

ONAP kubernetes architecture/design proposal

Contributors: Isaku Yamahata, TBD

Introduction

Container/COE is buzzing

Many benefits of container/COE technology
• container/COE has many cloud native features.

- Easy deployment/version upgrade
- Autoscaling/autohealing with lower response time
- E.g. K8s: wisdom of google’s past 15+ experience

• Industry trends
- Take advantage of industry investment
- Align with industry trends

• For more cloud native VNF

Let’s take advantage of container/COE technology for ONAP

Usage scenario: the vision

VNF package

VNF-A: requires abstract
feature X

VNF-B: requires
performance Y

VNF-C: requires abstract
feature Z

SO determines which
API/cloud infra to deploy
VNF with ESR, policy.

Adaptors

ARIA

VM
VNF

container
VNF PNF

VNFs are
deployed via
SO adaptors.

LCM

LCM

MC

k8s VM

If necessary, Deploy k8s
cluster instance on
demand

VNFM can be a thin
wrapper of k8s.

Multiple cloud
infrastructures co-exist
with hybrid
deployment(VM,
container, PNF)

...
TOSCA/CSAR

policy/optimization
framework converts
abstract requirement into
concrete lowlevel
requirement of cloud infra.
E.g. Low latency -> SR-IOV
+ container

Use Cases

• vCPE: edge cloud
- Less hardware cost as container technology uses less resources than

VM.
- Simpler management

• 5G
- It has Requirements for container/COE technology.

Goal and scope

Currently ONAP is heavily tied into
OpenStack(or IaaS infrastructure)

Current ONAP architecture

Proposal:
teach
ONAP
container/
COE

Related projects
(TOSCA, container,
COE, security, etc...)

Goal and Scope

influence/
feedback/
contributecontainer/COE

Add more choices for cloud infrastructure This can be k8s on
baremetal, openstack or
on-premis cloud services

Goal and scope
Goal
• Have ONAP take advantage of container/COE technology for cloud

native era
• Utilizing of industry momentum/direction
• Influence/feedback the related technologies(e.g. TOSCA,

container/COE)
• Add more choices for VNF deployment/LCM in addition to

IaaS(OpenStack)
- It will co-exist with the existing component(VM cloud, PNF, VNFM under APP-C,

VF-C)
Scope
• Teach ONAP container/COE in addition to openstack so that VNFs can

be deployed/run/managed over container/COE in cloud native way

Non goal/out-of-scope
• Not installer/deployment. ONAP running over container

- OOM project ONAP on kubernetes
- https://wiki.onap.org/pages/viewpage.action?pageId=3247305
- https://wiki.onap.org/display/DW/ONAP+Operations+Manager+Project
- Self hosting/management might be possible. But it would be further phase.

• Not container/COE installer/deployment
• Not Replace the existing components. E.g. multicloud, APP-C, VF-C,
ETSI VNFM/EMS

- Goal is to give more choices with co-existence with already existing
components

- The result would be more adaptors/drivers/plugins in the related projects
- Some of them can be simplified by utilizing k8s features

https://wiki.onap.org/pages/viewpage.action?pageId=3247305

Non goal/out-of-scope(conti.)

• Address tech gaps of each elemental technology.
- E.g. security, container networking, TOSCA enhancement as SPEC
- ONAP scope is orchestration to make better use of them.

• Those research/engineering activity may take place outside of ONAP
- With the collaboration of ONAP community
- E.g. openstack, OPNFV
- Potentially k8s, TOSCA

• ONAP would give feedback/influence on those activity

Challenges:

container/coe technology may not be as mature as VM(openstack)
technology. Especially
• Network
• multi tenancy
• Security
• VNF lifecycle management with container/COE with consistency

Those research activity may take place outside of ONAP

Challenges: Technical gaps and research activity
• Container networking: CNI

- there are several technical gaps in container networking. The effort to fill
those gaps will be done in their own community. ONAP will give
feedback/influence based on our requirements/findings.

- This would be k8s, CNI effort
• Multi tenancy with COE
• Security

- There are concerns about container compared to VM. several
technologies allows COE to run VM instead of container. Also hybrid
deployment

• Life cycle management
- This is ONAP topic. Will be addressed in ONAP scope

How can we address/guarantee those challenges?

