": "Functional role of the other endpoint for the flow being reported on e.g., MME, S-GW, P-GW, PCRF...",
					"type": "string"
				},
				"rac": {
					"description": "routing area code",
					"type": "string"
				},
				"radioAccessTechnology": {
					"description": "Radio Access Technology e.g., 2G, 3G, LTE",
					"type": "string"
				},
				"reportingEndpointIpAddr": {
					"description": "IP address for the reporting entity, as used for the flow being reported on",
					"type": "string"
				},
				"reportingEndpointPort": {
					"description": "IP port for the reporting entity, as used for the flow being reported on",
					"type": "integer"
				},
				"sac": {
					"description": "service area code",
					"type": "string"
				},
				"samplingAlgorithm": {
					"description": "Integer identifier for the sampling algorithm or rule being applied in calculating the flow metrics if metrics are calculated based on a sample of packets, or 0 if no sampling is applied",
					"type": "integer"
				},
				"tac": {
					"description": "transport area code",
					"type": "string"
				},
				"tunnelId": {
					"description": "tunnel identifier",
					"type": "string"
				},
				"vlanId": {
					"description": "VLAN identifier used by this flow",
					"type": "string"
				}
			},
			"required": ["flowDirection", "gtpPerFlowMetrics", "ipProtocolType", "ipVersion",
			 "mobileFlowFieldsVersion", "otherEndpointIpAddress", "otherEndpointPort",
			 "reportingEndpointIpAddr", "reportingEndpointPort"]
		},
		"namedArrayOfFields": {
			"description": "an array of name value pairs along with a name for the array",
			"type": "object",
			"properties": {
				"name": { "type": "string" },
				"arrayOfFields": {
					"description": "array of name value pairs",
					"type": "array",
					"items": {
						"$ref": "#/definitions/field"
					}
				}
			},
			"required": ["name", "arrayOfFields"]
		},
		"otherFields": {
			"description": "fields for events belonging to the 'other' domain of the commonEventHeader domain enumeration",
			"type": "object",
			"properties": {
				"hashOfNameValuePairArrays": {
					"description": "array of named name-value-pair arrays",
					"type": "array",
					"items": {
						"$ref": "#/definitions/namedArrayOfFields"
					}
				},
 "jsonObjects": {
 "description": "array of JSON objects described by name, schema and other meta-information",
					"type": "array",
					"items": {
 "$ref": "#/definitions/jsonObject"
					}
 },
				"nameValuePairs": {
					"description": "array of name-value pairs",
					"type": "array",
					"items": {
						"$ref": "#/definitions/field"
					}
				},				
 "otherFieldsVersion": {
 "description": "version of the otherFields block",
 "type": "number"
 }
 },
 "required": ["otherFieldsVersion"]
		},
		"requestError": {
			"description": "standard request error data structure",
			"type": "object",
			"properties": {
			 "messageId": {
					"description": "Unique message identifier of the format ABCnnnn where ABC is either SVC for Service Exceptions or POL for Policy Exception",
					"type": "string"
				},
				"text": {
					"description": "Message text, with replacement variables marked with %n, where n is an index into the list of <variables> elements, starting at 1",
					"type": "string"
				},
				"url": {
					"description": "Hyperlink to a detailed error resource e.g., an HTML page for browser user agents",
					"type": "string"
				},
				"variables": {
					"description": "List of zero or more strings that represent the contents of the variables used by the message text",
					"type": "string"
				}
			},
			"required": ["messageId", "text"]
		},
 "sipSignalingFields": {
 "description": "sip signaling fields",
 "type": "object",
 "properties": {
 "additionalInformation": {
					"description": "additional sip signaling fields if needed",
					"type": "array",
					"items": {
						"$ref": "#/definitions/field"
					}
 },
 "compressedSip": {
 "description": "the full SIP request/response including headers and bodies",
 "type": "string"
 },
 "correlator": {
 "description": "this is the same for all events on this call",
 "type": "string"
 },
 "localIpAddress": {
 "description": "IP address on VNF",
 "type": "string"
 },
 "localPort": {
 "description": "port on VNF",
 "type": "string"
 },
 "remoteIpAddress": {
 "description": "IP address of peer endpoint",
 "type": "string"
 },
 "remotePort": {
 "description": "port of peer endpoint",
 "type": "string"
 },
 "sipSignalingFieldsVersion": {
 "description": "version of the sipSignalingFields block",
 "type": "number"
 },
 "summarySip": {
 "description": "the SIP Method or Response (â€˜INVITEâ€™, â€˜200 OKâ€™, â€˜BYEâ€™, etc)",
 "type": "string"
 },
 "vendorVnfNameFields": {
 "$ref": "#/definitions/vendorVnfNameFields"
 }
 },
 "required": ["correlator", "localIpAddress", "localPort", "remoteIpAddress",
			 "remotePort", "sipSignalingFieldsVersion", "vendorVnfNameFields"]
 },
		"stateChangeFields": {
			"description": "stateChange fields",
			"type": "object",
			"properties": {
				"additionalFields": {
					"description": "additional stateChange fields if needed",
					"type": "array",
					"items": {
						"$ref": "#/definitions/field"
					}
				},
				"newState": {
					"description": "new state of the entity",
					"type": "string",
					"enum": [
						"inService",
						"maintenance",
						"outOfService"
]
				},
				"oldState": {
					"description": "previous state of the entity",
					"type": "string",
					"enum": [
						"inService",
						"maintenance",
						"outOfService"
]
				},
				"stateChangeFieldsVersion": {
					"description": "version of the stateChangeFields block",
					"type": "number"
				},
				"stateInterface": {
					"description": "card or port name of the entity that changed state",
					"type": "string"
				}
			},
			"required": ["newState", "oldState", "stateChangeFieldsVersion", "stateInterface"]
		},
		"suppressedNvPairs": {
			"description": "List of specific NvPairsNames to suppress within a given Name-Value Field for event Throttling",
			"type": "object",
			"properties": {
				"nvPairFieldName": {
					"description": "Name of the field within which are the nvpair names to suppress",
					"type": "string"
				},
				"suppressedNvPairNames": {
					"description": "Array of nvpair names to suppress within the nvpairFieldName",
			 "type": "array",
					"items": {
					 "type": "string"
					}
				}
			},
			"required": ["nvPairFieldName", "suppressedNvPairNames"]
		},
		"syslogFields": {
			"description": "sysLog fields",
			"type": "object",
			"properties": {
				"additionalFields": {
					"description": "additional syslog fields if needed provided as name=value delimited by a pipe â€˜|â€™ symbol, for example: 'name1=value1|name2=value2|â€¦'",
					"type": "string"
				},
				"eventSourceHost": {
					"description": "hostname of the device",
					"type": "string"
				},
				"eventSourceType": {
					"description": "type of event source; examples: other, router, switch, host, card, port, slotThreshold, portThreshold, virtualMachine, virtualNetworkFunction",
					"type": "string"
				},
				"syslogFacility": {
					"description": "numeric code from 0 to 23 for facility--see table in documentation",
					"type": "integer"
				},
				"syslogFieldsVersion": {
					"description": "version of the syslogFields block",
					"type": "number"
				},
				"syslogMsg": {
					"description": "syslog message",
					"type": "string"
				},
				"syslogPri": {
					"description": "0-192 combined severity and facility",
					"type": "integer"
				},
				"syslogProc": {
					"description": "identifies the application that originated the message",
					"type": "string"
				},
				"syslogProcId": {
					"description": "a change in the value of this field indicates a discontinuity in syslog reporting",
					"type": "number"
				},
				"syslogSData": {
					"description": "syslog structured data consisting of a structured data Id followed by a set of key value pairs",
					"type": "string"
				},
				"syslogSdId": {
					"description": "0-32 char in format name@number for example ourSDID@32473",
					"type": "string"
				},
				"syslogSev": {
					"description": "numerical Code for severity derived from syslogPri as remaider of syslogPri / 8",
					"type": "string",
					"enum": [
						"Alert",
						"Critical",
						"Debug",
						"Emergency",
						"Error",
						"Info",
						"Notice",
						"Warning"
]
				},
				"syslogTag": {
					"description": "msgId indicating the type of message such as TCPOUT or TCPIN; NILVALUE should be used when no other value can be provided",
					"type": "string"
				},
				"syslogVer": {
					"description": "IANA assigned version of the syslog protocol specification - typically 1",
					"type": "number"
				}
			},
			"required": ["eventSourceType", "syslogFieldsVersion", "syslogMsg", "syslogTag"]
		},
		"thresholdCrossingAlertFields": {
			"description": "fields specific to threshold crossing alert events",
			"type": "object",
			"properties": {
				"additionalFields": {
					"description": "additional threshold crossing alert fields if needed",
					"type": "array",
					"items": {
						"$ref": "#/definitions/field"
					}
				},
				"additionalParameters": {
					"description": "performance counters",
					"type": "array",
					"items": {
						"$ref": "#/definitions/counter"
					}
				},
