
November 2023
Presenter: Byung-Woo Jun (Ericsson) – ARCCOM Chair, TSC

ONAP Streamlining – The Process

ONAP Architecture
Evolution

ONAP Benefits to Industry
• Previously, ONAP as a platform had shown e2e network

automation to the industry.
• Operators, vendors and enterprises have learned how

service/network automation (modeling, orchestration, policy-based
closed loop, optimization…) works on VM and Cloud-Native
environments for VNF, PNF, CNF, NS, Network/RAN Slicing and
e2e service thru ONAP.

• Now, the operators, vendors and enterprises want to select and
apply ONAP functions to their portfolio. No one needs to take
ONAP as a whole.

• In ONAP, there are numerous valuable use cases, that leverage
and coordinate clusters of ONAP component functions (e.g., SDC,
SO, A&AI, DCAE, Policy, SDNC, SDNR, CPS, CDS…) to achieve
objectives, such as:
• E2E Service
• Network Slicing
• RAN slicing
• Closed Loop
• ETSI-based NS & VNF orchestration
• Helm-based CNF orchestration
• ASD-based (including Helm) CNF orchestration
• …

• Our goal is to continue to support those use cases efficiently for use
in commercial production environments and portfolios.

• We expect the industry wants to pick and choose desired ONAP
component functions, swap some of the ONAP functions, and
integrate those functions into their portfolios seamlessly, without
bringing in a whole ONAP platform.

• ONAP streamlining, which drives individual components and
clusters of components guided by use cases, will enable the flexible
and dynamic function adoption by the industry.

• ONAP stakeholders are thinking about connecting ONAP, O-RAN,
Nephio, EMCO, and other communities for larger objectives, by
• Reuse of selected ONAP functions
• Functional delegations

• ONAP streamlining evolution is started.

ONAP Component Design Requirements 1/2

• ONAP components should be designed not only for ONAP but also non-ONAP consumption.
• Instead of a component being graduated, an ONAP component becomes obsolete or unmaintained if ONAP does not have use cases for

it.
• Some ONAP component-specific features tend to be ignored if they are not used by other ONAP components.

• ONAP component functions should be used by not only ONAP but also non-ONAP.
• Component design should be generic and extensible in a way that would enable it to be used in non-ONAP
• If components are more generally applicable, there is the potential to gain more traction.

• ONAP component dependencies and couplings to other ONAP components should not be in an ONAP-specific
way.
• Those dependencies and couplings could be both syntactic and semantic.
• Numerous intra-ONAP component interfaces and communications are ONAP-specific.
• Some limited APIs standardization efforts are in place, such ETSI MANO APIs, ASD, 3GPP...

• Making each ONAP component should be ‘stand-alone’, so potential users can take a single component, without
getting involved in the whole of ONAP.
• ONAP should support Pick-and-Choose.

• In the future, each ONAP component will be autonomous, and its interface models and APIs will be more normalized.

ONAP Component Design Requirements 2/2

• ONAP component interactions should be based on standards and extensible to facilitate integration with other
systems, especially for non-ONAP.
• Aligning with standards where possible should be global requirements.
• If there must be a deviation, that can be done in an extensible way that enables the standard-based approach.

• ONAP component Helm charts in OOM should be re-written to build/deploy a component individually.
• CI build/integration of a vendor/operator could be less compatible with ONAP one.
• OOM is not used by some vendors/operators.
• In some cases, a vendor maintains a completely different set of Helm charts for ONAP components.

• ONAP Security mechanisms should be industry standard/de facto-based to integrate with vendor/operator
security and logging.
• The current security based on Service-Mesh, Ingress and Keycloak should be maintained.
• ONAP components should not handle runtime security and logging collections directly.

• Timelines and cadence of the ONAP release should be flexible for accommodating different release strategies.
• Should support creating a ‘Release’ in JIRA for the component releases.
• Branching strategies are not aligned with ONAP CMO (Current Mode of Operation).
• Resulting in an artificial split in functionality between releases.

ONAP Streamlining – Transformation
• Thru ONAP Streamlining, ONAP is no longer a platform, rather it provides various network automation functions, and security reference configuration in

LFN.
• ONAP enables individual ONAP function build, and component deployment thru CD.
• Build use cases for repository-based E2E service, NS, CNF and CNA onboarding, and CD-based ONAP component triggering mechanisms with

abstracted interfaces for choreography.
• Standard-based abstracted interfaces with declarative APIs.