Relationship to other projects

ONAP

container/COE

openstack

WG: NFV,
LCOO
OPNFV

OPNFV-ONAP,
container4nfv

TOSCA

Simple profile
for NFV

CNCF, K8S

TBD...

More projects...

Feedback
Influence
collaboration

If necessary,
engage to new
communities and
form task
forces/projects in
their community
for influence.

E.g. TOSCA. We can define our own nodes
definition and then go to TOSCA organization to
see the discussion outcome.

Influence related projects. But don’t
hard-depend on them

ONAP
community
has already
relationships.

Principles

Design/architecture principle: as ONAP project

• design/architecture should align with other ONAP
architecture/projects/future directions

- Keep compatibility
- don’t break the existing component/relations. allow coexistence.

• Should leverage the existing ONAP components
- Don’t duplicate efforts, don’t re-invent wheels.

• Balance long term direction and short term achievement
- E.g. TOSCA -> container API isn’t available. It would take long time. Multiple

steps will be needed. But at the same time we’d like to have something
working/usable.

Design/architecture principle: container/COE

• ONAP should be able to take all the advantage of container/coe
technology

• The design should not tie in to any single container technology
• Give choices, don’t enforce to use container/COE

technology/features.
- If user/VNF provider want to stay in the existing way, they can.
- If they don’t want to use some features, such option should be allowed.

• E.g. If DCAE/policy framework wants to pods replacement, it should
be allowed although k8s provides pods scheduler. It’s user’s choice.

Design/Architecture principles:

Architecture
• Ideally ONAP components above multicloud, e.g. SO, controllers,

should be agnostic to cloud infrastructure and untouched (or no
major change) due to the introduction of K8s support. The
difference of cloud infrastructure should be absorbed in multicloud

- The difference should be abstracted under adaptation layer or multicloud
project.

• The basic change should be, new type for cloud infrastructure and
new features for it

What does container/COE means for
ONAP

Where do COE functionalities fit in ONAP?

Cloud
infrastructure
to run VNFs

K8s driver

Deploying
VNFs in pods
as primitive

K8s can
play a part
of role of
VNFM.

K8s adapter Two
aspects
of k8s

Feature overlap between SO/controllers and k8s

There are several overlapping features.
• Run application: (bare) pod
• Lifecycle management

- VNF configuration: config map
- Autoscaling/autohealing: replicaset
- Monitoring: probe

• Rolling upgrade: rolling update
• Networking:

- CNI, loadbalancer
- DNS

• In principle those features should be
delegated to k8s because k8s has good
features and many users wants to take
advantage of it. At the same time if
necessary/vnf desires, SO should be able
to override it.

• K8s feature isn’t always super set of SO’s.
In this case SO would implement with the
help of k8s feature.

• Life cycle management
• Autoscaling/autohealing

- replicaset/deployment/statefulset
• container probe
• Rolling upgrade
• Watching events

Multi cloud

APP-C/VF-C

SDN-C

K8S functionalities and call flow

IaaS(Infra)

PaaS(Platform)

FaaS(Function)

IaaS(Infra) IaaS(Infra)

PaaS(Platform)

• Kubernetes is different layer of
functionalities with overlap

• K8s on baremetal or VM cloud(openstack)
• K8s has, Node management, Autoscaling,

monitoring/autohealing
• => a kind of VNFM
• VNFM would be just a thin wrapper of k8s

Multicloud
IaaS API

Multicloud
PaaS API

SO controllers(APPC/
VFC/SDNC)

multicloud

K8s as VFNM.
Delegating LSM
functionalities
Or controllers
can LSM
theirselvs with
primitive APIs

Abstracted PaaS
API.(only very
primitives at first)

Put your favorit

Proposed architecture/roadmap

https://wiki.onap.org/
display/DW/Architect
ure

multicloud/COE adaptor.
with transltor of
TOSCA-to-MC continaer
API

New policy to choose
container based on tosca
requirement

K8s proxy/optionally with
abstract API for COE which
generates K8s request

Reporting
data(FACP)

Life cycle
management

Generate k8s
requests

Register k8s
instance

Roadmap proposed

Phase 1: only primitives
● Support primitives to

deploy pods
● TOSCA enhancement to

represent k8s
requirement

● SO enhancement to
know k8s.ability to
Schedule VNFs onto
k8s.

