
© 2017 TM Forum | 1

TM Forum Input to

ONAP Modeling Workshop

December 14, 2017

John Wilmes
Director of IoT Projects

TM Forum

© 2017 TM Forum | 2

Model Driven API specifications and the TM Forum Information Framework (SID)

TMF Open APIs add
behaviour to the

SID

SID is static and
focused on data

It describes business entities

It does not describe what you can do with those business entities

TMF Open APIs use
the SID as the basis
for their data model

TMF API Entities are REST/JSON realizations of the SID Entities (the Data part of the
Shared Information and Data)

They define the operations that can be executed on the entities

They define the interaction patterns Request/Response/Exceptions and Notifications

TMF Open APIs use
REST-based design

patterns

All TMF Open APIs use a consistent set of API design patterns (TMF 630 & TMF 631)
Version 3.0 supports Polymorphism

TMF Open APIs
facilitate Dynamic
Product & Service

Creation

Polymorphism supports the dynamic creation of products and services using a
common core API proven in catalyst projects
Polymorphic API can carry the service / resource specific payloads defined by MEF,
ONF, etc.

© 2017 TM Forum | 3

Open API Structure – Level 1 mapped to TM Forum Information Framework (SID) level 0

Market/Sales

Product

Customer

Service

Resource

Engaged/Party

Enterprise Common

Marketing API

Sales Management API

Sales Organizations API

Product Inventory API

Product Catalog API

Stock Management API

Loyalty API

Customer Management API

Quote API

Product Ordering API

Shopping Cart API

Appointment API

SLA Management API

Service Inventory API

Service Catalog API Configuration and Activation API

Digital Service Management API

Service Quality Management API

Service Qualification API

Billing Management API

Customer 360 API

Payment Management API

Service Test API

Service Problem Management Service Test API

Resource Inventory API

Resource Catalog API

Resource Topology API

Configuration and Activation API

Resource Function API Alarm API

Resource Pool API Resource Test API

Location API

Policy APIUsage Management API

Performance Monitoring

API

Trouble Ticket API Project API

PM Threshold API
Document Management

API

Alarm API

Entity Catalog API

Metric API

Party Management API

Customer Insight API

Agreement API

User and Roles API

Product Order API

Payment Method API Partnership API Privacy APIParty Role API

Address API

Account Management API

Promotion API

Loyalty API

Experience Management API

Onboarding API

Service Level Agreement API

Test API Federated Identity API Topology API Event API

Purchase Order API

Shipping Management API

Retail Premise API

Workforce Management API

Service Qualification API Change Management API

© 2017 TM Forum | 4

Open APIs and TM Forum Information Framework (SID)

• The data structure provided with every TM Forum Open API is
aligned to the SID

• The SID is widely adopted throughout the communications
industry

• This helps ensure interoperability – one of the key objectives of
the TM Forum Open API program

• There is a direct mapping between the SID entity types and the
corresponding JSON resources in the TMF REST API resource
model and TMF API Data Model

• The mapping between the SID entity types and the corresponding
Resource model is based on a set of patterns called the SID JSON
Mapping Patterns

© 2017 TM Forum | 5

TM Forum Information Framework (SID) Relationships and Links

• The SID model defines a number of relationships

• Not all of them need to be implemented for a particular
resource within an API

• Choice of link data model must be made when mapping
relationships to a REST based representation model

Hyperlinks

Link Header

Dependent Entities

© 2017 TM Forum | 6

Simple Data Model with Hyperlinks… based on TM Forum Information Framework (SID)

Product
Catalog
API

© 2017 TM Forum | 7

Customer SID Business Entities and the API Model

We will need to make choices for the API:
What relationships ? What entities ?

© 2017 TM Forum | 8

• Our proposal is to do the same for the APIs
used to automate interactions between BSS
and ONAP

• Introducing polymorphism pattern in Service
Order API (in progress), Service Catalog API
(already done in TMF release 17.5) and Service
Inventory (in progress) will allow the creation
of flexible ‘service-agnostic’ API

MEF API leveraging TMF polymorphism

© 2017 TM Forum | 9

• MEF SONATA LSO-SDK-R1 leveraged TMF Open API
features introduced with TMF API guidelines 3.0

• In particular, polymorphism pattern was used in
productOrder API and productOfferingQualification API
to describe Product Specification and use this to
dynamically extend product ordering configuration

• Benefit of this pattern is to decouple API model (which
are fully product-agnostic) from Product Description
that could be model driven and be described in JSON /
YML file

• These APIs were used in a PoC between AT&T, Colt and
Orange

MEF API leveraging TMF polymorphism

© 2017 TM Forum | 10

API
ProductOrder
resource model
extraction

MEF API leveraging TMF polymorphism

▪ A ProductOrder is made of OrderItem(s)

▪ An OrderItem describes an operation on a product (or a future
product)

