
Service Orchestration- Need for Users

Background

Issues:

• Increased Capex and Opex

• Huge manual efforts involved

• single-purpose/ domain specific / homogenous networks

Possible way out:

• SDN

• NFV

• Automation

• Orchestration

Automation vs Orchestration

• Automation is a way to eliminate the manual effort/human intervention
involved in activities and bring in an ability to perform the same
repeatedly, consistently and with better efficiency.

• Orchestration is executing the automation/manual ability of various
modules in harmony as a consolidated process or workflow to
accomplish the desired tasks.
- Example : Managing lifecyle of a E2E service

4

ONAP – Service Orchestrator

The Service Orchestrator (SO) component of ONAP provides orchestration at a very high level, with an end to end view
of the infrastructure, network, and applications.

SO Key Interactions with ONAP components

SDC
• Distribution of orchestration artifacts (service & resource recipes and templates)
• UEB event notifications, HTTP artifact retrieval

AAI
• Query and update inventory
• RESTful API

Cloud (Platform Orchestrator)
• Instantiation of virtual resources in the cloud
• Openstack APIs (primarily Heat and Keystone)

SDN Controller
• Assign and configure network resources
• Yang-based RPC and REST

VFC Controller
 Able to delegate the Network service details to VFC
 Rest Based interaction over MSB

App Controller (pending)
• Assign and configure application resources
• Yang and/or event based API

Policy

 Able to execute the policy recipe for a given policy ID

OSS/BSS
Infrastructure

Portal

Master Service Orchestrator

(MSO)

Service Order

Requests

OpenSta

ck

Multi Cloud

Create/Upd

ate Virtual

Resources

AAI

Inventor
y

DCAE

Data
Collector

Fault
Collector

MSO metrics

collection and

fault monitoring

SDC

Service &

Resource

Artifacts

VNF &

Network

Requests

Distribution
Service

Design Studio

APPCSDNC

… and
others

VFC

API Handler
RESTful interface to northbound clients, could be OSS/ BSS, external API, portal,…

Handle service-level and infrastructure (VNF & network) requests

Use SO Catalog to map input requests to recipes (BPEL flows)

Track open and completed requests via SO Request DB

BPEL Execution Engine
Execute BPMN service recipes

Sequence orchestration steps by invoking Adapters for each Resource in the recipe

request and configure network resources via SDN-C

manage cloud resources via Mukti cloud(OpenStack)

configure Application VNFs via APP-C

Configure Network services viia VFC

update inventory via AAI

Perform additional orchestration steps (consult policy, etc.) per individual recipes

Perform error handling/rollback

Controller Adapters
Provide interfaces to lower level controllers and other ONAO components

Platform Orchestrator, SDN-Controller, APP Controller

Hides the details of complex interfaces (e.g. OpenStack APIs) via higher-level calls

Expose interfaces to BPEL flows as SOAP or REST APIs (synchronous/asynchronous)

Use SO Catalog to map resource requests to a recipe/template

VNF > Heat templates

SDN Resource > Yang models

Merge input parameters with templates at run-time

SO Software Architecture

APPC
VFC

SO

BPEL Execution Engine

API Handler

Data Stores

Portal

Request Handlers

Service

Recipe
Service
Recipe

Reque
st DB

Adapters

HEAT
Templ

ates

VNF
Resource
Adapter

Controller Adapter

Multi Cloud
(Open stack)

SDNC

AAI

REST

KEYSTONE/
HEAT

Service
Recipe

s

Catalog
DB

OSS/BSS

SDC

…

A
R
I
A

AAI Util

Homin
g

Data Stores
Request DB

Tracks open and completed requests

SO Catalog
SO view of the SDC Catalog

Service and resource recipes, templates, and definitions

Populated via SDC distribution service

Policy

Service Instantiation Flow

SDC

Portal

VID A&AI

Controllers

Catalog

Catalog

DG

Titan DB

Multi VIM

SO

1

2

4

3

5

6 7

8

9

10

11

How to SO

BPMN main process flow
The BPMN application (war) exposes a

REST endpoint to which the API Handler(s) send
requests for flow execution. The message sent by
the API Handler to this endpoint is a JSON wrapper.
All main process flows implement an asynchronous
service model. The connection to the API Handler is
kept open until the main process flow sends back a
response.