				"alertAction": {
					"description": "Event action",
					"type": "string",
					"enum": [
						"CLEAR",
						"CONT",
						"SET"
]
				},
				"alertDescription": {
					"description": "Unique short alert description such as IF-SHUB-ERRDROP",
					"type": "string"
				},
				"alertType": {
					"description": "Event type",
					"type": "string",
					"enum": [
						"CARD-ANOMALY",
						"ELEMENT-ANOMALY",
						"INTERFACE-ANOMALY",
						"SERVICE-ANOMALY"
]
				},
				"alertValue": {
					"description": "Calculated API value (if applicable)",
					"type": "string"
				},
				"associatedAlertIdList": {
					"description": "List of eventIds associated with the event being reported",
					"type": "array",
					"items": { "type": "string" }
				},
				"collectionTimestamp": {
					"description": "Time when the performance collector picked up the data; with RFC 2822 compliant format: Sat, 13 Mar 2010 11:29:05 -0800",
					"type": "string"
				},
				"dataCollector": {
					"description": "Specific performance collector instance used",
					"type": "string"
				},
				"elementType": {
					"description": "type of network element - internal ATT field",
					"type": "string"
				},
				"eventSeverity": {
					"description": "event severity or priority",
					"type": "string",
					"enum": [
						"CRITICAL",
						"MAJOR",
						"MINOR",
						"WARNING",
						"NORMAL"
]
				},
				"eventStartTimestamp": {
					"description": "Time closest to when the measurement was made; with RFC 2822 compliant format: Sat, 13 Mar 2010 11:29:05 -0800",
					"type": "string"
				},
				"interfaceName": {
					"description": "Physical or logical port or card (if applicable)",
					"type": "string"
				},
				"networkService": {
					"description": "network name - internal ATT field",
					"type": "string"
				},
				"possibleRootCause": {
					"description": "Reserved for future use",
					"type": "string"
				},
				"thresholdCrossingFieldsVersion": {
					"description": "version of the thresholdCrossingAlertFields block",
					"type": "number"
				}
			},
			"required": [
				"additionalParameters",
				"alertAction",
				"alertDescription",
				"alertType",
				"collectionTimestamp",
				"eventSeverity",
				"eventStartTimestamp",
				"thresholdCrossingFieldsVersion"
]
		},
		"vendorVnfNameFields": {
			"description": "provides vendor, vnf and vfModule identifying information",
			"type": "object",
			"properties": {
				"vendorName": {
					"description": "VNF vendor name",
					"type": "string"
				},
				"vfModuleName": {
					"description": "ASDC vfModuleName for the vfModule generating the event",
					"type": "string"
				},
				"vnfName": {
					"description": "ASDC modelName for the VNF generating the event",
					"type": "string"
				}
			},
			"required": ["vendorName"]
		},
		"vNicPerformance": {
			"description": "describes the performance and errors of an identified virtual network interface card",
			"type": "object",
			"properties": {
				"receivedBroadcastPacketsAccumulated": {
					"description": "Cumulative count of broadcast packets received as read at the end of the measurement interval",
					"type": "number"
				},
				"receivedBroadcastPacketsDelta": {
					"description": "Count of broadcast packets received within the measurement interval",
					"type": "number"
				},
				"receivedDiscardedPacketsAccumulated": {
					"description": "Cumulative count of discarded packets received as read at the end of the measurement interval",
					"type": "number"
				},
				"receivedDiscardedPacketsDelta": {
					"description": "Count of discarded packets received within the measurement interval",
					"type": "number"
				},
				"receivedErrorPacketsAccumulated": {
					"description": "Cumulative count of error packets received as read at the end of the measurement interval",
					"type": "number"
				},
				"receivedErrorPacketsDelta": {
					"description": "Count of error packets received within the measurement interval",
					"type": "number"
				},
				"receivedMulticastPacketsAccumulated": {
					"description": "Cumulative count of multicast packets received as read at the end of the measurement interval",
					"type": "number"
				},
				"receivedMulticastPacketsDelta": {
					"description": "Count of multicast packets received within the measurement interval",
					"type": "number"
				},
				"receivedOctetsAccumulated": {
					"description": "Cumulative count of octets received as read at the end of the measurement interval",
					"type": "number"
				},
				"receivedOctetsDelta": {
					"description": "Count of octets received within the measurement interval",
					"type": "number"
				},
				"receivedTotalPacketsAccumulated": {
					"description": "Cumulative count of all packets received as read at the end of the measurement interval",
					"type": "number"
				},
				"receivedTotalPacketsDelta": {
					"description": "Count of all packets received within the measurement interval",
					"type": "number"
				},
				"receivedUnicastPacketsAccumulated": {
					"description": "Cumulative count of unicast packets received as read at the end of the measurement interval",
					"type": "number"
				},
				"receivedUnicastPacketsDelta": {
					"description": "Count of unicast packets received within the measurement interval",
					"type": "number"
				},
				"transmittedBroadcastPacketsAccumulated": {
					"description": "Cumulative count of broadcast packets transmitted as read at the end of the measurement interval",
					"type": "number"
				},
				"transmittedBroadcastPacketsDelta": {
					"description": "Count of broadcast packets transmitted within the measurement interval",
					"type": "number"
				},
				"transmittedDiscardedPacketsAccumulated": {
					"description": "Cumulative count of discarded packets transmitted as read at the end of the measurement interval",
					"type": "number"
				},
				"transmittedDiscardedPacketsDelta": {
					"description": "Count of discarded packets transmitted within the measurement interval",
					"type": "number"
				},
				"transmittedErrorPacketsAccumulated": {
					"description": "Cumulative count of error packets transmitted as read at the end of the measurement interval",
					"type": "number"
				},
				"transmittedErrorPacketsDelta": {
					"description": "Count of error packets transmitted within the measurement interval",
					"type": "number"
				},
				"transmittedMulticastPacketsAccumulated": {
					"description": "Cumulative count of multicast packets transmitted as read at the end of the measurement interval",
					"type": "number"
				},
				"transmittedMulticastPacketsDelta": {
					"description": "Count of multicast packets transmitted within the measurement interval",
					"type": "number"
				},
				"transmittedOctetsAccumulated": {
					"description": "Cumulative count of octets transmitted as read at the end of the measurement interval",
					"type": "number"
				},
				"transmittedOctetsDelta": {
					"description": "Count of octets transmitted within the measurement interval",
					"type": "number"
				},
				"transmittedTotalPacketsAccumulated": {
					"description": "Cumulative count of all packets transmitted as read at the end of the measurement interval",
					"type": "number"
				},
				"transmittedTotalPacketsDelta": {
					"description": "Count of all packets transmitted within the measurement interval",
					"type": "number"
				},
				"transmittedUnicastPacketsAccumulated": {
					"description": "Cumulative count of unicast packets transmitted as read at the end of the measurement interval",
					"type": "number"
				},
				"transmittedUnicastPacketsDelta": {
					"description": "Count of unicast packets transmitted within the measurement interval",
					"type": "number"
				},
				"valuesAreSuspect": {
					"description": "Indicates whether vNicPerformance values are likely inaccurate due to counter overflow or other condtions",
					"type": "string",
					"enum": ["true", "false"]
				},
				"vNicIdentifier": {
					"description": "vNic identification",
					"type": "string"
				}
			},
			"required": ["valuesAreSuspect", "vNicIdentifier"]
		},
 "voiceQualityFields": {
 "description": "provides statistics related to customer facing voice products",
 "type": "object",
 "properties": {
 "additionalInformation": {
					"description": "additional voice quality fields if needed",
					"type": "array",
					"items": {
						"$ref": "#/definitions/field"
					}
 },
 "calleeSideCodec": {
 "description": "callee codec for the call",
 "type": "string"
 },
 "callerSideCodec": {
 "description": "caller codec for the call",
 "type": "string"
 },
 "correlator": {
 "description": "this is the same for all events on this call",
 "type": "string"
 },
 "endOfCallVqmSummaries": {
 "$ref": "#/definitions/endOfCallVqmSummaries"
 },
 "phoneNumber": {
 "description": "phone number associated with the correlator",
 "type": "string"
 },
 "midCallRtcp": {
 "description": "Base64 encoding of the binary RTCP data excluding Eth/IP/UDP headers",
 "type": "string"
 },
 "vendorVnfNameFields": {
 "$ref": "#/definitions/vendorVnfNameFields"
 },
 "voiceQualityFieldsVersion": {
 "description": "version of the voiceQualityFields block",
 "type": "number"
 }
 },
 "required": ["calleeSideCodec", "callerSideCodec", "correlator", "midCallRtcp",
			 "vendorVnfNameFields", "voiceQualityFieldsVersion"]
 }
	}
}

