

ONAP MUSIC Functional Test Cases
Author: Leonardo Bellini, Tom Nelson

Table of Contents
ONAP MUSIC Functional Test Cases 1

Scope 1

OOF Functional Test Cases 2

Test Cases Details 4

Test Case N.1 – Check Version 4

Test Case N.2 – Keyspace Creation 4

Test Case N.3 – Table Creation 4

Test Case N.4 – Insert Row 5

Test Case N.5 – Read Inserted Row 5

Test Case N.6 – Update Row 6

Test Case N.7 – Read Updated Row 6

Test Case N.8 – Delete Row 7

Test Case N.9 – Table Drop 7

Test Case N.10 – Keyspace Drop 7

Scope

This document contains the description of Functional Test Cases planned for Onap
MUSIC in the scope of Beijing release.
From now on you will find the software product being identified by both “ONAP
MUSIC” of by “MUSIC” acronym.

This document is subjected to evolve/change during ONAP Beijing release lifetime
according to detailed commitments agreed during product consolidation.

Information reported here try to give one effective response to Functional Testing
items listed in ONAP MUSIC Release Planning Checklist Beijing (R2) – see link below

https://wiki.onap.org/​to_be_completed

OOF Functional Test Cases

With reference to the following architectural diagram, we are focusing Functional
Testing on MUSIC API interface.

All Functional Test Cases described here below will be automatized in the CSIT ONAP
integration environment.

Test
Case
id

Description Pre-Conditions Test-Steps Expected
Results

1 Name: CheckVersion
Interface MUSIC API
Perform sanity check verifying
Music version through REST API

1. MUSIC docker image
is up and running

Robot Framework is sending a REST
call to MUSIC to check SW Version
Method - GET
See Test detail section for URL
descrioption

MUSIC should
respond with
HTTP 200 and
body containing
MUSIC VERSION

2 Name: Keyspace creation
Interface MUSIC API
Perform sanity check creating a
new keyspace

1. MUSIC docker image
is up and running

Robot Framework is sending a REST
call to MUSIC to create anew
keyspace
Method - POST

MUSIC should
respond with
HTTP 200

3 Name: Table Creation
Interface MUSIC API
Perform sanity check creating a
new keyspace.table

1. MUSIC docker image
is up and running

Robot Framework is sending a REST
call to MUSIC to create a new table
within previously created keyspace
Method - POST

MUSIC should
respond with
HTTP 200

4 Name: Insert Row
Interface MUSIC API
Perform sanity check creating a
new keyspace.table.row

1. MUSIC docker image
is up and running

Robot Framework is sending a REST
call to MUSIC to insert a new row
into previously created table
Method - POST

MUSIC should
respond with
HTTP 200

5 Name: Read inserted Row
Interface MUSIC API
Perform sanity check reading a
new keyspace.table.row

1. MUSIC docker image
is up and running

Robot Framework is sending a REST
call to MUSIC to get a row content
from previously inserted row
Method - GET

MUSIC should
respond with
HTTP 200 and
with body
reporting row
content

6 Name: Update Row
Interface MUSIC API
Perform sanity check creating a
new keyspace.table.row

1. MUSIC docker image
is up and running

Robot Framework is sending a REST
call to MUSIC to insert a new row
into previously created table
Method - PUT

MUSIC should
respond with
HTTP 200

7 Name: Read updated Row
Interface MUSIC API
Perform sanity check reading a
new keyspace.table.row

1. MUSIC docker image
is up and running

Robot Framework is sending a REST
call to MUSIC to get a row content
from previously updated row
Method - GET

MUSIC should
respond with
HTTP 200 and
with body

https://wiki.onap.org/

 reporting row
content

8 Name: Delete Row
Interface MUSIC API
Perform sanity check deleting a
new keyspace.table.row

1. MUSIC docker image
is up and running

Robot Framework is sending a REST
call to MUSIC to delete row from
previously created table
Method - DELETE

MUSIC should
respond with
HTTP 200

9 Name: Table Drop
Interface MUSIC API
Perform sanity check dropping a
new keyspace.table

1. MUSIC docker image
is up and running

Robot Framework is sending a REST
call to MUSIC to drop a table table
Method - DELETE

MUSIC should
respond with
HTTP 200

10 Name: Keyspace Drop
Interface MUSIC API
Perform sanity check dropping a
new keyspace

1. MUSIC docker image
is up and running

Robot Framework is sending a REST
call to MUSIC to drop a keyspace
Method - DELETE