● Only for one specific
tenant

Phase 2: full functionalities
● Life cycle management

with k8s as VFNM by
controllers or directly SO

● APP-C/VF-C
● SDN-C: address

networking
● multi-tenancy
● More multicloud PaaS API
● Data management: closed

loop feedback

Phase 3: advanced functionalities
● Deploy/instantiate k8s

cluster instances on
demand.

● Scale kubernetes cluster
instances

● K8s cluster federation
● (ONAP package and self

managed ONAP service)
● Put your fancy features

scope: k8s on baremetal
Scope: hyperscale
container support

Scope: make use of k8s
unique features

Phase 1: pod primitives

TBD

TOSCA
enhancement
to represent
k8s

PaaS API for
primitive to
deploy pods

Understad k8s
requirement and
schedule VNFs onto
k8s

Register
k8s cluster
instance

Running
pods

Phase 2: life cycle management(APP-C, VF-C)

TBD

Life Cycle
Management taking
advantage of k8snetwork

Phase 3: k8s cluster mgmt

TBD
Schedule to deploy
k8s cluster instance

Deploy k8s cluster
instance

architecture/design choice discussion

architecture choices/discussion points: summary

item recommendation

Project home(new project or subproject of an existing
project or task force?)

TBD: how to position this effort.
TBD: show minimal projects to touch.
New project or task force(or SIG?)

usecase vCPE

PaaS API usage pattern Allow any choices.
The first focus is to use container orchestration
engine.e.g. k8s

API design: especially workload/lifecycle, model driven
or not?

Model driven. Allow SO and controllers to use COE
API directly for any PaaS API usage pattern.
Multicloud will have proxy API and abstracted PaaS
API.

Project home: new project or existing project?
Project home pros cons

Multicloud subproject Least overhead for project
management

architecture/design/implementati
on would be tracted to the
existing design

New project for any container
This is recommendation

New design for container is
possible. The scope would be
much more than multicloud
project.

Overhead of project
management.
This effort may touch many
projects and not self-contained.

Task Force or SIG(Special
Interest Group)

This effort will touch many
projects. This will include such
intention.

Needs to invent this kind of
group/position in ONAP
community

New project for each container
technology

ditto There is commonality among
container technology. Too much
overhead of project management

PaaS API usage pattern: allow all choices

PaaS API usge pattern comment

Run container under VM based
orchestrator. E.g. openstack nova-docker,
zun, magnum)

Little benefit to use container. But the
existing code could be utilized with minor
changes.

Use container (e.g. docker without swarm)
and manage other resource by ONAP.

Resource(host/network/etc) orchestration
layer is missing. Needs to be implement in
ONAP. ETSI NFV MANO model assumes
this.

Use container orchestration engine. E.g.
k8s/docker swarm/...

Full advantage of container/coe. And this
functionality will be used by multi-cloud
and as VNFM by APP-C.
This is the first focus.

There are also technologies for COE to use VM. e.g. virtlet, kubevirt. It would
make sense as VNF migration from VM to container as transition path.

Planned PaaS API: Model driven

PaaS API explanation Expected user

Proxy API(pass through) in
multicloud

Just proxies request to
actual k8s API with
credentials

SO, controllers.
Also to have working code
in early phase

Abstracted PaaS API:
primitive

Corresponding to the
planned multicloud IaaS
API. e.g. deploying (bare)
pod.

SO

Abstracted PaaS API:
advanced

Full advantage of
container/coe.
E.g. replica set, rolling
update etc

Cotrollers to call VNFM.
VNFM delegating
functionalities to k8s

next steps

Next steps

• Agree on its design/architecture and project home
- Usecases, story, integration(containerised VNFs)

• 5G, edge cloud

• Define the next development scope and propose new project
- Feature, functionality and task
- Release-3?

• activity can start from R-2 and in R-3 the effort can be official.
- Pick one usecase and contenairize it: vCPE?

• Present this project to TSC for approval
• participants start development

backup

ONAP, TOSCA to K8S mapping analysis

TOSCA

• Current TOSCA is defined for VMs. there are gaps/missings for
container

The existing schema
• tosca.nodes.Compute and related: TOSCA simple profile

tosca.nodes.nfv.VDU.*: TOSCA nfv profile

TOSCA enhancement for k8s

Pod/replicaset

Compute or VDU

HostedOn

NSD/VNFD

Cloud infrastructure
capability

DependsOn

capability.Docker
(kvm, hyper-v, ...)

requirement

Capability.kubernetes
(openstack, vmware,
….)

requirement

Capability.multicloud
Or cloudify, etc...