BPMN subprocess flow

The subprocess would be delegated

with the specifics of the tasks defined in the main

flow.

Groovy scripts
The business logics of the tasks are

defined in the groovy,i(deally these can be java
plugin too) that would call the adapters and share
the request and get response for the defined
artifacts.

API Handler

Adapters
Adapters are

things that would be integrating
the other ONAP components south
bound to the SO and takeup the
actions further.

1. All the NBIs reside here,
Key classes for SO:
ServiceInstaces.java
E2EServiceInstaces.java
MSORequest.java

2. Update the request information in the
Request db, Read the catalog infor synced from
SDC and make the request for the workflow

3.
•The original request received by the API
handler from the portal or other client.
•Metadata such as the request-id generated by
the API Handler for the request.
•The name of the BPMN process to execute
(obtained by the API Handler from the
mso_catalog.service_recipe table.

SO –R2 enhancements proposal

SO Functional Evolution and Road Map

• R0 – Support for specific resource orchestration, NB system is required to call
multiple SO API for orchestrating E2E service

• In R1 SO
- Homing solution brought - demonstrated the placement of VCPE VNFs
- Declarative TOSCA orchestrator integrated to the SO code as a DO, yet to be functionally

attached.
- introduced new E2E service instance NB API, yet it is currently calling a specific BPMN recipe

for orchestrating VOLTE service which orchestrate VFC and SDNC

• In R2+ on top of existing support (Requires Brianstorming)
- S3p Improvement and make carrier grade
- E2E service should evolve to provide ability to orchestrate any service modeled in SDC in

model driven manner
- APIs should be generic (based on SDO) and based on the model
- Allow service composition , i.e. high level service depends on lower level service in a recursive

manner
- Each orchestration flow can pre define the interaction of SO adapters as a design time

decision

SO Carrier-Grade Mission – Proposal

Proposal

• To make SO Carrier-Grade, non-functional requirements must
be fulfilled. ONAP defined the following non-functional
requirements.

- Scalability (Scale in and out)

- Stability (managing steady load for required time period)

- Resiliency (Failover, HA)

- Security (Secure Communication, AAA, Security
Logging/Auditing)

- Performance (Response Time, Transaction/message
rate, Latency, Footprint)

- Manageability (SSO, Logging/Tracing, Monitoring)

- Usability (conform to ONAP-level Usability)

• To achieve the above, SO needs platform-level enhancements.

- SO process monitoring is another important factor from a
Carrier-Grade perspective.

• The monitoring provides manageability (and could
be usability).

- We need to avoid vendor lock-in (e.g., adding commercial
products into ONAP).

Open Issues

ONAP Carrier-Grade requirements are not finalized. That is
the dependency.

How will OOM, CHAP projects impact ONAP
components?
Need to decide SO scalability strategy: scale at the SO
component level or at the SO sub-component level.
Need to define the Container Manager functionality and
realization.
Need to define the Security Framework functionality
and realization.

Dependencies :
OOM / Kubernetes
CHAP (Common HA Platform)
AAF
KMS (Key management system- Security)

SO R2+ Extensibility requirements

• Ability to add new recipe externally to SO upstream
- Ability to add new BPMN flows + their associated groovy/Java externally to SO

• Ability to add new resource adaptation externally to SO
- Ability to adapt the third party controllers (not managed by ONAP) to be able to

associate with the SO

• Ability of bringing in the (Declarative) TOSCA as a DO inside SO and
able to delegate the orchestration request to that block.
- Define Tosca Model / types and distribute to the SO at runtime.

What can be done inside SO

Functionality Limitations/Observations

APPC adapter in SO is not yet used a. Integrated APPC client in SO

Improve Troubleshooting of the SO Code

a. Better debugging of the java and BPMN code

b. Enhance the monitoring capability of the workflow process

c. Strengthen the UT cases of the flows

Better Packaging of the application code

a. Bring in the container , dockers/ Spring boot

b. Split the packages further (eg MSOCommon BMPN)into sub sects and
create modules to as to handle them better.

Restructure of the MSO API handler

a. Bringing the hierarchy and abstraction based on the functionality

b. bringing plugins for the specific functionality

Replace the adapters with the java plugins

a. Replace the groovy scripts tasks with the Java service tasks

b. New code of the BPMN to adopt the Java server tasks to have better
control

