

First joint ONF <-> ONAP PoC read-out

week of 27 November 2017

*** DRAFT ***

Series of PoCs & where we left off ...

Information model for MW is quite complete and can be now ready There is a 'momentum' around MW SDN application: we need to make more relevant the ongoing activities in the microwave/wireless

- Maintain and continue to evolve the MW related model for new • Integrate the WT architecture in end-to-end orchestrator (M-CORD

October 2015: 1st POC

INDUSTRY ADOPTION

April 2016: 2nd POC

Version 1.D Acre 6, 2016

©2017 Open Networking Foundation June 2017: 4th POC

V1 2017-06-29

MAIN GOALS of JOINT ONF <-> ONAP PoC

Main goals of PoC are the following:

- Start integration in a broader architecture (ONAP based) of the Wireless Transport + RAN multi-vendor network.
- Application of microwave model (TR-512/532 based) to DAS & eNB
- Demonstration of a scalable and multi-site architecture across several countries, with multi SDN controller instances in the same network.
- Implementation of the equipment model based on TR-532

PARTICIPANTS and **LOCATIONS**

Vendor	Type of test devices	Location of test devices	Connected via (location of ODL SDN controller)
ZTE	2x MW devices	Tianjin, China	DT-Cloud in Prague, Czech Republic
DragonWave-X	6x MW devices 4x Horizon Compact Plus (HC+) 2x Horizon Quantum	Ottawa, Canada	DT-Cloud in Prague, Czech Republic
	2x MW devices	AT&T Lab, NJ, USA	AT&T-cloud in NJ, USA
Intracom Telecom	2x MW devices OmniBAS OSDR ODU	Athens, Greece	DT-Cloud in Prague, Czech Republic
SIAE	2x MW devices AGS20 IDU split-mount	Milan, Italy	DT-Cloud in Prague, Czech Republic
Nokia	2x MW devices, eNB	AT&T Lab, NJ, USA	AT&T-cloud in NJ, USA
ADVA	2x ETH switch	Open SDN & NFV Lab, Berlin, Germany	Sendate-Cloud in Berlin, Germany
	3x ROADM		
CommScope	DAS	WinLab, NJ, USA	OWL-cloud (WinLab) in NJ, USA
AltioStar	RRH (eNB)	WinLab, NJ, USA	OWL-cloud (WinLab) in NJ, USA
Ericsson	4x MW devices	WinLab, NJ, USA	OWL-cloud (WinLab) in NJ, USA
Ceragon	Simulator	VM inside DT-Cloud, Prague, Czech Republic	DT-Cloud in Prague, Czech Republic

PoC 4.1 USE CASES / APPLICATIONS

Demo Winlab (OWL)

ONAP VNFs (in this PoC)

"OWL" Cloud (ONAP Wireless Lab at Rutgers University Winlab)

An ODL-Boron-SR3 cluster

Open Issues:

- NetConf notifications and
- WebSockets to Browser

3x single ODL-Boron-SR3

ONAP ODL Cluster

- Independent of the chosen ip-address in the browser address bar, the data is synchronized.
 - > same view
- 2. The cluster decides, which of the ODL NetConf clients establishes the NetConf session to the mediator.
 - > only one NetConf session to the mediator
- 3. It is possible to run different app (bundle, microservices) versions on the different ODL nodes.
 - > This offers an online migration.

Open issues (to be analyzed)

- It seems that the subscription for NetConf notification is not working
- The current websocket implementation for notification to the Web-Gui (and other RestConf clients) is not prepared for an ODL cluster.
- >> no notifications (Alarms)

ONAP WIRELESS LAB "OWL"

3 step security:

- Registered SSH access from the internet to orbit-lab
- Limited access for selected members from orbit-lab to ONAP cloud, controlled by ONAP.
- Each VM and its application uses SSH and Basic-auth.

Screen shot: OWL OpenStack Network Topology 2017-09-06

Remote cloud-based architecture using Deutsche Telekom Cloud

Demo DT-Cloud

Demo AT&T Labs – RF Lab

Open SDN & NFV Lab Berlin

- Research AND commercialization platform
- primarily for small and medium enterprises
- to smoothly evolve research results
- to commercial products and services
- within a truly open SDN & NFV ecosystem.

November 2017

December 2017

Many more

Demo Berlin

Controller Scope to support anticipated 5G use cases

5G Application Ecosystem UE/CPE UE Management out of

scope for now

SDN-C (and possibly 3rd party controller) will be used for transport configuration - Front Haul, Mid Haul, Back Haul, etc. Also, use multi-cloud layer to configure overlay & underlay networks within a DC

SLI

5G

###

Config/

Oper. DB

Macro Radio & Small Cell

Antennas

RU

App-C (now Generic VNF Controller) is responsible for various network application configuration (PNF / VNF) -DUs, CUs, Disaggregated core, etc.

PLAN for 2018: Unified and Simplified Access

Next steps

- Lessons learned (details within white paper)
 - ODL Geo-Cluster
 - ONAP Cluster
- Evolution of ONF ONAP 5G community lab
- Evolution of model (TR-532) + Ethernet PHY
- Ongoing collaboration among open source project teams
- PoC 5.0 items of interest, approximate date, etc.

18

OPEN NETWORKING FOUNDATION

THANK YOU