image5.png

image6.png

image7.png

image1.png

image2.png

[image: 2arc2_top300]

AT&T Service Specification

Addendum: VES Connectivity Requirements

		Document Number

		xxxx

		Revision

		1.10

		Revision Date

		109/56/2017

		Editor

Contributors

		Rich Erickson and Alok Gupta

Sean Crowley

Jim Oliver

Albino Pinho

Vijay Venkateskumar

[image: 2arc2_top300]

© 2009 AT&T Intellectual Property. All rights reserved. AT&T and AT&T logo are trademarks of

AT&T Intellectual Property.

 © 2017 AT&T Intellectual Property. All rights reserved. AT&T and AT&T logo are trademarks of

 AT&T Intellectual Property.

[image: 2arc2_bottom300]

© 2017, AT&T Intellectual Property. All other rights reserved. AT&T and AT&T logos are trademarks of AT&T Intellectual Property. All marks, trademarks, and product names used in this document are the property of their respective owners.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

3. [bookmark: _Ref471490593]All advertising materials mentioning features or use of this software must display the following acknowledgement: This product includes software developed by the AT&T.

4. Neither the name of AT&T nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY AT&T INTELLECTUAL PROPERTY ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL AT&T INTELLECTUAL PROPERTY BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This document and the information contained herein (collectively, the "Information") is provided to you (both the individual receiving this document and any legal entity on behalf of which such individual is acting) ("You" and "Your") by AT&T, on behalf of itself and its affiliates ("AT&T") for informational purposes only. AT&T is providing the Information to You because AT&T believes the Information may be useful to You. The Information is provided to You solely on the basis that You will be responsible for making Your own assessments of the Information and are advised to verify all representations, statements and information before using or relying upon any of the Information. Although AT&T has exercised reasonable care in providing the Information to You, AT&T does not warrant the accuracy of the Information and is not responsible for any damages arising from Your use of or reliance upon the Information. You further understand and agree that AT&T in no way represents, and You in no way rely on a belief, that AT&T is providing the Information in accordance with any standard or service (routine, customary or otherwise) related to the consulting, services, hardware or software industries.

[image: 2arc2_top300]Legal Disclaimer

AT&T DOES NOT WARRANT THAT THE INFORMATION IS ERROR-FREE. AT&T IS PROVIDING THE INFORMATION TO YOU "AS IS" AND "WITH ALL FAULTS." AT&T DOES NOT WARRANT, BY VIRTUE OF THIS DOCUMENT, OR BY ANY COURSE OF PERFORMANCE, COURSE OF DEALING, USAGE OF TRADE OR ANY COLLATERAL DOCUMENT HEREUNDER OR OTHERWISE, AND HEREBY EXPRESSLY DISCLAIMS, ANY REPRESENTATION OR WARRANTY OF ANY KIND WITH RESPECT TO THE INFORMATION, INCLUDING, WITHOUT LIMITATION, ANY REPRESENTATION OR WARRANTY OF DESIGN, PERFORMANCE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, OR ANY REPRESENTATION OR WARRANTY THAT THE INFORMATION IS APPLICABLE TO OR INTEROPERABLE WITH ANY SYSTEM, DATA, HARDWARE OR SOFTWARE OF ANY KIND. AT&T DISCLAIMS AND IN NO EVENT SHALL BE LIABLE FOR ANY LOSSES OR DAMAGES OF ANY KIND, WHETHER DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL, PUNITIVE, SPECIAL OR EXEMPLARY, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, LOSS OF GOODWILL, COVER, TORTIOUS CONDUCT OR OTHER PECUNIARY LOSS, ARISING OUT OF OR IN ANY WAY RELATED TO THE PROVISION, NON-PROVISION, USE OR NON-USE OF THE INFORMATION, EVEN IF AT&T HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH LOSSES OR DAMAGES.

[image: 2arc2_bottom300]

xxxx Rev. 1.1		2

© 2017 AT&T Intellectual Property

All rights reserved.

AT&T and AT&T logos are trademarks of AT&T Intellectual Property.

All marks, trademarks, and product names used in this document are the property of their respective owners.

Change Log for the latest version of the document (for historical change logs, see the Appendix)

		Date

		Revision

		Description

		9/6/2017

		1.0

		· Initial Release

		10/5/2017

		1.1

		· Requirement updated to take out primary/secondary collectors, but allowing vendors to send events to either collector.

· Added text to specify event sent to one collector only.

1	Introduction	1

2	Connectivity Requirements	2

2.1	Basic Connectivity Requirements	2

2.2	Miscellaneous Event Domain Requirements:	2

2.3	Use of Primary and Secondary Collector FQDNs	2

2.4	Local Event Storage	3

2.4.1	Buffering of Events	3

2.4.2	Debug Mode	3

2.4.3	Overflow	3

3	Appendix: Historical Change Log	4

[image: 2arc2_top300]Table of Contents

[bookmark: _Ref442971897][bookmark: _Toc492484807]Introduction

This document specifies Connectivity Requirements for VNFs, EMS’s (Element Management Systems), and OAM VMs (Operations Administration and Maintenance Virtual Machines) using the VES (Virtual Function Event Streaming) protocol to communicate with AT&T’s VES Collector, which is part of AT&T’s DCAE (Data Collection Analytics and Events) platform.

The VES API and Protocol is described in a separate document: the AttServiceSpecification-VesEventListener specification (aka the ‘VES Spec’). That document provides an overview of VES, and presents the VES Common Event Format, API operations, security, exceptions and event naming standards.

This document assumes the reader has a familiarity with the VES Spec and provides additional connectivity requirements for VES Heartbeat, Fault, Measurement (for VF Scaling), and syslog events.

[bookmark: _Toc492484808]Connectivity Requirements

[bookmark: _Toc492484809]Basic Connectivity Requirements

VES event sources (e.g., VNFs, EMS’s, OAM VMs) must support the following:

· Authentication: the Security section within the ServiceSpecification-VesEventListener specification describes how to authenticate with the VES Collector service.

· Configuration: After event sources are instantiated, they must be configured with:

· VES Collector FQDNs (resolved via AT&T Corporate DNS): Two FQDNs are required. VNF should select one of the 2 collector FQDNs for sending events and if the VNF is unable to establish a TCP connection or if the collector is unresponsive, then the VNF should attempt to use the other collector FQDN. The events should only be sent to one DCAE Collector. Please note: Currently an FQDN can only resolve to a single IP address and therefore there must be 2 FQDNs configured in a VNF.: a primacy Collector FQDN and a secondary Collector FQDN, in case the primary FQDN is not available.

· VES Collector Ports: typically 8443 is used.

· VES Credentials: VES Username and Password are needed to communicate with the VES collector.

· VES heartbeat interval: right Currentlynow this is fixed at 60 seconds, but in upcoming releases it will be configurable. Note: the heartbeat interval must always be greater than the ack timeout value.

· VES missed heartbeats until alarm: right now, this is fixed at 3, but in upcoming releases, it will be a configurable number of missed heartbeats until an alarm is generated.

· Measurement interval: for measurementsForVfScaling events, the measurement interval is the time over which measurement metrics are collected. Typically 300 seconds is used.

[bookmark: _Toc492484810]Miscellaneous Event Domain Requirements:

· Faults: Faults must be sent to the VES collector as soon as they occur.

· Measurements: measurementsForVfScaling events must include both application and GuestOS metrics

· Syslogs: Syslog data must be sent to the VES collector as soon as created, unless the VNF is in debug mode, in which case the syslogs must be stored locally in the event source, for later access and possible FTP transfer to the AT&T SMLS database via the VNF console.

[bookmark: _Toc492484811]Use of Primary and Secondary Collector FQDNs

Use of Primary and Secondary FQDNs by Active-Standby Event Sources:

· The VNF should have a single active source and at least one standby event sources.

· The active event source should establish an HTTPS connection to one Collector FQDN (either Primary or Secondary) and send a VES event to it (e.g., a Heartbeat). The events should only be sent to only one Collector.

· If an HTTPS response is not received within 5 seconds, then the event source should establish connectivity with the other FQDN and send the VES event to it. Once the originally active collector FQDN recovers, the VNF can either switch back to using it or continue sending events to the newly active FQDN.

· If both Primary and Secondary FQDNs are not available, then the event source shall buffer the events locally, up to a maximum of 1 hour, and re-transmit them once a connection has been established. Note: Buffered events can be sent in a group using the VES publishEventBatch operation. For more information on Buffering, see below.

· If the active event source fails, then the standby event source will follow the same process above to establish a connection to VES. Assuming the file system has been synchronized between the active and standby event sources, the events in the file system buffer can be sent by the standby event source, when it becomes active.

· It is not required that the VNF maintain an awareness of the viability of both collector FQDNs. However, if VNF fails in an attempt to establish a connection to either FQDN, an alarm should be sent via the active FQDN.

[bookmark: _Toc492484812][bookmark: _Toc485914003]Local Event Storage

[bookmark: _Toc492484813]Buffering of Events

If an event source cannot establish a connection to a VES FQDN, it shall buffer events locally, up to a maximum of 1 hour, and re-transmit them once a connection has been established.

For any outage greater than 1 minute, only the following events should be buffered:

· Faults with eventSeverity of “MINOR”, “MAJOR” or “CRITICAL”

· Syslogs with syslogSev of 0-5

· All MeasurementsForVfScaling events

[bookmark: _Toc492484814]Debug Mode

Event sources should not send syslog events to the VES collector during debug mode (which is controlled via the Netconf management interface). Instead, they should store syslog events locally for access, and possible FTP transfer, via the VNF console (e.g., command line interface).

[bookmark: _Toc492484815]Overflow

If the local event buffer of the event source should overflow, then the event source should send a Fault event, and discard events in a first-in, first-out (FIFO) manner (i.e., discard oldest events first).

[bookmark: _Toc492484816]Appendix: Historical Change Log

For the latest changes, see the Change Block just before the Table of Contents.

		Date

		Revision

		Description

		9/6/2017

		1.0

		Initial Release

		

		

		

[bookmark: _Detailed_XML_Schema][bookmark: _Detailed_XML_Schema_1][bookmark: _Details_of_response]

image1.png

image2.png

[image: 2arc2_top300]

AT&T Service Specification

Addendum: VES Event Registration

		Document Number

		xxxx

		Revision

		1.6

		Revision Date

		October 31, 2017

		Author

		Rich Erickson

[image: 2arc2_top300]

© 2009 AT&T Intellectual Property. All rights reserved. AT&T and AT&T logo are trademarks of

AT&T Intellectual Property.

