
Recursive Orchestration of Allotted Resources
with Dynamic Instantiation

Gil Bullard, AT&T

February 5, 2018

2

N-Level Run Time Nesting? Let The Service Providers Decide

Service_W Modeling Example 1

Could be extended to allow

multiple “higher level Services”

to each have a “share” of a

“lower level Service’s” instance

See next slide for an alternative modeling approach that

could be used when a “higher level Service” consumes the

entirety of a “lower level Service’s” instance. This

alternate approach may be appropriate for a Service

Provider who is concerned about the run-time complexity

that can be introduced with N-Level run time recursion.

Each Service/Resource “reuse unit”

results in a separate thread of

orchestration. This would allow for

“on demand” spin up of “lower level”

(Infrastructure) Service instances.

Service Z:

topology_template:

node_templates:

VNF_Zj

VNF_Zk

capability: Z

VNF_Zj

VNF_Zk

D
R

A
F

T
 F

O
R

 D
IS

C
U

S
S
IO

N

A&AI Instance Representation of Service_W Example 1
In this example, the entirety of VNF_W is dedicated

to the Service_W Service Instance, but only a portion

(represented in A&AI as AllottedResource_W) of the

“lower level” Service_X Service Instance is dedicated

to the Service_W Service Instance. This pattern

repeats itself for the other Service Instances shown.Service_W’s Allotted Resource

provided by Service_X’s Capability_X

Service_X’s Allotted Resource

provided by Service_Y’s Capability_Y

Service_Y’s Allotted Resource

provided by Service_Z’s Capability_Z

Service_W Svc Instance

Instance “1”
AllottedResource_W AR Instance

Instance “1”

AllottedResource_X AR Instance

Instance “2”

AllottedResource_Y AR Instance

Instance “3”

Service_X Svc Instance

Instance “2”

Service_Y Svc Instance

Instance “3”

Service_Z Svc Instance

Instance “4”

VNF_W VNF Instance

Instance “1”

VNF_X VNF Instance

Instance “2”

VNF_Y VNF Instance

Instance “3”

VNF_Zj VNF Instance

Instance “4”

VNF_Zk VNF Instance

Instance “4”

D
R

A
F

T
 F

O
R

 D
IS

C
U

S
S
IO

N

4

Service_W Service:

topology_template:

node_templates:

VNF_W (VNF):

Allotted_Resource_W (AllotRes):

Topological Model for Service_W Example 1
VNF_W VNF Resource:

VFC_W (VFC)

Allotted_Resource_W AllottedResource:

Requirement:

Capability_X

Service_X Service:

topology_template:

node_templates:

VNF_X (VNF):

Allotted_Resource_X (AllotRes):

Capabilities:

Capability_X

VNF_X VNF Resource:

VFC_X (VFC)

Allotted_Resource_X AllottedResource:

Requirement:

Capability _Y

Service_Y Service:

topology_template:

node_templates:

VNF_Y (VNF):

Allotted_Resource_Y (AllotRes):

Capabilities:

Capability_Y

VNF_Y VNF Resource:

VFC_Y (VFC)

Allotted_Resource_Y AllottedResource:

Requirement:

Capability_Z

Service_Z Service:

topology_template:

node_templates:

VNF_Zj (VNF):

VNF_Zk (VNF):

Capabilities:

Capability_Z

VNF_Zk VNF Resource:

VFC_Zk (VFC)

VNF_Zj VNF Resource:

VFC_Zj (VFC)

D
R

A
F

T
 F

O
R

 D
IS

C
U

S
S
IO

N

5

“VNF Chaining” Data Flow for Service_W Example 1

VNF_W

VNF_X

VNF_Y

VNF_Zk

VNF_Zj

Service_W’s Allotted Resource

provided by Service_X’s Capability_X

Service_X’s Allotted Resource

provided by Service_Y’s Capability_Y

Service_Y’s Allotted Resource

provided by Service_Z’s Capability_Z

AR_W

AR_X

AR_Y

AR_Y

D
R

A
F

T
 F

O
R

 D
IS

C
U

S
S
IO

N

6

Modeling Network Latency Homing Constraints
for Allotted Resources

If Service_W is sensitive to network

latency beween VNF_W and the VNF_X

that hosts AR_W, then the homing

algorithm will need to select only VNF_X

instances that meet the Service_W

constraint. However, we don’t want to

write any homing (or any other) policies

for Service_W in terms of the internal

structure of the underlying “lower

order” Service type.

We can instead write the network latency constraint in terms of two policies, one a Service_W policy and one a

Service_X policy.