• Each component will be autonomous and invoked from any level of Network Automation, by leveraging CD mechanisms – e.g., GITOps and CD readiness
• ONAP will become more intent-based and declarative, and bring in more AI, conforming to standards such as 3GPP, TMForum, ETSI, IETF, O-RAN, etc.

• Extend UUI User Intent support and AI-based natural language translation, on top of that, applying coming 3GPP and TMForum models and APIs.
• Delegate resource-level orchestration to functions from the external community .

• For Security, ONAP continues to support the Service Mesh, Ingress, OAuth2, IdAM-based authentication and authorization, and considers sidecar-less
solutions for NF security.

• Modular
• individual
• interface abstraction
• loose coupling
• Extensibility
• Interchangeability
• Autonomous
• Declarative
• CI / CD ONAP components

and E2E Service, NS, CNF
& CNA handling

ONAP focuses on Network Automation Functions

ONAP Streamlining – Component Design,
Build & Deployment

• ONAP Components are independently deployable pieces of
software, built out of one or more microservices
• Modular
• Autonomous
• Extensible and substitutional

• ONAP Network Automation processes will manage more
intent-based operations using AI/ML.
• Manage user and other Intents and translations
• Study on TMForum & 3GPP Intent models and APIs

• ONAP components conform to the standards and de facto
specifications to enable plug and play and pick-and-choose
facilitation.

Build
pipeline

Artifact
Repository

(GIT, Nexus,
others,

container
registry)

ONAP
Code

push

Jenkins

Montreal Support

All communications are secure

• ONAP repository-based SW management enables smaller
imperative actions that can be triggered by different events
in the orchestration and SW LCM flow.

• Events can trigger different types of deployment automation jobs or
chains of automation jobs (pipelines).

• In Jenkins, ONAP OOM build scripts will be used for ONAP
component builds and will store built ONAP components into
the Artifact Repository (e.g., Nexus). This can be changed.

• CD (e.g., ArgoCD, Flux, others) will be used to pick and
choose ONAP components.

Generic Repository-Based Component,
Build & Deployment Target Architecture

• ONAP, Vendor and Operator CI/CD and Repository-based Component Build and Deployment

• Selected ONAP components can be deployed along with other vendor / operator components

• Target environment should support multi-tenancy, multi-workload cluster, multi-namespace

• Secure Software Supply Chain CI/CD (automated framework) will be applied for component deployment from various sources securely
• ONAP is no longer enclosed platform, so secure software supply chain CI/CD support is a must (see

Delivery
pipeline

Artifact
Repository

(GIT, OCI, other
registry)

Component
Management

(Pick and
Choose)

ONAP
Component

ONAP
Component

Manage ONAP

reconcile

• Multi-Tenancy
• Workload Cluster
• Name space
• Security

• service mesh
• ingress
• IdAM

• Logging

CD (ArgoCD, Flux,…)

deploy

Vendor
Component

Operator
Component

Vendor
Component

Operator
Component

Operator
Component

Build

multi-tenancy
security

multi-tenancy
security

• Build
• Deploy
• Security

Vendor
Component

Build

ONAP
Component

Build

• trusted sources

• verify software
• monitor software
• use secure

distribution
channels

• Multi-Tenancy
• Workload Cluster
• Name space
• Security

• service mesh
• ingress
• IdAM

• Logging

All communications are secure

security

ONAP Repository-based Software
Package + LCM Use Case – an idea

OSS
Client

vendor Delivery
pipeline

Artifact
Repository
(GIT, OCI,

other
registry)

Design/
Configuration

Controllers

Deployment
Repository
(GIT, OCI,
others)

Deployment
Repository
(GIT, OCI,
others)

CD
(Flux, ArgoCD,

…) actions

customization,
hydration,

design
actions

intent feedback

Reconcile & Configuration

E2E,
NS,

VNF,
CNF,
CNA

+
intent

customized/
hydrated

E2E,
NS,

VNF,
CNF,
CNA

+
intent

customized/
hydrated

E2E,
NS,

VNF,
CNF,
CNA

+
intent

External
Component

External
Component

Manage ONAP

distribute

reconcile

reconcile

CD
(Flux,

ArgoCD, …)

reconcile

External
Injection

component
function

component
function

Intent &
service definition

intent feedback

Distribution

Intent
Manager

multi-tenancy
security

multi-tenancy
security

multi-tenancy
security

• Multi-Tenancy
• Workload Cluster
• Name space

• Multi-Tenancy
• Workload Cluster
• Name space

push Images,
helm charts

• Package onboarding to ONAP thru repository can also trigger SW LCM flows (deploying packages as intents).
• Applications, packages and intents are worked in the multi-tenancy, multi-workload cluster and multi-namespace runtime environment.

