
Please see ONAP Next Generation Security & Logging Architecture.

London release of ONAP is shipped with an authentication solution based on this article
It provides basic
authentication capabilities but lacks access management on a per-user basis.

You need to have OAuth2-Proxy deployed:

kubectl get pods | grep oauth2

Example output:

onap-platform-onap-oauth2-proxy-8c5cbcf57-5vc4l 2/2 Running 0 43h

AuthN + AuthZ

Chapter 1: How ONAP Did It in London

How it Works

https://wiki.onap.org/pages/viewpage.action?pageId=103417456#ONAPNextGenerationSecurity&LoggingArchitecture-ONAPComponentSecurityRequirements.1
https://wiki.onap.org/pages/viewpage.action?pageId=103417456#ONAPNextGenerationSecurity&LoggingArchitecture-Istioauthenticationandauthorization:

You need to have Keycloak deployed:

kubectl get pods -n keycloak | grep keycloak

Example output:

keycloak-0 2/2 Running 0 2d23h

keycloak-db-postgresql-0 2/2 Running 0 2d23h

Keycloak needs to have OAuth2-Proxy configured as "client," and OAuth2-Proxy must have Keycloak
configured as Identity Provider.
Istio must have OAuth2-Proxy configured as "provider" in the global Istio config:

kubectl edit cm istio -n istio-system

All of the above comes from ONAP after deployment.

Now, to make it work, apply additional AuthorizationPolicy :

apiVersion: security.istio.io/v1

kind: AuthorizationPolicy

metadata:

 name: echo-authz

 namespace: istio-ingress

 resourceVersion: "31013"

 uid: e8238e5b-08f9-48ab-9247-a57a64f4f5b9

spec:

 action: CUSTOM

 provider:

 name: oauth2-proxy

 rules:

 - to:

 - operation:

 hosts:

 - echoserver.simpledemo.onap.org

 selector:

 matchLabels:

 istio: ingress

Key understanding here is that OAuth2-Proxy does not really work as a real proxy...

Community used an experimental configuration format for OAuth2-Proxy aka "alpha configuration,"
meaning some options are not implemented or failing to work.

Notes

This option allows to use User Groups present in Keycloak. That way at least not all users in Keycloak (or
other Identity Provider) will have access to the platform, this can be done:

1a. by adding to oauth2-proxy option, "allowedGroups", that should do the trick, community for some
reason has commented out this part (not sure why), I have not tested it (just noticed it lately). The
disadvantage of it is that this will work for all components, and per all actions. And we cannot
differentiate between readers and admins.
1b. by extracting groups from the claim to the header and allowing this header to be used by istio for
validation. Then we have much more granularity. How it works?

Edit oauth2-prox2 configuration add following lines:

 server:

 [...]

 BindAddress: '0.0.0.0:44180'

 injectResponseHeaders:

 [...]

 - name: x-auth-groups

 values:
 - claim: groups

What it does is it extracts groups from JWT token and maps it for header x-auth-groups (any name here is
good)
Edit main istio config add following lines:

 mesh: |-

 [...]

 extensionProviders:

 - envoyExtAuthzHttp:

 headersToDownstreamOnDeny:

 [...]

 headersToUpstreamOnAllow:

 [...]

 - x-auth-groups

 includeHeadersInCheck:

 - authorization

Chapter 2: How Can We Fix/Extend What the
Community Did?

Option 1: Extend Base Scenario with Group Support

 - cookie

 [...]

What it does is it tells istio to relay header from "accept" oaut2-proxy response to destination service.

Create new AuthorizationPolicy:

 apiVersion: security.istio.io/v1

 kind: AuthorizationPolicy

 metadata:

 [...]

 namespace: onap

 [...]

 spec:

 action: ALLOW

 rules:

 - to:

 - operation:

 hosts:

 - echoserver.simpledemo.onap.org

 methods:

 - GET

 when:

 - key: request.headers[x-auth-groups]

 values:

 - '*onap_reader'

 - to:

 - operation:

 hosts:

 - echoserver.simpledemo.onap.org

 methods:

 - GET

 - POST

 - PUT

 when:

 - key: request.headers[x-auth-groups]

 values:

 - admins*

 selector:

 matchLabels:

 app: echoserver

What it does it attach new policy to envoy proxy on "echoserver", this policy checks the value of x-auth-
groups header and block request that does not match either of rules. Please note that this setup allows as
to configure access per user group, per host (service), per operation (can be also extender on per path
base) Thats quite ok granularity.

That allows more operations, especially it allows to forward jwt tokens from ingress further to service
mesh. We have the option to use one of the two jwt tokens (identity, or user info).