Specifically, we will define the concept of an “SLA” that the lower order service will advertise. We will give the “higher

order” Service a policy as to which SLA it requires from the “lower order” Service type. We will have the “lower order”

Service type have a policy which indicates from which VNF the SLA is measured (mirroring the data path)

D
R

A
F

T
 F

O
R

 D
IS

C
U

S
S
IO

N

7

VNF_Zj

Instance

Service_Z Policy:

SLA Z1 is provided from

entry point VNF_Zj

Modeling Network Latency for Service_W
Example 1

VNF_W

VNF_X

Instance

VNF_Y

Instance

VNF_Zk

Instance

Service_W Constraint:

Network Latency<30ms

Network Latency<45ms

Service_W Constraint:

Network Latency<15ms
AR_W

AR_Y

AR_Y

Network Latency=0ms

AR_X

Service_W Policy:

Require SLA X1 from the

hosted Service_X instance

Homing for VNF_W consists of finding eligible cloud regions within 15ms of the residence.

Homing for AR_W consists of, for each potential VNF_W cloud region, find all Service_X instances

with a network latency less than 30ms. To find such Service_X instances, homing must know

which SLA AR_W depends on (in this case SLA X1) and also know from where it is measured (in

this case, VNF_X). So homing is really looking for all Service_X instances such that its VNF_X

instance is within 30ms network latency. Homing for VNF_X and AR_X follows the same pattern.

Homing for AR_Y consists of, for each potential VNF_Y cloud region, find all Service_Z

instances with a network latency less than 45ms. To find such Service_Z instances,

homing must know which SLA AR_Y depends on (in this case SLA Z1) and also know

from where it is measured (in this case, VNF_Zj). So homing is really looking for all

Service_Z instances such that its VNF_Zj instance is within 45ms network latency.

Service_X Policy:

Require SLA Y1 from the

hosted Service_Y instance

Service Y Policy:

Require SLA Z1 from the

hosted Service_Z instance

Service_X Policy:

SLA X1 is provided from

entry point VNF_X

Service_Y Policy:

SLA Y1 is provided from

entry point VNF_Y

Network Latency=0ms

8

Service_W Service:

topology_template:

node_templates:

VNF_W (VNF):

Allotted_Resource_W (AR):

Homing Policies for Service_W Example 1

VNF_W VNF Resource:

VFC_W (VFC)

Allotted_Resource_W AR:

Requirement:

Capability_X

Service_X Service:

topology_template:

node_templates:

VNF_X (VNF):

Allotted_Resource_X (AR):

Capabilities:

Capability_X

VNF_X VNF Resource:

VFC_X (VFC)

Allotted_Resource_X AR:

Requirement:

Capability_Y

Service_Y Service:

topology_template:

node_templates:

VNF_Y (VNF):

Allotted_Resource_Y (AR):

Capabilities:

Capability_Y

VNF_Y VNF Resource:

VFC_Y (VFC)

Allotted_Resource_Y AR:

Requirement:

Capability_Z

Service_Z Service:

topology_template:

node_templates:

VNF_Zj (VNF):

VNF_Zk (VNF):

Capabilities:

Capability_Z

VNF_Zk VNF Resource:

VFC_Zk (VFC)

Service_W Constraint:

Network Latency<30ms

Service_X Constraint:

Affinity: Co-Located

VNF_Zj VNF Resource:

VFC_Zj (VFC)

Service_Y Constraint:

Network Latency<35ms

Service_W Constraint:

Network Latency<20ms

SLA X1

RspTime<75ms from VNF_X

SLA Y1

SLA Z1

ResponseTime<30ms at VNF_Zj, if

SvcInstance created with configuration “P”

(not counting network latency)

SLA Z2

ResponseTime<20ms at VNF_Zj, if

SvcInstance created with configuration “Q”

(not counting network latency)

Use SLA Z1

SLA Y1

RspTime<70ms from VNF_Y

SLA X1

SLA Z1

SLA Z2

Service_Z Constraint:

Affinity: Co-Located

SLA W1

RspTime<110ms from VNF_W

Service_Y Constraint:

