
MUSIC: Multi-site State
Coordination for

Distributed Services
Bharath Balasubramanian, Pamela Zave, Kaustubh Joshi, Shankar Narayanan,

Gueyoung Jung, Matti Hiltunen and Richard Schlichting
Cloud Software Research, AT&T Labs-Research

Multi-site replicated services
Most services (storage, compute etc) replicated
across sites/dc for:

Reliability

Availability

Locality

Need for Coordination
Complex replicated services often need
coordination. Examples:
How will I ensure only one of the replicas is active?
On failure, will a new active have up to date state?
How can I synchronize state across replicas?
How do I ensure exclusive access to shared state
among several active replicas?

• Cloud placement service
replicated across sites.

• Clients submit app templates
to nearest replica and site-
workers pick these templates
and place them if they have
resources.

• Need for coordination: Ensure
that each template is picked
up by only one worker

ATT Use-case 1: Multi-site
Placement Service

Site 1

Temp id Worker id

Site 2

Temp id Worker id

Site 3

Temp id Worker id

Cloud Placement Service

Site 4 Site 5

Workers managing their sites pick work from
the placement service

Clients submit cloud templates to the closest service end point

• Many applications need databases
for transactionality and complex
queries and joins

• But what about multi-site
distributed set-ups?

• Lazy asynchronous replication
causes correctness issues while
synchronous replication can
cause performance issues
across the WAN

• Need for coordination: can we get
transactionality within sites but
flexible mirroring options across?

ATT Use-case 2: Multi-site
DB Cache

local
sql db

Site 1

A B

Site 2

A B
local

sql db

Current Approaches
1. Maintain state in eventually-consistent stores like

Cassandra or MongoDB
• Eventual consistency can cause correctness issues.

e.g. same template picked up by multiple workers,
e.g. media server has stale view of a call.

2. Maintain state in a strongly-consistent store like
Zookeeper, etcd or Consul

• Strong consistency on each write is expensive and
partition-intolerant across WAN. e.g. client
submitting template does not need strong
consistency.

Problem
No existing coordination service for managing
access to logically shared state that scales for
multi-site replicated services.

Concurrent systems do it…
A rich set of primitives such as semaphores,
mutexes, and barriers have evolved over time to
enable coordination in multi-threaded systems.

For distributed systems?
Analogous primitives for distributed systems such
as leader election, mutual exclusion, 2-phase
commit typically restricted to use within a site.

The few multi-site solutions are very specific to
applications such as quota maintenance/rate
limiting.

For distributed systems?
Analogous primitives for distributed systems such
as leader election, mutual exclusion, 2-phase
commit typically restricted to use within a site.

The few multi-site solutions are very specific to
applications such as quota maintenance/rate
limiting.

What is the challenge?
Concurrent systems rely on an underlying memory
model that is sequentially consistent : Each read of
a register will see the latest write.

This enables strong coordination patterns in multi-
thread systems. E.g. a process in a critical section
has exclusive access to the most up-to- date copy
of data protected by the critical section.

Sequential Consistency in
multi-site distributed systems?
Very hard to achieve in geo-distributed systems
with network partitions and high WAN latencies.

CAP theorem (paraphrased): To tolerate network
partitions (P), one must choose between
sequential consistency (C) or availability (A).

Dilemma
Coordination patterns need sequential
consistency.
However, sequential consistency is very hard to
achieve in multi-site distributed systems.

Our solution
A multi-site coordination service (MUSIC) that
maintains replicated state in a highly scalable (AP)
key-value store and explicitly provides a locking
service (CP) to protect access to shared state.

Architecture

Site 1

M

Site 2

M

Site 3

M

dataStore Replica part of an eventually-consistent
store like Cassandra

MUSIC Node
running core MUSIC

algorithms

Clients accessing MUSIC

lockStore Replica part of a sequentially-consistent
store like Zookeeper

MUSIC Basic Usage
MUSIC provides the abstraction of a replicated key-
value store, where access to the keys can be controlled
using locks. To use MUSIC, a client issues a request to
a MUSIC node of its choice.

The MUSIC operations are divided among CP and AP
operations based on whether they are operations
involving a critical section or not respectively.

