
Junit Tests



Checking Current Code Coverage

• We use onap Sonar to track code coverage (sonar.onap.org)

• To see the appc coverage, click on the “appc” project on the front 
page (make sure you choose the most recent version of appc)

• From the project page, you can click on the coverage percentage to 
see more detail



Junit Plugin Setup

• The EclEmma plugin for Eclipse IDE allows you to run tests and see 
code coverage from within Eclipse

• If you go to the “Eclipse Marketplace” under the “Help” menu in 
Eclipse, you can search for EclEmma and install it from there

• Now, when you right click a class in either the Project Explorer or 
Outline in Eclipse, you will see the option to run “Coverage As…” > 
“Junit Test”



Naming Test Classes

• Normally, the test class should start with the word “Test”, followed by 
the class name you are testing

• One test class is created for each class you are trying to test

• For example, if we are testing the “RestartServer.java” class, the test 
class could be named “TestRestartServer.java”



Where to put test classes

• Test classes should be placed in the src/test/java folder of the same 
project that contains the code that you are testing

• The test classes should be in the same package as the class you are 
testing, but in the src/test/java folder

• For example: 
• The “RestartServer.java” class is part of the appc-iaas-adapter-bundle project

• It can be found in the 
“src/main/java/org/onap/appc/adapter/iaas/provider/operation/impl” folder

• Therefore, the test class should be placed in the 
“src/test/java/org/onap/appc/adapter/iaas/provider/operation/impl” folder



Inside a Test Class

• For any test class, the “org.junit.Test” class needs to be imported

• Each method in your test class should test one function of the code
• At a minimum, you will want one method in your test class for each method 

of the class that you are testing
• If you want to test different paths or options in a method, you will want to 

make a different method in your test class for each of these
• For example, you might want to test the functionality of a method based on 

different input values. Each of these tests should have its own method in your 
test class

• Each test method in your test class needs the annotation “@Test” on 
the line before the method declaration



Naming Test Methods

• One way to name the methods in your test class is to start with the 
word “test” and then the name of the method you are testing
• For example, if we are testing the “executeProviderOperation()” method, the 

test method could be named “testExecuteProviderOperation()”

• For cases where you will have multiple test methods for each method 
being tested, one way to name these is to use an underscore after the 
method name
• For example, if we are testing the “executeProviderOperation()” method with 

a null input value to make sure it functions correctly, we could name this test 
“TestExecuteProviderOperation_NullInput()”



Checking Behavior

• It is not enough to simply run the code that you are testing. You want 
to make sure that is running correctly

• Junit provides several functions to do this:
• Import the “org.junit.Assert” class
• Assert.fail(“description of what failed”):

• This method marks the test as a failure
• For example, you might call this if an exception is thrown from the code that you are 

testing
• Assert.assertEquals(expected value, actual value):

• This method compares the value you expect to get back, with the value you actually get 
back

• If they do not match, it marks the test as a failure

• More examples can be found in the junit docs



Rules for Tests

• Tests need to run fast
• Each test should run in under a second

• A test cannot wait for a timeout or other time based event

• Tests should never make a connection to an external service of any 
kind
• The idea of unit tests is that they run quickly and internally in any 

environment

• The PowerMock framework should not be used
• Tests done using the PowerMock framework will not be counted towards the 

Sonar coverage results



Mocking Classes

• Some classes cannot be used in tests
• For example, a class that goes out to an OpenStack server, gets a list of its 

inventory, and stores it

• Since we can’t make connections to remote systems in junit tests, we can’t 
use this class in a test

• We can create a fake version of this class to be used during the test
• This will allow us to test the functionality of other classes, even though we 

can’t test this one class



Org.Mockito

• The mockito framework provides an easy way to create fake or 
“mocked” versions of classes
• We can define behavior for these mocked classes so that they can still provide 

correct return values to the rest of the code that we are testing

• After the test, we can query the mocked class and confirm whether certain 
methods were called on it, and if certain values were passed to it

• Mockito does have some limitations
• Return values can not be set for private methods of mocked classes



Mocking a Class

• Let’s say we are trying to create a mock of a class named 
“OpenStackProvider.java”

• We will need to import “org.mockito.Mockito”

• To create the mock:
• OpenStackProvider openStackProvider = 

Mockito.mock(OpenStackProvider.class);



Making the Mocked Class Return values

• By default, the mocked class will always return a default value (null 
for objects, 0 for ints, etc..) when a method is called on it

• We can change this

• Let’s say the OpenStackProvider class has a getProviderName() 
method

• We want to make this return a real value
• Import the static class (import static…) “org.mockito.Mockito.doReturn”
• doReturn(“Provider 1 
Name”).when(openStackProvider).getProviderName();

• The red name is the instance of OpenStackProvider that we created on the 
last slide



Verify that a method was called on the 
mocked class
• Let’s say that the OpenStackProvider class has a “public void 
startInstance(String instanceId)” method

• We want to verify that this method of our mocked version of the class 
was called with the parameter “instance1”
• Import the static class “org.mockito.Mockito.verify”
• verify(openStackProvider).startInstance(“instance1");

• If the method startInstance was not called during the test with the 
“instance1” value, this will cause the test to be marked as failure