 © 2015 AT&T Intellectual Property. All rights reserved. AT&T and AT&T logo are trademarks of

 AT&T Intellectual Property.

[image: 2arc2_bottom300]

© 2017, AT&T Intellectual Property. All rights reserved. AT&T and AT&T logos are trademarks of AT&T Intellectual Property. All marks, trademarks, and product names used in this document are the property of their respective owners.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

[image: 2arc2_top300]Legal Disclaimer

AT&T Proprietary

The information contained here is for use by authorized
person only and is not for general distribution

[image: 2arc2_bottom300]

xxxx Rev. 1.6		16

© 2015 AT&T Intellectual Property

All rights reserved.

AT&T and AT&T logos are trademarks of AT&T Intellectual Property.

All marks, trademarks, and product names used in this document are the property of their respective owners.

Version 1.0 Change Log (for historical change logs, see the Appendix)

		Date

		Revision

		Description

		10/31/2017

		1.6

		· Added KeyValuePairString keyword to handle strings which have delimited key-value pairs within them.

· Updated the syslog example to show the use of KeyValuePairString

· Updated the syslog example to align syslogSev with VES 5.4.1

· Added examples for mobile flow, sip signaling and voice quality

· Added sections within the examples to facilitate rapid access to specific types of example events

· Wordsmithed the Introduction

Re[image: 2arc2_top300]vision History

1	Introduction	1

1.1	Audience	1

1.2	Goal	1

1.3	Relation to the Common Event Format	1

1.4	Relation to Service Design and Creation	2

2	YAML Files	3

2.1	YAML Specification Conformance	3

2.2	Filename	3

2.3	File Structure	3

3	YAML Syntax and Semantics	4

3.1	Qualifiers	4

3.1.1	Action	4

3.1.2	Array	5

3.1.3	Default	6

3.1.4	HeartbeatAction	6

3.1.5	keyValuePairString	6

3.1.6	Presence	7

3.1.7	Range	7

3.1.8	Structure	8

3.1.9	Units	8

3.1.10	Value	8

3.2	Rules	9

3.2.1	Rules Document	9

3.2.2	Rules Syntax and Semantics	10

3.2.3	Simple Triggers	10

3.2.4	Time Based Qualifiers	11

4	YAML Examples	12

4.1	Fault	12

4.2	Heartbeat	13

4.3	Measurements	14

4.4	Syslog	20

4.5	Mobile Flow	22

4.6	Sip Signaling	24

4.7	Voice Quality	25

4.8	Rules	27

5	Appendix: Historical Change Log	28

[image: 2arc2_top300]Table of Contents

[bookmark: _Ref442971897][bookmark: _Toc497230118]Introduction

This document specifies a YAML format for the registration of VES Events. The YAML format enables both human designers and applications to parse and understand the fields that will be sent by event sources in conjunction with specific types of events, which are identified by their eventNames.

The semantics of the YAML format are easily extensible to accommodate processing needs that may arise in the future. Among the types of information specified in the YAML are field optionality, restrictions on field values, and event handling recommendations and requirements.

This document should be read in conjunction with the VES Event Listener service specification, which defines the Common Event Format and introduces the concept of specific types of events, identified by eventNames.

[bookmark: _Contact_Management_Service_][bookmark: _Toc497230119][bookmark: _Toc350194293]Audience

This document is intended to support the following groups:

· VNF Vendors

· Service Provider (e.g., AT&T) Teams responsible for deploying VNFs within their infrastructure

VNF vendors will provide a YAML file to the Service Provider that describes the events that their VNFs generate. Using the semantics and syntax supported by YAML, vendors will indicate specific conditions that may arise, and recommend actions that should be taken at specific thresholds, or if specific conditions repeat within a specified time interval.

Based on the vendor’s recommendations, the Service Provider may create another YAML, which finalizes their engineering rules for the processing of the vendor’s events. The Service Provider may alter the threshold levels recommended by the vendor, and may modify and more clearly specify actions that should be taken when specified conditions arise. The Service Provided-created version of the YAML will be distributed to Service Provider applications at design time.

[bookmark: _Toc497230120]Goal

The goal of the YAML is to completely describe the processing of VNF events in a way that can be compiled or interpreted by applications across a Service Provider’s infrastructure.

[bookmark: _Toc497230121]Relation to the Common Event Format

The Common Event Format described in the VES Event Listener service specification defines the structure of VES events including optional fields that may be provided.

Specific eventNames registered by the YAML (e.g., an InvalidLicense fault), may require that certain fields, which are optional in the Common Event Format, be present when events with that eventName are published. For example, a fault eventName which communicates an ‘InvalidLicense’ condition, may be registered to require that the configured ‘licenseKey’ be provided as a name-value pair in the Common Event Format’s ‘additionalFields’ structure, within the ‘faultFields’ block. Anytime an ‘InvalidLicense’ fault event is detected, designers, applications and microservices across the Service Provider’s infrastructure can count on that name-value pair being present.

The YAML registration may also restrict ranges or enumerations defined in the Common Event Format. For example, eventSeverity is an enumerated string within the Common Event Format with several values ranging from ‘NORMAL’ to ‘CRITICAL’. The YAML registration for a particular eventName may require that it always be sent with eventSeverity set to a single value (e.g., ‘MINOR’), or to a subset of the possible enumerated values allowed by the Common Event Format (e.g., ‘MINOR’ or ‘NORMAL’).

[bookmark: _Toc497230122]Relation to Service Design and Creation

Event registration for a VNF (or other event source) is provided to the Service Provider’s Service Creation and Design Environment (e.g., ASDC) as a set of two YAML files consisting of the vendor recommendation YAML and (optionally) the final Service Provider YAML. These YAML files describe all the eventNames that that VNF (or other event source) generates.

Once their events are registered, the Service Creation and Design Environment can then list the registered eventNames (e.g., as a drop down list), for each VNF or other event source (e.g., a service), and enable designers to study the YAML registrations for specific eventNames. YAML registrations are both human readable and machine readable.

The final Service Provider YAML is a type of Service Design and Creation ‘artifact’, which can be distributed to Service Provider applications at design time: notably, to applications involved in the collection and processing of VNF events. It can be parsed by those applications so they can support the receipt and processing of VNF events, without the need for any manual, VNF-specific development.

[bookmark: _Toc497230123]YAML Files

[bookmark: _Toc497230124]YAML Specification Conformance

YAML files should conform to version 1.2 of the YAML specification available at: http://yaml.org/spec/1.2/spec.html.

[bookmark: _Toc497230125]Filename

YAML file names should conform to the following naming convention:

{AsdcModel}_{AsdcModelType}_{v#}.yml

The ‘#’ should be replaced with the current numbered version of the file.

‘ASDC’ is a reference to the Service Provider’s Service Design and Creation environment. The AsdcModelType is an enumeration with several values of which the following three are potentially relevant:

· Service

· Vnf

· VfModule

The AsdcModel is the modelName of the specific modelType whose events are being registered (e.g., the name of the specific VNF or service as it appears in the the Service Design and Creation Environment).

For example:

· vMRF_Vnf_v1.yml

· vMRF_Service_v1.yml

· vIsbcSsc_VfModule_v1.yml

[bookmark: _Toc497230126][bookmark: _Toc468361310][bookmark: _Ref442971881][bookmark: _Ref442971905][bookmark: _Ref442971976]File Structure

Each eventType is registered as a distinct YAML ‘document’.

YAML files consist of a series of YAML documents delimited by ‘---‘ and ‘…’ for example:

Event Registration for eventName ‘name1’

details omitted

...

Event Registration for eventName ‘name2’

details omitted

...

Event Registration for eventName ‘name3’

details omitted

...

[bookmark: _Toc497230127]YAML Syntax and Semantics

YAML registration documents show each relevant VES Common Event Model object and field (i.e., each element) for the eventName being registered, including any extensible fields (e.g., specific name-value pairs).

[bookmark: _Toc497230128]Qualifiers

Each object or field name in the eventName being registered is followed by a ‘qualifier’, which consists of a colon and two curly braces, for example:

“objectOrFieldName: { }”

The curly braces contain meta-information about that object or field name (also known as the ‘element’), such as whether it is required to be present, what values it may have, what handling it should trigger, etc…

Semantics have been defined for the following types of meta-information within the curly braces:

[bookmark: _Ref477988383][bookmark: _Toc497230129]Action

The ‘action’ keyword may be applied to field values or to the event as a whole. The ‘action’ keyword specifies a set of actions that should be taken if a specified trigger occurs. For example, the ‘action’ keyword may specify that a threshold crossing alert (i.e., tca) be generated, and/or that a specific microservice handler be invoked, and/or that a specific named-condition be asserted. In the Rules section of the YAML file, tca’s and microservices may be defined on individual named-conditions or on logical combinations of named-conditions.

The ‘action:’ keyword is followed by five values in square brackets. The first two values communicate the trigger, and the last three values communicate the actions to be taken if that trigger occurs:

1. The first value conveys the trigger level. If the field on which the action is defined reaches or passes through that level, then the trigger fires. If a specific level is not important to the recommended action, the ‘any’ keyword may be used as the first value. (Note: ‘any’ is often used when an action is defined on the ‘event’ structure as a whole).