TOSCA: representing k8s cluster

• New node for k8s
- Includes k8s features

• .compute:
- relationsship.dependsOn
- Feature: requirement for k8s nodes

• -> mapping to nodeSelector

TOSCA

• LCM interface
• tosca.interfaces.node.lifecycle.Standard

- Create
- Configure
- Start
- Stop
- Delete

• tosca.interfaces.relationship.Configure
- pre_configure_source
- pre_configure_target
- post_configure_source
- post_configure_target
- add_target
- add_source
- target_changed
- remove_target

• Life cycle hooks and local execution
- Only PostStart, PreStop are available, and

PostStart are asynchronous
• Synchronization needs to be done

by ONAP
- Other hook needs to be triggered by SO or

multicloud.
- Or more life cycle hooks could be added to

k8s

TOSCA functions and output

TOSCA functions
• get_attribute, get_operation_output

• Output:
- Output value will be returned once request

is accepted to openstack.
- E.g. ip address of the port will be assigned

when port is created.

K8s
• All the request to k8s is asynchronous. So

all the request(e.g. assigned IP address)
will be available later.(or error), If output is
really needed, synchronization needs to be
implemented with k8s watch API.

- In cloud native way, those actual value(e.g.
IP address) should be retrieved
dynamically(e.g. By DNS). so that there
should be no reference to output.

- But probably output support would be
needed in the transition from VM world to
cloud native world

TOSCA NFV simple profile to k8s corresponding

NFV simple profile
• VDU
• VL
• External CP
• Internal CP
• VirtualNetworkInterfaceRequirements
• ...

K8S corresponding
• Pod template in service/deployment
• Network policy + k8s namespace

- It’s about network isolation. So with k8s
namespace, pods can be isolated.

• Service ExternalIP or Ingress
- LoadBalancerIP

• Service ClusterIP
- K8s Loadbalancer needs to be enhanced

for ONAP support
• Multus

VNF scheduling

TOSCA
• affinity/antiaffinity

K8s
• Kube-scheduler
• nodeSelector
• NodeAffinity,
• PodAffinity, PodAntiAffinity

VNF configuration

• K8s
• PodPreset:

- Injecting config value bootup time
• ConfigMap

Node status

Tosca Node state
• Initial
• Creating
• Created
• Configuring
• Configured
• Starting
• Started
• Stopping
• Deleting
• error

K8s pod status
• Pending
• Running
• Succeeded
• Failed
• unknown

K8s service

MultiCloud interface

MultiCloud for R-2 or later
• Feature reporting
• VM

- Only image deployment with
tosca.node.Compute

- Resource limit(memory/cpu)
• Network/port
• Storage

- Ephemeral volume
- Persistent volume

• Block
• object

K8S corresponding
• Node Feature Discovery
• Bare pod, pod, service or deployment

- With replicas=1
- Resource quota

• Network
- Plainly network/port can be mapped to k8s

service. With single IP address/network
interface

- Service + clusterIP/ExternalIP
- With Multus, it can be mapped to more
- Network policy + k8s namespace

• CNI plugin needs to support it
• Storage

- -> StorageClass, PersistenVolume,
PersistentVolumeClaim

APP-C interface

TBD

Technical gaps

More on networking
• Multiple network interface: Multus

- IP address assignment needs to be addressed
• Tenant networking: k8s network policy + k8s namespace
• Security group: k8s network policy

- Needs more protocol supports
• External networking: Service ExternalIP/loadbalancer or Ingress
• QoS: bandwidth allocation, dscp marking etc

- Performance isolation
• L2 networking: TBD
• SFC: TBD
• Hybridge deployment: PNF + VM VNF + container VNF
• Network slicing
• WAN, federation

Security

•

detailed architecture/workflow

VNF design/packaging

• There is no (major) difference from VM case
• TOSCA and CASR
• It will includes extra bits for k8s
• TOSCA extension and artifact specific to k8s will be discussed

TOSCA section

CSAR
TOSCA: k8s specific node.
(maybe derived from
Compute or VDU)