All communications are secure

push E2E,
NS,

NF & NA
packages

transformed
Intent &
service definition

intent

intent

deploy vendor
package, as intent

Ev
en

t
Ha

nd
le

r
Ev

en
t

Ha
nd

le
r

event

event

ONAP

ONAP

ONAP

CD
(Flux, ArgoCD,

…)

actions

actions

ONAP Repository-based Software
Package Onboarding Use Case – an idea

OSS
Client

vendor Delivery
pipeline

Artifact
Repository
(GIT, OCI,

other
registry)

Design/
Configuration

Controllers

Deployment
Repository
(GIT, OCI,
others)

Deployment
Repository
(GIT, OCI,
others)

CD
(Flux, ArgoCD,

…) actions

customization,
hydration,

design
actions

intent feedback

Reconcile & Configuration

E2E,
NS,

VNF,
CNF,
CNA

hydrated
E2E,
NS,

VNF,
CNF,
CNA

hydrated
E2E,
NS,

VNF,
CNF,
CNA

External
Component

External
Component

Manage ONAP

distribute

reconcile

reconcile

CD
(Flux,

ArgoCD, …)

reconcile

External
Injection

component
function

Intent &
service definition

intent feedback

Distribution

Intent
Manager

multi-tenancy
security

multi-tenancy
security

• Multi-Tenancy
• Workload Cluster
• Name space

• Multi-Tenancy
• Workload Cluster
• Name space

push Images,
helm charts

• ONAP repository-based SW packages will be onboarded by leveraging the delivery pipeline, Artifact repository and reconciliation.
• Packages will be customized/hydrated and delivered to target destinations.
• Package-related events will be generated, and telling packages are ready (current ONAP handles onboarding and LCM with two-step processes).

All communications are secure

push E2E,
NS,

NF & NA
packages

push Images,
helm charts
& packages

Ev
en

t
Ha

nd
le

r
Ev

en
t

Ha
nd

le
r

event

event

deploy vendor
package, as intent

ONAP

ONAP

ONAP

multi-tenancy
security

CD
(Flux, ArgoCD,

…)

actions

actions

component
function

ONAP Repository-based Software
Lifecycle Management Use Case – an idea

OSS
Client

vendor Delivery
pipeline

Artifact
Repository
(GIT, OCI,

other
registry)

Design/
Configuration

Controllers

Deployment
Repository
(GIT, OCI,
others)

Deployment
Repository
(GIT, OCI,
others)

CD
(Flux, ArgoCD,

…) actions

customization,
hydration,

design
actions

intent feedback

Reconcile & Configuration

E2E,
NS,

VNF,
CNF,
CNA

customized/
hydrated

intent

customized/
hydrated

intent

External
Component

External
Component

Manage ONAP

distribute

reconcile

reconcile

CD
(Flux,

ArgoCD, …)

reconcile

External
Injection

component
function

component
function

Intent &
service definition

intent feedback

Distribution

Intent
Manager

multi-tenancy
security

multi-tenancy
security

• Multi-Tenancy
• Workload Cluster
• Name space

• Multi-Tenancy
• Workload Cluster
• Name space

push Images,
helm charts

• ONAP repository-based SW management enables smaller imperative actions that can be triggered by different events in the orchestration and SW
LCM flow.

• When package onboarding is ready, OSS client can trigger software LCM process by sending intents.