2. The second value indicates the direction of traversal of the level specified in the first value. The second value may be ‘up’, ‘down’, ‘at’ or ‘any’. ‘any’ is used if the direction of traversal is not important. ‘at’ implies that it traversed (or exactly attained) the trigger level but it doesn’t matter if the traversal was in the up direction or down direction. Note: If ‘up’, ‘down’ or ‘at’ are used, the implication is that the microservices processing the events within the service provider are maintaining state (e.g., to know that a measurement field traversed a trigger level in an ‘up’ direction, the microservice would have to know that the field was previously below the trigger level). When initially implementing support for YAML actions, a service provider may choose to use and interpret these keywords in a simpler way to eliminate the need to handle state. Specifically, they may choose to define and interpret all ‘up’ guidance to mean ‘at the indicated trigger level or greater’, and they may choose to define and interpret all ‘down’ guidance to mean ‘at the indicated trigger level or lower’.

3. The third value optionally names the condition that has been attained when the triggers fires (e.g., ‘invalidLicence’ or ‘capacityExhaustion’). Named-conditions should be expressed in upper camel case with no underscores, hyphens or spaces. In the Rules section of the YAML file, named-conditions may be used to specify tca’s that should be generated and/or microservices that should be invoked. If it is not important to name a condition, then the keyword ‘null’ may be used as the third value.

4. The fourth value recommends a specific microservice (e.g., ‘rebootVm’ or ‘rebuildVnf’) supported by the Service Provider, be invoked if the trigger is attained. Design time processing of the YAML by the service provider can use these directives to automatically establish policies and configure flows that need to be in place to support the recommended runtime behavior.

If a vendor wants to recommend an action, it can either work with the service provider to identify and specify microservices that the service provider support, or, the vendor may simply indicate and recommend a generic microservice function by prefixing ‘RECO-’ in front of the microservice name, which should be expressed in upper camel case with no underscores, hyphens or spaces.

The fourth value may also be set to ‘null’.

5. The fifth value third value indicates a specific threshold crossing alert (i.e., tca) that should be generated if the trigger occurs. This field may be omitted or provided as ‘null’.

Tca’s should be indicated by their eventNames.

When a tca is specified, a YAML registration for that tca eventName should be added to the event registrations within the YAML file.

Examples:

· event: { action: [any, any, null, rebootVm] }

whenever the above event occurs, the VM should be rebooted

· fieldname: { action: [80, up, null, null, tcaUpEventName], action: [60, down, overcapacity, null] }

when the value of fieldname crosses 80 in an up direction, tcaUpEventName

 should be published; if the fieldname crosses 60 in a down direction an

 ‘overCapacity’ named-condition is asserted.

[bookmark: _Toc497230130]Array

The ‘array’ keyword indicates that the element is an array; ‘array:’ is following by square brackets which contain the elements of the array. Note that unlike JSON itself, the YAML registration will explicitly declare the array elements and will not communicate them anonymously.

Examples:

· element: { array: [

firstArrayElement: { },

secondArrayElement: { }

] }

[bookmark: _Toc497230131]Default

The ‘default’ keyword specifies a default field value. Note: the default value must be within the range or enumeration of acceptable values.

Examples:

· fieldname: { range: [1, unbounded], default: 5 }

· fieldname: { value: [red, white, blue], default: blue }

[bookmark: _Toc497230132]HeartbeatAction

The ‘heartbeatAction’ keyword is provided on the ‘event’ objectName for heartbeat events only. It provides design time guidance to the service provider’s heartbeat processing applications (i.e., their watchdog timers). The syntax and semantics of the ‘heartbeatAction’ keyword are similar to the ‘action’ keyword except the trigger is specified by the first field only instead of the first two fields. When the ‘heartbeatAction’ keyword is indicated, the first field is an integer indicating the number of successively missed heartbeat events. Should that trigger occur, the remaining fields have the same order, meaning and optionality as those described for the ‘action’ keyword.

Examples:

· event: { heartbeatAction: [3, vnfDown, RECO-rebootVnf, tcaEventName] }

whenever the above event occurs, a vnfDown condition is asserted and the vnf should be rebooted, plus the indicated tca should be generated.

[bookmark: _Toc497230133]keyValuePairString

The ‘keyValuePairString’ keyword describes the key-value pairs to be communicated through a string (e.g., in the VES Syslog Fields ‘syslogSData’ or ‘additionalFields’ strings). This keyword takes three parameters:

· the first parameter specifies the character used to delimit (i.e., to separate) the key-value pairs. If a space is used as a delimiter, it should be communicated within single quotes as ‘ ‘; otherwise, the delimiter character should be provided without any quotes.

· The second parameter specifies the characters used to separate the keys and values. If a space is used as a separator, it should be communicated within single quotes as ‘ ‘; otherwise, the separator character should be provided without any quotes.

· The third parameter is a “sub-keyword” (i.e., it is used only within ‘keyValuePairString’) called ‘keyValuePairs: []’. Within the square brackets, a list of ‘keyValuePair’ keywords can be provided as follows:

· Each ‘keyValuePair’ is a structure (used only within ‘keyValuePairs’) which has a ‘key’ and a ‘value’. Each ‘keyValuePair’, ‘key’ and ‘value’ may be decorated with any of the other keywords specified in this specification (e.g., with ‘presence’, ‘value’, ‘range’ and other keywords).

Examples:

· The following specifies an additionalFields string which is stuffed with ‘key=value’ pairs delimited by the pipe (‘|’) symbol as in (“key1=value1|key2=value2|key3=value3…”).

additionalFields: {presence: required, keyValuePairString: {|, =, keyValuePairs: [

 keyValuePair: {presence: required, structure: {

 key: {presence: required, value: someKeyName},

 value: {presence: required, range: [0, 100]}

 } },

 keyValuePair: {presence: optional, structure: {

 key: {presence: required, value: someOtherKeyName},

 value: {presence: required, value [red, white, blue]}

 } }

] } }

[bookmark: _Toc497230134]Presence

The ‘presence’ keyword may be defined as ‘required’ or ‘optional’. If not provided, the element is assumed to be ‘optional’.

Examples

· element: { presence: required }	# element must be present

· element: { presence: optional }	# element is optional

· element: { value: blue } 		# by omitting a presence definition, the

 element is assumed to be optional

[bookmark: _Toc497230135]Range

The ‘range’ keyword applies to fields (i.e., simpleTypes); indicates the value of the field is a number within a specified range of values from low to high (inclusive of the indicated values). . ‘range:’ is followed by two parameters in square brackets:

· the first parameter conveys the minimum value

· the second parameter conveys the maximum value or ‘unbounded’

The keyword ‘unbounded’ is supported to convey an unbounded upper limit. Note that the range cannot override any restrictions defined in the VES Common Event Format.

Examples:

· fieldname: { range: [1, unbounded] }

· fieldname: { range: [0, 3.14] }

[bookmark: _Toc497230136]Structure

The ‘structure’ keyword indicates that the element is a complexType (i.e., an object) and is followed by curly braces containing that object.

Example:

· objectName: { structure: {

 element1: { },

 element2: { },

 anotherObject: { structure: {

 element3: { },

 element4: { }

 } }

 } }

[bookmark: _Toc497230137]Units

The ‘units’ qualifier may be applied to values provided in VES Common Event Format extensible field structures. The ‘units’ qualifier communicates the units (e.g., megabytes, seconds, Hz) that the value is expressed in. Note: the ‘units’ should not contain any space characters (e.g., use ‘numberOfPorts’ or ‘number_of_ports’ but not ‘number of ports’).

Example:

· field: { structure: {

 name: { value: pilotNumberPoolSize },

 value: { units: megabytes }		# the value will be expressed in megabytes

 } }

[bookmark: _Toc497230138]Value

The ‘value’ keyword applies to fields (i.e., simpleTypes); indicates a single value or an enumeration of possible values. If not provided, it is assumed the value will be determined at runtime. Note that the declared value cannot be inconsistent with restrictions defined in the VES Common Event Format (e.g., it cannot add an enumerated value to an enumeration defined in the Common Event Format, but it can subset the defined enumerations in the Common Event Format).

Values that are strings containing spaces should always be indicated in single quotes.

Examples:

· fieldname: { value: x } 	# the value is ‘x’

· fieldname: { value: [x, y, z] } 	# the value is either ‘x’, ‘y’, or ‘z’

· fieldname: { presence: required } 	# the value will be provided at runtime

· fieldname: { value: ‘error state’ } # the value is the string within the single quotes

[bookmark: _Toc497230139]Rules

[bookmark: _Toc497230140]Rules Document

After all events have been defined, the YAML file may conclude with a final YAML document delimited by ‘---‘ and ‘…’, which defines rules based on the named ‘conditions’ asserted in action qualifiers in the preceding event definitions. For example:

Event Registration for eventName ‘name1’

event: {presence: required, action: [any, any, A, null], structure: {

 # details omitted

}}

...

Event Registration for eventName ‘name2’

event: {presence: required, structure: {

 commonEventHeader: {presence: required, structure: {

 # details omitted

 }}

 measurementsForVfScalingFields: {presence: required, structure: {

 cpuUsageArray: {presence: required, array: {

 cpuUsage: {presence: required, structure: {

 cpuIdentifier: {presence: required},

 percentUsage: {presence: required, action: [90, up, B, null]}

 }}

 }},

 # details omitted

 }}

}}

...

Rules

rules: [

 # defined based on conditions ‘A’ and ‘B’ - details omitted

]

...

[bookmark: _Toc497230141]Rules Syntax and Semantics

The YAML ‘rules’ document begins with the keyword ‘rules’ followed by a colon and square brackets. Each rule is then defined within the square brackets. Commas are used to separate rules.