MUSIC should
respond with
HTTP 200

Test Cases Details

Test Case N.1 – Check Version

REST Method: GET
URL:
http://$(hostname):8080/MUSIC/rest/{interface_version}/version

where:
{interface_version}: should be set to a valid MUSIC API interface version

Test Case N.2 – Keyspace Creation

REST Method: POST
URL:
http://$(hostname):8080/MUSIC/rest/{interface_version}/keyspaces/{keyspace_name}

where:
{interface_version}: should be set to a valid MUSIC API interface version

{keyspace_name}: it is a string representing the cassandra keyspace name

REST Body:
To be added

REST RESPONSE:
To be added

Test Case N.3 – Table Creation

REST Method: POST
URL:
http://$(hostname):8080/MUSIC/rest/{interface_version}/keyspaces/{keyspace_name}/ta

bles/{table_name}

where:
{interface_version}: should be set to a valid MUSIC API interface version

{keyspace_name}: it is a string representing the cassandra keyspace name

{table_name}: it is a string representing the cassandra table name

REST Body:
To be added

REST RESPONSE:
To be added

Test Case N.4 – Insert Row

REST Method: POST
URL:
http://$(hostname):8080/MUSIC/rest/{interface_version}/keyspaces/{keyspace_name}/ta

bles/{table_name}/rows/{row_key}

where:
{interface_version}: should be set to a valid MUSIC API interface version

{keyspace_name}: it is a string representing the cassandra keyspace name

{table_name}: it is a string representing the cassandra table name

{row_key}: it is a string representing the primary key for the new row

REST Body:
To be added

REST RESPONSE:
To be added

Test Case N.5 – Read Inserted Row

REST Method: GET
URL:
http://$(hostname):8080/MUSIC/rest/{interface_version}/keyspaces/{keyspace_name}/ta

bles/{table_name}/rows/{row_key}

where:
{interface_version}: should be set to a valid MUSIC API interface version

{keyspace_name}: it is a string representing the cassandra keyspace name

{table_name}: it is a string representing the cassandra table name

{row_key}: it is a string representing the primary key for the new row

REST Body:
To be added

REST RESPONSE:
To be added

Test Case N.6 – Update Row

REST Method: PUT
URL:
http://$(hostname):8080/MUSIC/rest/{interface_version}/keyspaces/{keyspace_name}/ta

bles/{table_name}/rows/{row_key}

where:
{interface_version}: should be set to a valid MUSIC API interface version

{keyspace_name}: it is a string representing the cassandra keyspace name

{table_name}: it is a string representing the cassandra table name

{row_key}: it is a string representing the primary key for the new row

REST Body:
To be added

REST RESPONSE:
To be added

Test Case N.7 – Read Updated Row

REST Method: GET
URL:
http://$(hostname):8080/MUSIC/rest/{interface_version}/keyspaces/{keyspace_name}/ta

bles/{table_name}/rows/{row_key}

where:
{interface_version}: should be set to a valid MUSIC API interface version

{keyspace_name}: it is a string representing the cassandra keyspace name

{table_name}: it is a string representing the cassandra table name

{row_key}: it is a string representing the primary key for the new row

REST Body:
To be added

REST RESPONSE:
To be added

Test Case N.8 – Delete Row

REST Method: DELETE
URL:
http://$(hostname):8080/MUSIC/rest/{interface_version}/keyspaces/{keyspace_name}/ta

bles/{table_name}/rows/{row_key}

where:
{interface_version}: should be set to a valid MUSIC API interface version

{keyspace_name}: it is a string representing the cassandra keyspace name

{table_name}: it is a string representing the cassandra table name

{row_key}: it is a string representing the primary key for the row to delete

REST Body:
To be added

REST RESPONSE:
To be added

Test Case N.9 – Table Drop

REST Method: DELETE
URL:
http://$(hostname):8080/MUSIC/rest/{interface_version}/keyspaces/{keyspace_name}/ta

bles/{table_name}

where:
{interface_version}: should be set to a valid MUSIC API interface version

{keyspace_name}: it is a string representing the cassandra keyspace name

{table_name}: it is a string representing the cassandra table name

REST Body:
To be added

REST RESPONSE:
To be added

Test Case N.10 – Keyspace Drop

REST Method: DELETE
URL:
http://$(hostname):8080/MUSIC/rest/{interface_version}/keyspaces/{keyspace_name}

where:
{interface_version}: should be set to a valid MUSIC API interface version

{keyspace_name}: it is a string representing the cassandra keyspace name

REST Body:
To be added

REST RESPONSE:
To be added