All communications are secure

push E2E,
NS,

NF & NA
packages

transformed
Intent &
service definition

intent

intent

Ev
en

t
Ha

nd
le

r
Ev

en
t

Ha
nd

le
r

event

event

deploy vendor
package, as intent

ONAP

ONAP

ONAP

multi-tenancy
security

CD
(Flux, ArgoCD,

…)

actions

actions

ONAP Component Interaction Patterns

ONAP

service

service

service

ONAP

service

service

service

Event Broker

Orchestration Pattern

Choreography Pattern

• Centralized control
• Tight coupling
• High dependency
• High-cost service substitution, addition, removal; may

rewire portions of the communication path

Combinations of choreography- and
orchestration-pattern based interactions

service

service

service

Intent Instance Repo

• Distributed & autonomous operations
• Loose coupling
• Declarative & Intent-based handling
• Service independence
• Flexible service substitution, addition and removal

Orchestration

ONAP CI/CD Repository-based Network
Automation Choreography Use Cases – an Idea

Knowledge

Intent

Domain Model

Service Model

NF/NA Model

Policies & Rules

Meta Models

Repository

AAI

SO

SDNC

CPS

DCAE

VFC

Policy
Framework

Vendor
Component

Operator
Component

Agent Profile

existing
ONAP

interfaces

existing
ONAP

interfaces

SOL005

UUI
Intent Manager

Operator /
Designer

actuation

action

intent

decision

decision

decision

decision

decision

intent

intent

intent

intent

intent

intent

SDC
design

intent

intent

intent

intent

intent

OSS
Client

Intent
Manager

intent

intent

Co
nt

in
uo

us
 D

ep
lo

ym
en

t (
CD

)

decision

DEV /
vendor

X

op
er
at
or

op
er
at
or

op
er
at
or

op
er
at
or

op
er
at
or

op
er
at
or

op
er
at
or

op
er
at
or

op
er
at
or

op
er
at
or

op
er
at
or

intent

• ONAP CI/CD and Repository mechanisms can be substituted by
vendor/operator mechanisms.

• Repository holds artifacts, intents and other models.
• ONAP components and vendor / operator components send their

intents to the Repository.
• OSS Client sends their intents to the Repository thru Intent

Manager, or UUI or else.
• User-level Intents will be translated in UUI.
• System-level Intents will be handled by Intent Manager.

• CD monitors the Repository and reconciles for events
• Thru CD, the corresponding intents will be delivered to the ONAP

components thru the operators.
• The operators will work as façade to trigger ONAP component

functions (it would be an optional path, based on use cases).
• ONAP components do their business decisions and handles

actuations.
• The actuations can result in actions and/or another-level of

intents, which will be stored back to the Repository for next
events.

• Images and/or Helm Charts and others will be stored thru the CI
pipelines, which to be used by ONAP components, as needed.

• ONAP components can leverage the existing ONAP interfaces,
based on their needs – a hybrid mode between declarative and
imperative APIs will be supported.
• ONAP ends up having smaller imperative actions that can be

triggered by different events.

…

intent

decision

decision

decision

actuation

actuation

actuation

…

…

…

ONAP Component Interface Abstraction
• ONAP component interfaces should be designed/used for/by not only ONAP but

also non-ONAP.
• ONAP component functions can be substituted and/or extended by

vendors/operators
• Component dependencies and couplings to other ONAP components should be

removed.
• Those dependencies and couplings could be both syntactic and semantic
• Intra-ONAP component interfaces and communications should not be ONAP-

specific.
• Aligning with standards where possible (e.g., ETSI NFV MANO, ASD, 3GPP

SA5…) should be global requirements
• If there must be a deviation, that can be done in an extensible way that enables

the standard-based approach

• The exposed service interfaces should be for both ONAP and non-ONAP; promote
ONAP component interfaces as LFN de facto standards
• If exposed service interfaces conform to industry standards (e.g., ETSI SOL005,

ETSI SOL003, 3GPP SA5), the interactions between the service provider and
consumer would be simplified (e.g., VFC case in this diagram)

• For now, the service consumers can use “adapters” which choose a desired service
interface

• Action Points:
• Promote ONAP Component API models and interfaces as open-source de facto

APIs
• Event Handler / operator façade can be used trigger ONAP components as the

previous slide

Plan for component interface abstraction and LFN-level de
facto standardization

ONAP Component Interface Abstraction
• Expose the ONAP component service API models and interfaces, as LFN-level de facto APIs for network

automation.
• Create catalog of APIs for each ONAP project (Information Model, Data Model, OpenAPI)

ONAP Runtime Security Architecture
• ONAP components are protected by Ingress Controller, Keycloak

(IdAM) and Istio (Service Mesh), with AuthN/Authz, intra-secure
communications, external-secure communications.

• ONAP components themselves do not have their own/ proprietary
protection any longer (e.g., removal of HTTP Basic Authentication
and HTTPs).

• Current OOM-provided security support as described above will be
provided as ONAP reference security mechanism.