Each rule is expressed as follows:

rule: {

 trigger: logical expression in terms of conditions,

 microservices: [microservice1, microservice2, microservice3…]

 alerts: [tcaEventName1, tcaEventName2, tcaEventName3…],

}

Notes:

· All referenced tcaEventNames should be defined within the YAML.

· For information about microservices, see section 3.1.1 bullet number 4.

· At least one microservice or alert should be specified, and both microservices and alerts may be specified.

[bookmark: _Toc497230142]Simple Triggers

The trigger is based on the named ‘conditions’ asserted in the action qualifiers within the event definitions earlier in the YAML file. The following logical operators are supported:

· &: which is a logical AND

· ||, which is a logical OR

In addition parentheses may be used to group expressions.

Example logical expression:

(A & B) || (C & D)

Where A, B, C and D are named conditions expressed earlier in the YAML file.

Example rules definition:

rules: [

 rule: {

 trigger: A,

 alerts: [tcaEventName1],

 microservices: [rebootVm]

 },

 rule: {

 trigger: B || (C & D),

 microservices: [scaleOut]

 }

]

Note: when microservices are defined in terms of multiple event conditions, the designer should take care to consider whether the target of the microservice is clear (e.g., which VNF or VM instance to perform the action on). Future versions of this document may provide more clarity.

[bookmark: _Toc497230143]Time Based Qualifiers

Time based rules may be established by following any named condition with a colon and curly braces. The time based rule is placed in the curly braces as follows:

 trigger: B:{3 times in 300 seconds}

This means that if condition B occurs 3 (or more) times in 300 seconds (e.g., 5 minutes), the trigger fires.

More complex triggers can be created as follows:

 trigger: B:{3 times in 300 seconds} || (C & D:{2 times in 600 seconds}),

This means that the trigger fires if condition B occurs 3 (or more) times in 5 minutes, OR, if condition D occurs 2 (or more) times in 10 minutes AND condition C is in effect.

[bookmark: _Toc497230144]YAML Examples

An example YAML file is provided below which registers some events for a hypothetical VNF. Note: some of the lines have been manually wrapped/indented to make it easier to read. Please ignore the section breaks that interrupt this single file; they were added to make it easier to rapidly find examples of different types of events.

[bookmark: _Toc497230145]Fault

registration for Fault_vMrf_alarm003

Constants: the values of domain, eventName, priority, vfstatus

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, action: [any, any, alarm003, RECO-rebuildVnf],

structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm003},

 eventId: {presence: required},

 nfNamingCode: {value: mrfx},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm003},

 eventSeverity: {presence: required, value: MAJOR},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Configuration file was corrupt or

 not present"},

 vfStatus: {presence: required, value: "Requesting Termination"}

 }}

}}

...

registration for clearing Fault_vMrf_alarm003Cleared

Constants: the values of domain, eventName, priority,

, version, alarmCondition, eventSeverity, eventSourceType,

faultFieldsVersion, specificProblem,

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec, vfStatus

event: {presence: required, action: [any, any, alarm003, Clear], structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: fault},

 eventName: {presence: required, value: Fault_vMrf_alarm003Cleared},

 eventId: {presence: required},

 nfNamingCode: {value: mrfx},

 priority: {presence: required, value: Medium},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 faultFields: {presence: required, structure: {

 alarmCondition: {presence: required, value: alarm003},

 eventSeverity: {presence: required, value: NORMAL},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 faultFieldsVersion: {presence: required, value: 2.0},

 specificProblem: {presence: required, value: "Valid configuration file found"},

 vfStatus: {presence: required, value: "Requesting Termination"}

 }}

}}

...

[bookmark: _Toc497230146]Heartbeat

registration for Heartbeat_vMRF

Constants: the values of domain, eventName, priority, version

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId, sourceName,

startEpochMicrosec

event: {presence: required, heartbeatAction: [3, vnfDown, RECO-rebuildVnf],

structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: heartbeat},

 eventName: {presence: required, value: Heartbeat_vMrf},

 eventId: {presence: required},

 nfNamingCode: {value: mrfx},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 heartbeatFields: {presence: optional, structure:{

 heartbeatFieldsVersion: {presence: required, value: 1.0},

 heartbeatInterval: {presence: required, range: [15, 300], default: 60 }

 }}

}}

...

[bookmark: _Toc497230147]Measurements

registration for Mfvs_vMRF

Constants: the values of domain, eventName, priority, version,

measurementFieldsVersion, additionalMeasurements.namedArrayOfFields.name,

Variables (to be supplied at runtime) include: eventId, reportingEntityName, sequence,

sourceName, start/lastEpochMicrosec, measurementInterval,

concurrentSessions, requestRate, numberOfMediaPortsInUse,

cpuUsageArray.cpuUsage,cpuUsage.cpuIdentifier, cpuUsage.percentUsage,

additionalMeasurements.namedArrayOfFields.arrayOfFields,

vNicPerformance.receivedOctetsAccumulated,

vNicPerformance.transmittedOctetsAccumulated,

vNicPerformance.receivedTotalPacketsAccumulated,

vNicPerformance.transmittedTotalPacketsAccumulated,

vNicPerformance.vNicIdentifier, vNicPerformance.receivedOctetsDelta,

vNicPerformance.receivedTotalPacketsDelta,

vNicPerformance.transmittedOctetsDelta,

vNicPerformance.transmittedTotalPacketsDelta,

vNicPerformance.valuesAreSuspect, memoryUsageArray.memoryUsage,

memoryUsage.memoryConfigured, memoryUsage.vmIdentifier,

memoryUsage.memoryUsed, memoryUsage.memoryFree

event: {presence: required, structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: measurementsForVfScaling},

 eventName: {presence: required, value: Mfvs_vMrf},

 eventId: {presence: required},

 nfNamingCode: {value: mrfx},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 measurementsForVfScalingFields: {presence: required, structure: {

 measurementFieldsVersion: {presence: required, value: 2.0},

 measurementInterval: {presence: required, range: [60, 3600], default: 300},

 concurrentSessions: {presence: required, range: [0, 100000]},

 requestRate: {presence: required, range: [0, 100000]},

 numberOfMediaPortsInUse: {presence: required, range: [0, 100000]},

 cpuUsageArray: {presence: required, array: [

 cpuUsage: {presence: required, structure: {

 cpuIdentifier: {presence: required},

 percentUsage: {presence: required, range: [0, 100],

 action: [80, up, CpuUsageHigh, RECO-scaleOut],

 action: [10, down, CpuUsageLow, RECO-scaleIn]}

 }}

]},

 memoryUsageArray: {presence: required, array: [

 memoryUsage: {presence: required, structure: {

 memoryConfigured: {presence: required, value: 33554432},

 memoryFree: {presence: required, range: [0, 33554432],

 action: [100, down, FreeMemLow, RECO-scaleOut],

 action: [30198989, up, FreeMemHigh, RECO-scaleIn]},

 memoryUsed: {presence: required, range: [0, 33554432]},

 vmIdentifier: {presence: required}

 }}

]},

 additionalMeasurements: {presence: required, array: [

 namedArrayOfFields: {presence: required, structure: {

 name: {presence: required, value: licenseUsage},

 arrayOfFields: {presence: required, array: [

 field: {presence: required, structure: {

 name: {presence: required, value: G711AudioPort},

 value: {presence: required, range: [0, 100000],

 units: numberOfPorts }

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: G729AudioPort},

 value: {presence: required, range: [0, 100000],

 units: numberOfPorts }

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: G722AudioPort},

 value: {presence: required, range: [0, 100000],

 units: numberOfPorts }

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: AMRAudioPort},

 value: {presence: required, range: [0, 100000],

 units: numberOfPorts }

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: AMRWBAudioPort},

 value: {presence: required, range: [0, 100000],

 units: numberOfPorts }

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: OpusAudioPort},

 value: {presence: required, range: [0, 100000],

 units: numberOfPorts }

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: H263VideoPort},

 value: {presence: required, range: [0, 100000],

 units: numberOfPorts }

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: H264NonHCVideoPort},

 value: {presence: required, range: [0, 100000],

 units: numberOfPorts }

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: H264HCVideoPort},

 value: {presence: required, range: [0, 100000],

 units: numberOfPorts }

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: MPEG4VideoPort},

 value: {presence: required, range: [0, 100000],

 units: numberOfPorts }

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: VP8NonHCVideoPort},

 value: {presence: required, range: [0, 100000],

 units: numberOfPorts }

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: VP8HCVideoPort},

 value: {presence: required, range: [0, 100000],

 units: numberOfPorts }

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: PLC},

 value: {presence: required, range: [0, 100000],

 units: numberOfPorts }

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: AEC},

 value: {presence: required, range: [0, 100000],

 units: numberOfPorts }

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: NR},

 value: {presence: required, range: [0, 100000],

 units: numberOfPorts }

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: NG},

 value: {presence: required, range: [0, 100000],

 units: numberOfPorts }

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: NLD},

 value: {presence: required, range: [0, 100000],

 units: numberOfPorts }

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: G711FaxPort},

 value: {presence: required, range: [0, 100000],

 units: numberOfPorts }

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: T38FaxPort},

 value: {presence: required, range: [0, 100000],

 units: numberOfPorts }

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: RFactor},

 value: {presence: required, range: [0, 100000],

 units: numberOfPorts }

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: T140TextPort},

 value: {presence: required, range: [0, 100000],

 units: numberOfPorts }

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: EVSAudioPort},

 value: {presence: required, range: [0, 100000],

 units: numberOfPorts }

 }}

]}

 }},

 namedArrayOfFields: {presence: required, structure: {

 name: {presence: required, value: mediaCoreUtilization},

 arrayOfFields: {presence: required, array: [

 field: {presence: required, structure: {

 name: {presence: required, value: actualAvgAudio},

 value: {presence: required, range: [0, 255],

 action: [80, up, AudioCoreUsageHigh, RECO-scaleOut],

 action: [10, down, AudioCoreUsageLow, RECO-scaleIn]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: modelAvgAudio},