Affinity: Must be within geo-political

provincial/state boundary

“Lower Level Service Type” that

can be instantiated in real time

on an “on demand” basis

Key

Use SLA X1

Use SLA Y1

Application Latency 5ms

Application Latency 5ms

Application Latency 5ms

Requires Contrail

D
R

A
F

T
 F

O
R

 D
IS

C
U

S
S
IO

N

Svc Type Rsc Type AR Capab Svc SLA Policies Homing Constraints Capab Svc Struct

Service_W W1: RspTime<80ms from VNF_W Ntw Latency: VNF_W <-> AR_W < 30ms

Service_W VNF_W Ntw Latency:Residence <-> VNF_X < 15ms

Service_W AR_W Service_X Require SLA X1 from Service_X instance

Decomposition Structure for Service_W Example 1

A
R

_
W

 C
a

p
a

b
S

v
c

S
tr

u
ct

Svc Type Rsc Type AR Capab Svc SLA Policies Homing Constraints Capab Svc Struct

Service_X X1: RspTime<45ms from VNF_Y Affinity: VNF_X, AR_X Co-Located

Service_X VNF_X

Service_X AR_X Service_Y Require SLA Y1 from Service_Y instance

A
R

_
X

 C
a

p
a

b
S

v
c

S
tr

u
ct

Svc Type Rsc Type AR Capab Svc SLA Policies Homing Constraints Capab Svc Struct

Service_Y Y1: RspTime<40ms from VNF_Y Ntw Latency: VNF_Y <-> AR_Y < 45ms

Service_Y VNF_Y Affinity: Residence, VNF_Y within state

boundary {CA, OR, MA, RI, NH}

Service_Y AR_Y Service_Z Require SLA Z1 from Service_Z instance

A
R

_
Y

 C
a

p
a

b

S
vc

 S
tr

u
ct

Svc Type Rsc Type AR Capab Svc SLA Policies Homing Constraints Capab Svc Struct

Service_Z Z1: <30ms with config “Q”

Z2: <20ms with config “P”

Affinity: VNF_Zj, VNF_Zk Co-Located

Service_Z VNF_Zj

Service_Z VNF_Zk

D
R

A
F

T
 F

O
R

 D
IS

C
U

S
S
IO

N

10

Decomposition and Homing Approach

Note that, from a Service_W perspective, the goal of homing is to find a Service_X instance which meets the

Service_W “Ntw Latency” constraint of “VNF_W <-> AR_W < 30ms”. This would require decomposition to

create the Service_W rows in the decomposition example. If such service instance is found, then homing is

complete. However, if no such Service_X instance exists, homing can determine that a new one should be

created “on demand.”

Creation of a new Service_X instance would require decomposition of Service_X (i.e., the Service_X rows only)

for a second homing attempt. From the Service_X perspective, the goal of homing is to find a Service_Y

instance which meets the Service_X “Affinity” constraint that “VNF_X, AR_X Co-Located” and such that the

“Ntw Latency” constraint of “VNF_W <-> AR_W < 30ms” is also met. (Note that the network latency of AR_W is

measured from the Capability_X SLA, which is in turn measured from VNF_X.) Thus, in order to solve the

Service_X homing problem, consideration must be given to the Service_W constraints. If homing finds no such

Service_Y instance, it can determine that a new one should be created “on demand.”

From this point the recursion pattern is set: for nested Services such that the “lower level” Services can be

instantiated “on demand”, it is necessary to solve the homing problem holistically. Thus, we will opt in the

subsequent slides for SO to do a full decomposition prior to a single homing attempt.

D
R

A
F

T
 F

O
R

 D
IS

C
U

S
S
IO

N

Generic Service Level Flow for Service_W Example 1

onap_uc_Generic_Service_Recursive_p1.html

D
R

A
F

T
 F

O
R

 D
IS

C
U

S
S
IO

N

Decomposition Detail Flow for Prior Example

onap_uc_Generic_Service_Decomp_p1.html

D
R

A
F

T
 F

O
R

 D
IS

C
U

S
S
IO

N

Homing Solution Example for Service_W Example 1
Service Type Resource Type Allotted Resource

Capability Service

Capability Service

Struct

Homing Solution

Service_W VNF_W Cloud_Region_1

Service_W Allotted_Resource_W Service_X Instantiation_Needed

A
R

_
W

 H
o

m
in

g
 S

tr
u

ct
u

re

Service Type Resource Type Allotted Resource

Capability Service

Capability Service

Struct

Homing Solution

Service_X VNF_X Cloud_Region_2

Service_X Allotted_Resource_X Service_Y Instantiation_Needed

A
R

_
X

 H
o

m
in

g
 S

tr
u

ct
u

re

Service Type Resource Type Allotted Resource

Capability Service

Capability Service

Struct

Homing Solution

Service_Y VNF_Y Cloud_Region_2

Service_Y Allotted_Resource_Y Service_Z Service_Z_Instance_327

Service Type Resource Type Allotted Resource Capability Service Homing Solution

Service_Z VNF_Zj As Exists

Service_Z VNF_Zk As Exists

A
R

_
Y

 H
o

m
in

g

S
tr

u
ct

u
re

D
R

A
F

T
 F

O
R

 D
IS

C
U

S
S
IO

N

Instantiation Detail Flow
for Service_W Example 1

Note recursion in the process

onap_uc_Generic_Resource_VNF_Recursive.html

Scale PPT to 300% to

view detail. ☺

D
R

A
F

T
 F

O
R

 D
IS

C
U

S
S
IO

N

15

Backup Slides

16

L3VPN_Cust Service:

topology_template:

node_templates:

VRF

Allotted Resources – vPE/VRF Example

VRF Allotted Resource

requirement: VRF_Capability

vPE_Infra Service:

topology_template:

node_templates:

vPE VNF

vPeNet_Network

capability: VRF_Capability

vPeNet Network

vPE VNF

Every Resource can be exposed as a Service. The ONAP model supports this today through

the “Allotted Resource” construct. This concept of “Allotted Resource” does not seem to

appear in the ETSI model. Perhaps this is due to ETSI seemingly covering only instantiation

of Infrastructure Services, and not instantiation of end Customer Services.

“Higher Level”

Service

“Lower Level”

Service

In this case, the vPE VNF has been packaged

as an Infrastructure Service. An instantiation

request for this vPE_Infra Service would

result in a new vPE VNF being instantiated.

The vPE_Infra Service exposes a capability to

provide “VRFs” (a “VRF_Capability”). The

L3VPN_Cust Service consumes this capability

through its “VRF Allotted Resource” construct.

An instantiation request for a L3VPN_Cust Service would

result in a VRF being instantiated. That VRF would be

“homed” to an existing vPE_Infra Service instance (i.e., the

vPE VNF instance on which this VRF will be configured).

1

23

4

L3VPN_Cust Service Instance

Instance “A”

vPE_Infra Service Instance

Instance “X”

VRF Allotted Resource Instance

Instance “B”

vPE VNF Instance

Instance “Y”

vPeNet Network Instance

Instance “Z”

In A&AI an actual instance object represents the Allotted

Resource separate and distinct from the Services involved.

4

17

Service X:

topology_template:

node_templates:

PNF

Network

VNF

Allotted Resource

PNF

Model-Driven Orchestration

Service

Orchestration

Network

VNF

Allotted Resource

requirement: A

VF Module

Service Y:

topology_template:

node_templates:

PNF

Network

VNF

Allotted Resource

capability: A

PNF

Service

Orchestration

Network

VNF

Allotted Resource

Resource

Orchestration
Cloud Resource

Orchestration

Resource

Orchestration

An Allotted Resource can be homed to an

existing “underlying” Service Instance, or

homing could determine that a new Service

Instance is needed. This would result in a 2nd

level of Service Orchestration.

Each Resource Type has its own “Generic”

model-driven flow. There currently exist such

flows for “VNF” and “Network” Resource Types.
“Generic” model-driven Service flow (limited existing)

Recursion

Service Y is being treated

as a “Resource” from the

perspective of Service X.

Note that network function virtualization

should enable Service Providers to trigger

deployment of an instance of a “Lower

Level” Infrastructure Service using a

“demand based instantiation” approach.

18

N-Level Run Time Nesting? Let The Service Providers Decide

Service_W Modeling Example 2

Service_W:

topology_template:

node_template:

VNF_W

VNF_X

VNF_Y

VNF_Zj

VNF_Zk

Service W:

topology_template:

node_templates:

VNF_W

Service_X

Service X:

topology_template:

node_templates:

VNF_X

Service_Y

Service Y:

topology_template:

node_templates:

VNF_Y

Service_Z

Service Z:

topology_template:

node_templates:

VNF_Zj

VNF_Zk

Design Time

Distribution Time & Run Time

VNF_W

VNF_X

VNF_Y

VNF_Zj

For the case whereby a “higher level Service”

consumes the entirety of a “lower level Service’s”

instance, SDC should support the Design Time

ability to construct an “upper” Service Definition

from other Services definitions via substitution

mapping (a.k.a., “Compile Time Nesting”)

The “lower level Services”

would not be visible at

Distribution Time. Hence a

“flattening” of the run-time

orchestration would result.

Substitution Mapping

VNF_W VNF Instance

Instance “1”

VNF_X VNF Instance

Instance “2”

VNF_Y VNF Instance

Instance “3”

VNF_Zj VNF Instance

Instance “4”

Service_W Svc Instance

Instance “1”

A&AI Instance Representation of

Service_W Modeling Example 2

The entirety of these VNFs,

not just a portion thereof,

are dedicated to the

Service_W Service Instance.
VNF_Zk

VNF_Zk VNF Instance

Instance “4”