• It is assumed that vendors/operators support industry de facto
security mechanism like ONAP security and imported ONAP
components are protected by the security mechanism.

• ONAP will provide documentation of security architecture, global
requirements and best practices, informing how to protect/secure
selected ONAP components.
• For secure external communications, Ingress Controller,

aouth2-proxy and IdAM are used
• For intra-secure communications, Istio is be used with Cert-

Manager and policies

• For user authentication and authorization, KeyCloak is used,
with SSO support and OAuth2-based token generation and
validation

• ONAP (OOM) provides security reference implementation and
configuration by leveraging service mesh (Istio), ingress (Istio
GA) and IdAM (Keycloak). The reference implementation and
configuration can be replaced by the vendor/operator-provided
security mechanism.

• ONAP provides security reference implementation. Vendors / operators can realize and configure with
their own security system.

• Since vendor/operator component can be deployed with ONAP components, Secure Software Supply
Chain is important.

ONAP SBOM & Secure Supply Chain
SBOM
• ONAP CI pipeline is based on Linux Foundation CI workflow.
• At the end, the CI pipeline generates signed SPDX-based

SBOM files and stores them into a centralized repository.
• ONAP uses the spdx-sbom-generator,

https://github.com/opensbom-generator/spdx-sbom-
generator

Secure Software Supply Chain
• Software supply chain is a highly targeted attack point for

vulnerabilities and exploitability.
• If a software package is injected with malicious code, it may

be much difficult to identify the issues at the later stage, by
just looking at the generated SBOM.

• Since ONAP Streamlining allows ONAP components are
mixed with vendor/operator-supplied components, the
software supply chain must be protected and secured.

• With the secure supply chain, software and SBOM which are
built, added and generated during the secure pipeline can be
trusted.

• With the secure software supply chain, every step in the
software supply chain needs to be verified, validated
and tamper-resistant, with provenance proof and trust
of delivery. https://openssf.org/blog/2023/09/27/threat-modeling-the-supply-chain-for-software-consumers/

https://github.com/opensbom-generator/spdx-sbom-generator
https://github.com/opensbom-generator/spdx-sbom-generator
https://openssf.org/blog/2023/09/27/threat-modeling-the-supply-chain-for-software-consumers/

ONAP Logging Architecture
• ONAP supports open-source and standard-based logging.
• ONAP already separates log generation from log collection /

aggregation/persistence/visualization/analysis.
• Each ONAP component handle log generation only thru STDOUT and

STDERR, by following ONAP security logging fields – global
requirements, https://wiki.onap.org/display/DW/Security+Logging+Field
s+-+Global+Requirement

• The log destination will be configured
• Log collection agent(s) will be configured; ONAP reference

configuration is using FluentBit as the collection agent;

• ONAP uses a separate privileged namespace to deploy FluentBit for
security reasons

• Vendors/operators can configure it differently, based on their needs
• Vendors/operators can realize and configure the log collection/

aggregation/persistence/visualization with their own logging ecosystem

• There will be no/minor impact on logging due to ONAP
component disaggregation

ONAP provides security reference implementation and configuration for logging. Vendors / operators can realize and configure with their
own logging ecosystem.

https://wiki.onap.org/display/DW/Security+Logging+Fields+-+Global+Requirement
https://wiki.onap.org/display/DW/Security+Logging+Fields+-+Global+Requirement

ONAP Unmaintained Project Management

• Unmaintained ONAP projects can be
archived; i.e., it will not part of Jenkins
jobs or delivery.

• There is the ONAP unmaintained
project management process:
https://wiki.onap.org/display/DW/Proje
ct+State%3A+Unmaintained

• Projects that are removed from
Montreal release:

• MSB

• CPS-Temporal

…

https://wiki.onap.org/display/DW/Project+State%3A+Unmaintained
https://wiki.onap.org/display/DW/Project+State%3A+Unmaintained

ONAP – O-RAN SC – Nephio Collaboration
• ONAP sees Nephio is as a good showcase for declarative

intent with continuous reconciliation

• ONAP has been looking for its delegation and integration
points for Nephio

• Nephio could be a good candidate for Infra and CNF
management delegation, but Nephio can be applied to every
layer. Nephio is not only implementation but also architecture
pattern / framework

• Nephio can be applied to every layer.
• Some ONAP functions can apply Nephio pattern / framework
• O-RAN SC SMO (FOCOM, NFO, OAM) can apply Nephio pattern