▪ A product is defined by a ProductSpecificationThe ‘describing’ attribute allows us to describe

• Type of the productSpec to be described…. An UNI, an E-Line, etc…

• Schema location where product specification is described

© 2017 TM Forum | 11

Product Specifications are
defined in JSON file in MEF-GIT

MEF API leveraging TMF polymorphism

© 2017 TM Forum | 12

MEF API leveraging TMF polymorphism

1

2

3

POST productOrder/

© 2017 TM Forum | 13

Additional Material

© 2017 TM Forum | 14

Choice of Link models

•Embed related object properties within entity
representation (transform relationship to dependent
entity- data type)
• This is something used when there is still no resource defined for

the associated entity in the API Ecosystem

•Use href or links within the JSON body (hyperlinks) with
some useful filtering information
• This is the preferred approach when the related object is treated

as a resource

• Additional properties are added to the href for filtering and quick
retrieval purpose

© 2017 TM Forum | 15

{	
				"id":	"c1234",	
				"href":	"http://serverlocation:port/customerManagement/customer/c1234",	
				"name":	"DisplayName",	
				"status":	"Active",	
				"description":	"Description	string",	
---dependant	entity	relationship---	
				"contactMedium":	[
								{	
												"type":	"Email",	
												"validFor":	{	
																"startDateTime":	"2013-04-19T20:42:23.0Z"	
												},	
												"medium":	{	
																"emailAddress":	"abc@tmforum.com"	

												}	
								}	
								
],	
	----href	relationship---				
"customerAccount":	[
								{	
											"id":	"1",	
											"href":					
"http://serverlocation:port/customerManagement/customerAccount/1",	
												"name":	"CustomerAccount1",	
												"description":	"CustomerAccountDesc1",	
												"status":	"Active"	
								}	
],	
}	

© 2017 TM Forum | 16

Flattening Inheritance Hierarchy Pattern

• REST Resources represent SID entities

• Some SID entities are part of inheritance hierarchies

© 2017 TM Forum | 17

Collapsing Classes

• JSON does not support generalization or inheritance
(no equivalent of xsi:type at run time)

• In general only the most derived SID classes are used as
Resource representations in TMF Open APIs

• In the SID JSON representation we normally collapse the class into the direct
child

• We then expose the SID Entity as a resource with all the inherited attributes
embedded into the JSON representation

• This does not mean that an API SID JSON Resource
can’t be extended

• The REST API Design Patterns support the “@type” property

© 2017 TM Forum | 18

Collapsing Classes

• Allow collapsing a class into either
its direct parent or its direct child

• Can be recursive as shown on
figure:
• In the figure case, LogicalResource inherits

from Resource and Resource has no
parent

• If attributes and associations,
handle as if present on target
class

• Only valid for direct parent or
child today - extension planned to
other associations in future

JSON
Representation

JSON
Representation

© 2017 TM Forum | 19

SID/JSON Mapping Methodology

• Choose the Entities to be mapped
to API JSON Resources

• based on management
functionality

• within this or another API
Component

• Apply Entity Collapsing Pattern

• Choose related Entities mapped to
Dependent Data

• no need to expose them as
resources

• no API exist to support them as
linked entities

• Transform relationships to
other Resource Entities into
(array) of href relationships

• Transform relationships to
dependent entities into array
properties

• Transform Characteristics and
Configurable Characteristics
into JSON array of Name Value
Pairs

• Transform Characteristic
Specification into predefined
Characteristic Specification
JSON construct

© 2017 TM Forum | 20

Customer API Data Model

RelatedPartyRef

- id :String

- href :String

- role :String

- name :String

- validFor :TimePeriod

Customer

- id :String

- href :String

- name :String

- status :String

- description :String

- validFor :TimePeriod

- customerRank :String

Characteristic

- name :String

- value :String

PaymentMeanRef

- id :String

- href :String

- name :String

ContactMedium

- preferred :Boolean

- type :String

- validFor :TimePeriod

Medium

- city :String

- country :String

- emailAddress :String

- type :String

- number :String

- postcode :String

- stateOrProvince :String

- street1 :String

- street2 :String

CustomerCreditProfile

- creditProfileDate :DateTime

- validFor :TimePeriod

- creditRiskRating :Integer

- creditScore :Integer

CustomerAccountRef

- id :String

- href :String

- name :String

- description :String

- status :String

+customerAccount

0..*

CustomerOwnsCustomerAccount

1

+customerCreditProfile

0..*

CustomerHasCreditProfile

1

+medium

0..1

ContactMediumIsDescribedByMedium

0..1

+contactMedium

0..*

CustomerOwnsContactMedium

1

+paymentMean 0..*

CustomerOwnsPaymentMean

1

+characteristic

0..*

CustomerHasCharacteristic

1

+relatedParty

1

CustomerHasRelatedParty

1