 value: {presence: required, range: [0, 100],

 action: [80, up, AudioCoreUsageHigh, RECO-scaleOut],

 action: [10, down, AudioCoreUsageLow, RECO-scaleIn]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: actualMaxAudio},

 value: {presence: required, range: [0, 255]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: modelMaxAudio},

 value: {presence: required, range: [0, 100]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: actualAvgVideo},

 value: {presence: required, range: [0, 255],

 action: [80, up, VideoCoreUsageHigh, RECO-scaleOut],

 action: [10, down, VideoCoreUsageLow, RECO-scaleIn]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: modelAvgVideo},

 value: {presence: required, range: [0, 100],

 action: [80, up, VideoCoreUsageHigh, RECO-scaleOut],

 action: [10, down, VideoCoreUsageLow, RECO-scaleIn]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: actualMaxVideo},

 value: {presence: required, range: [0, 255]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: modelMaxVideo},

 value: {presence: required, range: [0, 100]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: actualAvgHcVideo},

 value: {presence: required, range: [0, 255],

 action: [80, up, HcVideoCoreUsageHigh, RECO-scaleOut],

 action: [10, down, HcVideoCoreUsageLow, RECO-scaleIn]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: modelAvgHcVideo},

 value: {presence: required, range: [0, 100],

 action: [80, up, HcVideoCoreUsageHigh, RECO-scaleOut],

 action: [10, down, HcVideoCoreUsageLow, RECO-scaleIn]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: actualMaxHcVideo},

 value: {presence: required, range: [0, 255]}

 }},

 field: {presence: required, structure: {

 name: {presence: required, value: modelMaxHcVideo},

 value: {presence: required, range: [0, 100]}

 }}

]}

 }}

]},

 vNicPerformanceArray: {presence: required, array: [

 vNicPerformance: {presence: required, structure: {

 receivedOctetsAccumulated: {presence: required,

 range: [0, 18446744073709551615]},

 receivedTotalPacketsAccumulated: {presence: required,

 range: [0, 18446744073709551615]},

 receivedOctetsDelta: {presence: required},

 range: [0, 18446744073709551615],

 receivedTotalPacketsDelta: {presence: required,

 range: [0, 18446744073709551615]},

 transmittedOctetsDelta: {presence: required,

 range: [0, 18446744073709551615]},

 transmittedOctetsAccumulated: {presence: required,

 range: [0, 18446744073709551615]},

 transmittedTotalPacketsAccumulated: {presence: required,

 range: [0, 18446744073709551615]},

 transmittedTotalPacketsDelta: {presence: required,

 range: [0, 18446744073709551615]},

 valuesAreSuspect: {presence: required, value: [true, false]},

 vNicIdentifier: {presence: required}

 }}

]}

 }}

}}

...

[bookmark: _Toc497230148]Syslog

registration for Syslog_vMRF

Constants: the values of domain, eventName, priority, lastEpochMicrosec, version,

syslogFields.syslogFieldsVersion, syslogFields.syslogTag

Variables include: eventId, lastEpochMicrosec, reportingEntityId, reportingEntityName,

sequence, sourceId, sourceName, startEpochMicrosec,

syslogFields.eventSourceHost, syslogFields.eventSourceType,

syslogFields.syslogFacility, syslogFields.syslogMsg

event: {presence: required, structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: syslog},

 eventName: {presence: required, value: Syslog_vMrf},

 eventId: {presence: required},

 nfNamingCode: {value: mrfx},

 priority: {presence: required, value: Normal},

 reportingEntityId: {presence: required},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceId: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0},

 }},

 syslogFields: {presence: required, structure: {

 eventSourceHost: {presence: required},

 eventSourceType: {presence: required, value: virtualNetworkFunction},

 syslogFacility: {presence: required, range: [16, 23]},

 syslogSev: {presence: required, value: [Emergency, Alert, Critical, Error]},

 syslogFieldsVersion: {presence: required, value: 3.0},

 syslogMsg: {presence: required},

 syslogSData: {presence: required, keyValuePairString: {‘ ‘, =, keyValuePairs: [

 keyValuePair: {presence: required, structure: {

 key: {presence: required, value: ATTEST},

 value: {presence: required}

 }},

 keyValuePair: {presence: required, structure: {

 key: {presence: required, value: DATE_IN},

 value: {presence: required}

 }},

 keyValuePair: {presence: required, structure: {

 key: {presence: required, value: DATE_OUT},

 value: {presence: required}

 }},

 keyValuePair: {presence: required, structure: {

 key: {presence: required, value: DEST_IN},

 value: {presence: required}

 }},

 keyValuePair: {presence: required, structure: {

 key: {presence: required, value: FUNCTION},

 value: {presence: required}

 }},

 keyValuePair: {presence: required, structure: {

 key: {presence: required, value: ICID},

 value: {presence: required}

 }},

 keyValuePair: {presence: required, structure: {

 key: {presence: required, value: ORIGID},

 value: {presence: required}

 }},

 keyValuePair: {presence: required, structure: {

 key: {presence: required, value: ORIG_TN},

 value: {presence: required}

 }},

 keyValuePair: {presence: required, structure: {

 key: {presence: required, value: SIP_REASON_HEADER},

 value: {presence: required}

 }},

 keyValuePair: {presence: required, structure: {

 key: {presence: required, value: STATE},

 value: {presence: required}

 }},

 keyValuePair: {presence: required, structure: {

 key: {presence: required, value: STATUS},

 value: {presence: required}

 }},

 keyValuePair: {presence: required, structure: {

 key: {presence: required, value: VERSTAT},

 value: {presence: required}

 }}

]}} }]

 syslogTag: {presence: required, value: vMRF},

 additionalFields: {presence: required, keyValuePairString: {|, =, keyValuePairs: [

 keyValuePair: {presence: required, structure: {

 key: {presence: required, value: someKeyName},

 value: {presence: required}

 }},

 keyValuePair: {presence: optional, structure: {

 key: {presence: required, value: someOtherKeyName},

 value: {presence: required}

 }}

]}}

 }}

}}

...

[bookmark: _Toc497230149]Mobile Flow

registration for mobileFlow

Constants: the values of domain, eventName, priority, version

#

Variables (to be supplied at runtime) include: eventId, reportingEntityName,

sequence, sourceName, start/lastEpochMicrosec

#

event: {presence: required, structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: mobileFlow},

 eventName: {presence: required, value: mobileFlow},

 eventId: {presence: required},

 nfType: {presence: required, value: sbcx},

 priority: {presence: required, value: Normal},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 mobileFlowFieldsVersion: {presence: required, structure: {

