The flaw of our current algorithms is that it is theoreti-
cally possible for many MUSIC nodes that are attempting
puts to starve out a MUSIC node executing the while loop
at lines 14-15. If experiments show that this is a problem in
practice, it can be ameliorated by requiring a random wait
between successive attempts to put.

6. Implementation and Results
6.1 Implementation

We implement a version of MUSIC based on the design
in section 4 with our dataStore built on Cassandra and our
lockStore built on Zookeeper. To obtain the necessary ab-
stractions from the lockStore we modified the lock recipe of
Zookeeper. We implemented the MUSIC algorithms in Java
1.8 and deployed it as web service running on the Apache
Tomcat web server, accessible to the client through a REST
API. Our implementation of MUSIC, that is currently being
deployed in production, can be run with as many replicas as
needed.

6.2 Micro-benchmarks

In this section, we evaluate the performance of MUSIC us-
ing micro-benchmark experiments. To evaluate MUSIC AP
operations, we compare the MUSIC put and get operations
with the Cassandra put and get operations, where reads and
writes are performed on a single replica. To evaluate the CP
operations, we first implement an operation called CP Put,
in which we create and acquire a lock to a key, perform a
critical Put on that key, and finally release the lock. We com-
pare this CP Put with an analogous operation in Zookeeper
in which we replace the criticalPut, with a Zookeeper write
to the key (specifically, the node created in the Zookeeper
file system for this key). To illustrate the advantage of MU-
SIC over a system like Zookeeper, that only allows CP op-
erations for writes, we compare the MUSIC AP operations
with Zookeeper gets and puts.

Experiment setup: Our experimental setup consists of
a 3 replica MUSIC cluster deployed across two Openstack
[16] sites, where each replica has 2 VCPUs and 4 GB of
RAM. We emulate users issuing a fixed number of requests
to each of these systems using JMeter [17]. We vary the
number of the simultaneous users by increasing the num-
ber of threads to saturate the systems and measure the me-
dian throughput achieved in each of the three systems over
the duration of the experiment. We repeat our throughput
measurements multiple times with each system and alternate
uniformly between all three systems to mitigate the impact
of any external performance variability on our results.

Figure 11 shows a bar graph comparing the perfor-
mance of Cassandra and MUSIC get/put AP operations.
The bars are grouped along the X-Axis based on the op-
eration (get/put) and the bars (and error bars) correspond to
the average (and standard deviation) in the median through-
put observed across multiple experiments with both MUSIC

10

2000 r

OCassandra

1500 | W Music

Average Throughput
(ops/sec)
S
o
o

o
o
S

Figure 11: Comparing the performance of get and put operations of
MUSIC and Cassandra, to show that MUSIC performs comparably to
Cassandra despite the additional overhead of ensuring that the MUSIC puts
never overwrite a locked key.

and Cassandra. From the figure, we can see that the MUSIC
AP operations performs comparably with Cassandra get and
put, with a median throughput of nearly 1700 ops/sec while
supporting as many as 2000 parallel requests.

- F S Music
_g; 1500 - & Zookeeper
'é, \é 1000 § §

get put

Figure 12: Comparing the performance of MUSIC and Zookeeper. While
MUSIC CP put is comparable to Zookeeper CP Put, MUSIC put is nearly
twice as fast as the Zookeeper put.

Figure 12 shows a similar bar graph comparing the per-
formance of it get, put and CP Put operations across MU-
SIC and Zookeeper. Clearly, the ger operation is compara-
ble across both the systems, since a ger happens locally at
a single node for both systems. However, MUSIC put is
significantly faster than Zookeeper puts, which incurs the
Paxos latency for all writes. On the other hand, MUSIC puts
can happen locally within a node, thereby being faster than
Zookeeper writes. Finally, we also see that the performance
of both systems are comparable for CP Puts, which shows
that MUSIC performs similar to Zookeper even in the most
adversarial scenario, when locks are acquired and released
between every put operation.

6.3 Multi-site Application Scheduler

Our multi-site application scheduler (based on the exam-
ple in section 3.1) experiment evaluates the impact of the
choice of consistency on the performance and efficiency of
distributed scheduling.

6.3.1 Experiment setup

We use our in-house holistic application scheduler for Open-
Stack [16] as the local scheduler at each cluster. The exper-

2016/10/22

This document is shared under non-disclosure rules outined in the AT& T / Gigaspaces MSA signed in July 2016