Using locks, a client can access the store
in a critical section with respect to one or
more keys.

createLockRef takes a set of keys and
returns a lockRef, which is a ticket good
for one critical section only.

acquireLock (lockRef) returns true for
only one lockRef and also ensures that
replicas of keys in the key-set have the
most recent values.

MUSIC CP Operations

 K = {key1, key2};
 lockRef = createLockRef (K);
 while (acquireLock (lockRef) != true)

skip;
 //critical section
 v1 = criticalGet(lockRef, key1);
 v1`= v1+1;
 criticalPut(lockRef, key1, v1`);
 v2 = criticalGet(lockRef, key2);
 v2` = v2 * v1`;
 criticalPut(lockRef, key2, v2`);
 releaseLock(lockRef);

The lock holder can perform
criticalGets and criticalPuts
that read and write to a majority
of MUSIC replicas respectively.

Since the critical operations all
require a majority of MUSIC
replicas, they are CP
operations.

MUSIC CP Operations

 K = {key1, key2};
 lockRef = createLockRef (K);
 while (acquireLock (lockRef) != true)

skip;
 //critical section
 v1 = criticalGet(lockRef, key1);
 v1`= v1+1;
 criticalPut(lockRef, key1, v1`);
 v2 = criticalGet(lockRef, key2);
 v2` = v2 * v1`;
 criticalPut(lockRef, key2, v2`);
 releaseLock(lockRef);

The put and get write and read to the
key at any of the MUSIC replicas.

While the get is enabled for all keys,
puts are enabled only for keys on
which critical operations will never be
attempted.

Since both these operations need just
a single MUSIC replica, they are
partition-tolerant AP operations.

MUSIC AP Operations

 v1 = get(key1);
 v1`=v1+1;
 put(key1, v1`);

MUSIC Properties
When a client acquires a lock to a set of keys, the
client is guaranteed a version that reflects the most
recent update to the key.

When a client performs reads and writes to locked
keys, the client experiences sequential consistency.

Due to the subtle nature of properties, we are
verifying the safety properties formally using the Spin
model checker and the Alloy analyzer.

• Maintain worker-template
mapping in MUSIC

• When a worker wishes to place
a template, it firsts acquires a
lock to the template and only if
it succeeds, updates it status
using critical puts and performs
the actual placement

ATT Multi-site Placement
Service over MUSIC

Site 1

Temp id Worker id

Site 2

Temp id Worker id

Site 3

Temp id Worker id

Cloud Placement Service

Site 4 Site 5

Workers managing their sites pick work from
the placement service

Clients submit cloud templates to the closest service end point

• mdbc = local sql db + multi-
site MUSIC deployment

• Service replicated across
multiple sites; writes to and
reads from the local mdbc sql
database

• mdbc captures local sql writes
and propagates it to MUSIC
and captures local reads and
serves it from MUSIC

ATT Use-case for a multi-site
DB Cache (mdbc) using MUSIC

Site 1

S
Site 2

S
Site 3

S

local sql data-base

MUSIC ensemble that maintains state in Cassandra with
access protected by Zookeeper locks

Service replicas sending SQL code to the mdbc

mdbc
Node

M M M

Recipes over MUSIC
Multi-site coordination recipes for:
mutual exclusion over shared state
load-balanced active-passive replication
barrier synchronization over distributed state

Stronger data semantics:
Multi-site replicated database cache (mdbc) which
allows SQL applications transactional semantics
within the site and choice of eventually consistent/
strongly consistent semantics across sites.

MUSIC and other tools
Gallera,
Spanner,

Sync-Postgresql
Cassandra,
MongoDB

Zookeeper,
etcd,

Consul

MUSIC

MUSIC-mdbc

Fully transactional
across sites

Transactional
within sites,
sequentially
consistent across

sequentially
consistent across
sites

eventually consistent
across sites

Stronger semantics Better performance
and partition-tolerance

Key Take-Aways
Multi-site coordination is necessary but hard to achieve.

MUSIC abstractions of a key-value store protected by
locks enables rich coordination primitives for multi-site
replicated services.

It also enables on-demand stronger data semantics on
eventually consistent stores.