 applicationType: {presence: optional},

 appProtocolType: {presence: optional},

 appProtocolVersion: {presence: optional},

 cid: {presence: optional},

 connectionType: {presence: optional},

 ecgi: {presence: optional},

 flowDirection: {presence: required},

 gtpPerFlowMetrics: {presence: required, structure: {

 avgBitErrorRate: {presence: required},

 avgPacketDelayVariation: {presence: required},

 avgPacketLatency: {presence: required},

 avgReceiveThroughput: {presence: required},

 avgTransmitThroughput: {presence: required},

 durConnectionFailedStatus: {presence: optional},

 durTunnelFailedStatus: {presence: optional},

 flowActivatedBy: {presence: optional},

 flowActivationEpoch: {presence: required},

 flowActivationMicrosec: {presence: required},

 flowActivationTime: {presence: optional},

 flowDeactivatedBy: {presence: optional},

 flowDeactivationEpoch: {presence: required},

 flowDeactivationMicrosec: {presence: required},

 flowDeactivationTime: {presence: required},

 flowStatus: {presence: required},

 gtpConnectionStatus: {presence: optional},

 gtpTunnelStatus: {presence: optional},

 ipTosCountList: {presence: optional},

 ipTosList: {presence: optional},

 largePacketRtt: {presence: optional},

 largePacketThreshold: {presence: optional},

 maxPacketDelayVariation: {presence: required},

 maxReceiveBitRate: {presence: optional},

 maxTransmitBitRate: {presence: optional},

 mobileQciCosCountList: {presence: optional},

 mobileQciCosList: {presence: optional},

 numActivationFailures: {presence: required},

 numBitErrors: {presence: required},

 numBytesReceived: {presence: required},

 numBytesTransmitted: {presence: required},

 numDroppedPackets: {presence: required},

 numGtpEchoFailures: {presence: optional},

 numGtpTunnelErrors: {presence: optional},

 numHttpErrors: {presence: optional},

 numL7BytesReceived: {presence: required},

 numL7BytesTransmitted: {presence: required},

 numLostPackets: {presence: required},

 numOutOfOrderPackets: {presence: required},

 numPacketErrors: {presence: required},

 numPacketsReceivedExclRetrans: {presence: required},

 numPacketsReceivedInclRetrans: {presence: required},

 numPacketsTransmittedInclRetrans: {presence: required},

 numRetries: {presence: required},

 numTimeouts: {presence: required},

 numTunneledL7BytesReceived: {presence: required},

 roundTripTime: {presence: required},

 tcpFlagCountList: {presence: optional},

 tcpFlagList: {presence: optional},

 timeToFirstByte: {presence: required}

 }},

 gtpProtocolType: {presence: optional},

 gtpVersion: {presence: optional},

 httpHeader: {presence: optional},

 imei: {presence: optional},

 imsi: {presence: optional},

 ipProtocolType: {presence: required},

 ipVersion: {presence: required},

 lac: {presence: optional},

 mcc: {presence: optional},

 mnc: {presence: optional},

 msisdn: {presence: optional},

 otherEndpointIpAddress: {presence: required},

 otherEndpointPort: {presence: required},

 otherFunctionalRole: {presence: optional},

 rac: {presence: optional},

 radioAccessTechnology: {presence: optional},

 reportingEndpointIpAddr: {presence: required},

 reportingEndpointPort: {presence: required},

 sac: {presence: optional},

 samplingAlgorithm: {presence: optional},

 tac: {presence: optional},

 tunnelId: {presence: optional},

 vlanId: {presence: optional},

 additionalInformation: {presence: optional, array: {

 field: {presence: required, structure: {

 name: {presence: required, value: name1},

 value: {presence: required}

 }},

 field: {presence: optional, structure: {

 name: {presence: required, value: name2},

 value: {presence: required}

 }}

 }}

 }}

}}

...

[bookmark: _Toc497230150]Sip Signaling

registration for sipSignaling

Constants: the values of domain, eventName, priority, version

#

Variables (to be supplied at runtime) include: eventId, reportingEntityName,

sequence, sourceName, start/lastEpochMicrosec

#

event: {presence: required, structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: sipSignaling},

 eventName: {presence: required, value: sipSignaling_modelName},

 eventId: {presence: required},

 nfType: {presence: required, value: sbcx},

 priority: {presence: required, value: Normal},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 sipSignalingFields: {presence: required, structure: {

 compressedSIP: {presence: optional},

 correlator: {presence: required},

 localIpAaddress: {presence: required},

 localPort: {presence: required},

 remoteIpAddress: {presence: required},

 remotePort: {presence: required},

 sipSignalingFieldsVersion: {presence: required},

 summarySip: {presence: optional},

 vnfVendorNameFields: {presence: required, structure: {

 vendorName: {presence: required},

 vfModuleName: {presence: optional},

 vnfName: {presence: optional}

 }},

 additionalInformation: {presence: optional, array: {

 field: {presence: required, structure: {

 name: {presence: required, value: name1},

 value: {presence: required}

 }},

 field: {presence: optional, structure: {

 name: {presence: required, value: name2},

 value: {presence: required}

 }}

 }}

 }}

}}

...

[bookmark: _Toc497230151]Voice Quality

registration for voiceQuality

Constants: the values of domain, eventName, priority, version

#

Variables (to be supplied at runtime) include: eventId, lastEpochMicrosec,

reportingEntityId, reportingEntityName, sequence, sourceId,

sourceName, startEpochMicrosec

event: {presence: required, structure: {

 commonEventHeader: {presence: required, structure: {

 domain: {presence: required, value: voiceQualityFields},

 eventName: {presence: required, value: voiceQualityFields_modelName},

 eventId: {presence: required},

 nfType: {presence: required, value: sbcx},

 priority: {presence: required, value: Normal},

 reportingEntityName: {presence: required},

 sequence: {presence: required},

 sourceName: {presence: required},

 startEpochMicrosec: {presence: required},

 lastEpochMicrosec: {presence: required},

 version: {presence: required, value: 3.0}

 }},

 voiceQualityFieldsVersion: {presence: required, structure: {

 calleeSideCodec: {presence: required},

 callerSideCodec: {presence: required},

 correlator: {presence: required},

 remoteIpAddress: {presence: required},

 endOfCallVqmSummaries: {presence: required, structure: {

 adjacencyName: {presence: required},

 endpointDescription: {presence: required},

 endpointAverageJitter: {presence: optional},

 endpointMaxJitter: {presence: optional},

 endpointRtpOctetsLost: {presence: optional},

 endpointRtpPacketsLost: {presence: optional},

 endpointRtpOctetsDiscarded: {presence: optional},

 endpointRtpOctetsReceived: {presence: optional},

 endpointRtpOctetsSent: {presence: optional},

 endpointRtpPacketsDiscarded: {presence: optional},

 endpointRtpPacketsReceived: {presence: optional},

 endpointRtpPacketsSent: {presence: optional},

 localAverageJitter: {presence: optional},

 localMaxJitter: {presence: optional},

 localAverageJitterBufferDelay: {presence: optional},

 localMaxJitterBufferDelay: {presence: optional},

 localRtpOctetsDiscarded: {presence: optional},

 localRtpOctetsLost: {presence: optional},

 localRtpOctetsReceived: {presence: optional},

 localRtpOctetsSent: {presence: optional},

 localRtpPacketsDiscarded: {presence: optional},

 localRtpPacketsLost: {presence: optional},

 localRtpPacketsReceived: {presence: optional},

 localRtpPacketsSent: {presence: optional},

 mosCqe: {presence: optional},

 packetLossPercent: {presence: optional},

 rFactor: {presence: optional},

 roundTripDelay: {presence: optional},

 oneWayDelay: {presence: optional}

 }},

 phoneNumber: {presence: required},

 midCallRtcp: {presence: required},

 vendorVnfNameFields: {presence: required, structure: {

 vendorName: {presence: required},

 vfModuleName: {presence: optional},

 vnfName: {presence: optional}

 }},

 additionalInformation: {presence: optional, array: {

 field: {presence: required, structure: {

 name: {presence: required, value: name1},

 value: {presence: required}

 }},

 field: {presence: optional, structure: {

 name: {presence: required, value: name2},

 value: {presence: required}

 }}

 }}

 }}

}}

...

[bookmark: _Toc497230152]Rules

#Rules

Rules: [

 rule: {

 trigger: CpuUsageHigh || FreeMemLow || AudioCoreUsageHigh ||

 VideoCoreUsageHigh || HcVideoCoreUsageHigh,

 microservices: [scaleOut]

 },

 rule: {

 trigger: CpuUsageLow && FreeMemHigh && AudioCoreUsageLow &&

 VideoCoreUsageLow && HcVideoCoreUsageLow,

 microservices: [scaleIn]

 }

]

...

[bookmark: _Toc477388971][bookmark: _Toc497230153]Appendix: Historical Change Log

For the latest changes, see the Change Block just before the Table of Contents.

		Date

		Revision

		Description

		3/15/2017

		1.0

		This is the initial release of the VES Event Registration document.

		3/22/2017

		1.1

		· Changed the ‘alert’ qualifier to ‘action’ and added support for conditions that will trigger rules.

· Formatted the document with more sections and subsections.

· Defined the syntax and semantics for condition based rules.

· Fixed the YAML examples.

		3/27/2017

		1.2

		· Clarified the audience of the document and the expectations for vendors.

· Changed the order of fields in the action keyword.

· Updated the YAML examples.

· Wordsmithed throughout.

		3/31/2017

		1.3

		· Generalized the descriptions from an ASDC, ECOMP and AT&T-specific interaction with a VNF vendor, to a generic Service Provider interaction with a VNF vendor.

· Wordsmithed throughout.

· Added a ‘default’ qualifier

· Fixed syntax and semantic inconsistencies in the Rules section

· Brought all examples into compliance with v5.0

· Added a heartbeat example

· Modified the mfvs example

· Modified the syslog example

· Added two complex rules

		4/14/2017

		1.4

		· Wordsmithed throughout

· Action keyword: clarified use of ‘up’, ‘down’ and ‘at’ triggers; clarified the specification and use of microservices directives at design time and runtime, clarified the use of tca’s

· HeartbeatAction keyword: Added the heartbeatAction keyword

· Value keyword: clarified the communicaton of strings containing spaces.

· Rules: corrected the use of quotes in examples

· Examples: added the heartbeatAction keyword on the heartbeat event example; also corrected use of quotes throughout.

		10/3/2017

		1.5

		· Back of Cover Page: updated the license and copyright notice to comply with ONAP guidelines

· Section 3.1: Added a ‘Units’ qualifier

· Examples: updated the examples to align with VES 5.4.1

image1.png

image2.png

	ONAP Service Assurance�VES Onboarding, Requirements & Operations��Alok Gupta�+1 (732)-420-7007�ag1367@att.com�Tom Tofigh �+1 (732)-420-7007�mt3682@att.com���
	Why VES?
	VES (VF Event Streaming) Progress
	VES – Common Event Data Model
	VES OPNFV Demo
	VES On-Boarding Artifact (One Document)
	VES On-Boarding Artifact Use
	Slide Number 8
	TCA Configuration (One for each TCA being watch and also for complex TCAs)
	Policy Update GUI
	VES SA Proposed E-t-E Architecture
	ONAP Work Items
	Slide Number 13
	Registration – vMRF_heartbeat
	Registering EventType: Fault_vMRF_InvalidLicense�
	Registering EventType: MFVS vMRF
	Registering EventType: Complex TCAs
	Registering EventType: syslogs vMRF
	ONAP Vendor Event Listener code on Github and ONAP Gerrit
	Summary