K8s specific artifact if
necessary

VNF on-boarding

• No (major) change as SO can store NSD/VNFD in CSAR/TOSCA
format in catalog

CSAR

TOSCA: k8s specific node.
(maybe derived from
Compute or VDU)

K8s specific artifact if
necessary

Registering k8s cluster instance

• No (major) change compared to openstack case
• Just new type/feature of cloud infrastructure for k8s

Data management of k8s stats(DCAE, FCAPS)

• No (major) change to the existing framework
• Adding new plugin to collection from k8s to report to DCAE

Workload management: instantiating/configuring VNF

multicloud/COE adaptor. with
TOSCA-to-MC-container API
translator

K8s proxy/optionally with
MC-container API-to-k8s
translator

MC container API

MC container API

MC cloud API
adaptor

SO determines/schedule VNF
to k8s based on requirements
in NSD/VNFD

At first phase, SO will be addressed. Controllers(APP-C, VF-C, SDN-C) will be addressed later

New

Operation flow

SO MultiCloud/
K8s driver

K8s API
server

Request for VNF
instantiation

Search catalog, parse
CSAR/TOSCA to
determine its
requirement and then
schedule VNFC to k8s.

Generate API
request for k8s

Deploy VNFC
in container

SO

multicloud

k8s

Adaptor for MultiCloud
container API

MultiCloud container API

K8s driver: generate k8s
requests

New

SO adaptor interface based on
TOSCAParse CSAR/TOSCA and schedule

VNFC with OOF etc. MODEL
driven. Decompose request.

Resource instantiation(pods, service
etc...)

New API in multicloud for container/COE

• New API in multicloud for container/COE workload
- Registration, data management remains same
- SDNC api will be future task

• container/COE API is very different from VM’s or openstack
• Abstracted API, not specific to any container/COE

• TOSCA based? Schema and VNF interface
- tosca.nodes.Compute or tosca.nodes.nfv.VDU.* with container

enhancement
• E.g. tosca.nodes.Container drived_from VDU.Compute

- tosca.interfaces.node.lifecycle.Standard
• Start with k8s passthrough in very short term to have working code

SO

Controller: APP-C/VF-C/SDN-C

k8s

K8s driver: generate k8s
requests

New Request to configure VNFs

Resource instantiation(pods, service
etc...)

Life cycle management

K8s adapter

Life cycle management

• K8s has many functionalities for life cycle managemet
• Many functions can be just deligated to k8s directly

Source code repository
Source code repository comment

Subdirectory of one of the multicloud repositories No appropriate repo

New subrepo for any container under multicloud Doesn’t align with the current multicloud practice

New subrepo under Multicloud per container tech Each container technology support can be evolved
independently. Least overhead for repo management

New repo for any container technology under new
project

New repo per container technology under new
project

Each container technology support can be evolved
independently.

Api choice Align with multicloud
direction?

New API? API
consumer needs to be
enhanced

container/coe
feature can be easily
utilized?

Other comment

Re-use the existing
multicloud API: Coerce into
the existing VIM API

Align with the
existing code. No
with future direction.

No No

Define new API for container No with future
direction

Yes Yes

Expose container/COE API
directly

No with future
direction

Yes Yes heavily depends on
container/coe
technology

Model driven API: without
enhancement: coerce into
model driven VM based API

yes No. no additional
changes to API
consumer

No

Model driven API: With
enhancement. Probably in
long term, contributing to
TOSCA

Yes with future
direction.

Yes Yes Needs to
implement/invent
conversion logic from
TOSCA to
container/COE
Reasonable abstraction
among container/COE
technologies

Now under discussion: Fuel for discussion
Eventually follow the community decision

Where to convert comment

caller(adaptor in SO/CCSDK) Multiple place to host code/process it

Callee (in multicloud or new project) Single place to host code/process it

Where to translate TOSCA to K8S: Open

architecture choices

item recommendation

Project home(new project or subproject of an existing
project?)

New projet

How to use container Use container orchestration engine.e.g. k8s

API design: especially workload/livecycle, model driven
or not?

Model driven. Allow SO to use COE API directly.
Multicloud as proxy: Open in multicloud discussion

Where to convert TOSCA to container API (if model
driven). SO/controllers or multicloud

SO/controllers (eventually as CCSDK)

Source code repo Subrepo of multicloud as starter