/ framework

• Nephio has the possibility to change existing orchestration
APIs and layered network automation architecture

• Nephio needs to expose its capabilities to others via well-
defined interaction mechanisms. The mechanisms should be
declarative and intent-based with active reconciliation

• ONAP Streamlining supports pick-and-choose facilitation to
others, e.g., O-RAN SC SMO

• O-RAN SC SMO can reuse ONAP component functions base on
their use cases

ONAP Streamlining

Repository

CD

• Modular
• independent
• interface

abstraction
• loose coupling
• Extensibility
• Interchangeab

ility
• Autonomous
• Declarative
• CI / CD ONAP

components +
E2E Service,
NS, CNF &
CNA

FOCOM

NFO

RAN OAM

…

Non-RT RIC

ONAP and O-RAN Collaboration in Process
- Input from N.K. Shankar

• ONAP Streamlining provides pick-and-choose facilitation. It will help O-RAN SC choose ONAP functions as needed.
• The O-RAN SC and ONAP projects are related to SMO (expect changes)
• O-RAN SC SMO is considering reuse of ONAP functions.

dcae?

int

oof?

Notes:
• Figure is meant to

explore alignment to
O-RAN architecture

• Each red/blue label is an
osc/onap open source
project/component

• We may/do not have or
need 1:1 mapping
between projects and
architecture blocks

sdc ?

security-framework

Ref: https://wiki.o-ran-sc.org/download/attachments/78217260/dec_smo_flows_v1.4_20231109.pptx?api=v2 , and based on
https://oranalliance.atlassian.net/wiki/download/attachments/2217476445/O-RAN-WG1.Decoupled-SMO-Architecture-TR-v01.00.14.zip?api=v2

int

smo

oam

non-rt-ric

sim sim

non-rt-ric

ran-sim

kafka/kafka

aimlfw

policy

cps

intent

inf

acm

idam

a&ai?
smo-pkg

e2e-slicing

ves sdn-c

acm

smo

oom

smo

5gson

so

Other relevant
projects

https://wiki.o-ran-sc.org/download/attachments/78217260/dec_smo_flows_v1.4_20231109.pptx?api=v2
https://oranalliance.atlassian.net/wiki/download/attachments/2217476445/O-RAN-WG1.Decoupled-SMO-Architecture-TR-v01.00.14.zip?api=v2

ONAP and Nephio Collaboration
- Input from China Mobile Use Case

For Intent and AI-based analysis management and AI, China Mobile input:
• Nephio can play a significant role in the intent processing within the Network Layer and NE layer.
• Nephio could be a candidate for core network element delivery and assurance intent management.
• Nephio can utilize AI for intelligent diagnosis, analysis and optimization. Using AI, intent conflicts can be resolved.
• Conversion of Intent models between Nephio and other Intent systems.
Enhanced End-to-End Intent Processing via ONAP-Nephio Collaboration, see the https://wiki.lfnetworking.org/display/LN/2023-11+-
+Nephio%3A+Enhanced+End-to-End+Intent+Processing+via+ONAP-Nephio+Collaboration session.
Requirements for Nephio:
• Nephio needs to define its NBI for other systems, such as ONAP and O-RAN SC SMO.

example

for more details, see
https://wiki.onap.org/display/Meetings/TSC+2023-10-
12?preview=/190218511/193527857/Use%20Cases%20Pr
oposal%20for%20Nephio-v2.pdf

https://wiki.lfnetworking.org/display/LN/2023-11+-+Nephio%3A+Enhanced+End-to-End+Intent+Processing+via+ONAP-Nephio+Collaboration
https://wiki.lfnetworking.org/display/LN/2023-11+-+Nephio%3A+Enhanced+End-to-End+Intent+Processing+via+ONAP-Nephio+Collaboration
https://wiki.onap.org/display/Meetings/TSC+2023-10-12?preview=/190218511/193527857/Use%20Cases%20Proposal%20for%20Nephio-v2.pdf
https://wiki.onap.org/display/Meetings/TSC+2023-10-12?preview=/190218511/193527857/Use%20Cases%20Proposal%20for%20Nephio-v2.pdf
https://wiki.onap.org/display/Meetings/TSC+2023-10-12?preview=/190218511/193527857/Use%20Cases%20Proposal%20for%20Nephio-v2.pdf

Q & A

Thank you !