First, we need to edit oauth2-proxy configuration via editing its deployment:

Option 2: Replace Community OAuth2-Proxy Configuration with Non-
Experimental Configuration

 apiVersion: apps/v1

 kind: Deployment

 [...]

 spec:

 automountServiceAccountToken: true

 containers:

 - args:

 - --provider=oidc

 - --provider-display-name="AmartusKeycloakID"

 - --client-id=oauth2-proxy

 - --client-secret=5YSOkJz99WHv8enDZPknzJuGqVSerELp

 - --oidc-issuer-url=https://keycloak-ui.simpledemo.onap.org/auth/realms/ONAP

 - --oidc-jwks-url=http://keycloak-http.keycloak/auth/realms/ONAP/protocol/openid-conne
 - --profile-url=https://keycloak-ui.simpledemo.onap.org/auth/realms/ONAP/protocol/open
 - --validate-url=https://keycloak-ui.simpledemo.onap.org/auth/realms/ONAP/protocol/ope
 - --redeem-url=http://keycloak-http.keycloak/auth/realms/ONAP/protocol/openid-connect/
 - --scope=openid email profile groups roles

 - --skip-oidc-discovery=true

 - --cookie-secure=false

 - --cookie-secret=CbgXFXDJ16laaCfChtFBpKy1trNEmJZDIjaiaIMLyRA=

 - --email-domain=*

 - --auth-logging=true

 - --request-logging=true

 - --standard-logging=true

 - --show-debug-on-error=true

 - --cookie-domain=.simpledemo.onap.org

 - --cookie-expire=12h

 - --cookie-samesite=lax

 - --whitelist-domain=.simpledemo.onap.org

 - --login-url=https://keycloak-ui.simpledemo.onap.org/auth/realms/ONAP/protocol/openid
 - --pass-access-token=true

 - --pass-authorization-header=true

 - --pass-host-header=true

 - --pass-user-headers=true

 - --http-address=0.0.0.0:4180

 - --oidc-email-claim=email

 - --oidc-groups-claim=groups

 - --insecure-oidc-skip-issuer-verification=true

 - --insecure-oidc-allow-unverified-email=true

 - --silence-ping-logging=true

 - --upstream=static://200

 - --set-xauthrequest=true

 - --set-authorization-header=true

 [...]

Most important settings are set-xauthrequest, set-authorization-header. This injects jwt tokens into headers
that later can be used by istio or even upstream app. Now we can decide which token can be used

This allows to use groups out of the box (but nothing apart of groups can be used):

create Istio resource RequestAuthentication:

 apiVersion: security.istio.io/v1beta1

kind: RequestAuthentication

2.a Authorization Header

 kind: RequestAuthentication

 metadata:

 name: echo-request-auth

 namespace: onap

 spec:

 selector:

 matchLabels:
 app: echoserver

 jwtRules:

 - issuer: https://keycloak-ui.simpledemo.onap.org/auth/realms/ONAP

 jwksUri: http://keycloak-http.keycloak/auth/realms/ONAP/protocol/openid-connect/certs

What it does it tells Istio proxy on echoserver to look for jwt token in default location (Authorization Header)
and extract from it all the claims. Additionally, if the token is invalid it will return 403 immediately to the
user.

create Istio Resource AuthorizationPolicy:

 apiVersion: security.istio.io/v1

 kind: AuthorizationPolicy

 metadata:

 name: echo-authz-group-check-jwt

 namespace: onap

 spec:

 action: ALLOW

 rules:

 - to:

 - operation:

 hosts:
 - echoserver.simpledemo.onap.org

 methods:

 - GET

 when:

 - key: request.auth.claims[groups]

 values:

 - onap_reader

 - to:

 - operation:

 hosts:
 - echoserver.simpledemo.onap.org

 methods:

 - GET

 - POST
 - PUT

 when:

 - key: request.auth.claims[groups]

 values:

 - admins

 - onap_admin

 - onap_contributor

 selector:

 matchLabels:

 app: echoserver

It extracts from claims the user groups and checks groups. This nicely allows us to limit access based on
group, server, path and method

This allows to use groups, roles, custom claims out of the box

create Istio resource RequestAuthentication:

 apiVersion: security.istio.io/v1beta1

 kind: RequestAuthentication

 metadata:

 name: echo-request-auth

 namespace: onap

 spec:

 selector:

 matchLabels:

 app: echoserver

 jwtRules:

 - issuer: https://keycloak-ui.simpledemo.onap.org/auth/realms/ONAP

 jwksUri: http://keycloak-http.keycloak/auth/realms/ONAP/protocol/openid-connect/cert
 fromHeaders:

 - name: x-auth-request-access-token

The only difference here is that we specify what header host the jwt token, this token has many more
claims so we can use much more later in Authentication Policy

create Istio Resource AuthorizationPolicy:

 apiVersion: security.istio.io/v1

 kind: AuthorizationPolicy

 metadata:

 name: echo-authz-group-check-jwt

 namespace: onap

 spec:

 action: ALLOW

 rules:

 - to:

 - operation:

 hosts:

 - echoserver.simpledemo.onap.org

 methods:

 - GET

 when:

 - key: request.auth.claims[realm_access][roles]

 values:

 - onap_operator

 - to:

 - operation:

 hosts:

 - echoserver.simpledemo.onap.org

 methods:

 - GET

 - POST

 - PUT

 when:

 - key: request.auth.claims[realm_access][roles]

 values:

2.b User Info Header

 - admin

 - onap_admin

 - onap_designer

 selector:

 matchLabels:

 app: echoserver

We can see that roles are used to grant or deny access to user, but any other claim (including custom
ones) can be used.

Just rely on jwt tokens directly and forget about oauth2-proxy. It will be faster and more "genuine" but was
not tested (it just came out to me only lately after reading: https://github.com/istio/istio/issues/8619)

JWT – token expires and is rejected by Istio with: "Jwt is expired." Fixes:
Prolong JWT for longer than the cookie lasts (or reduce time for the cookie).
Make re-login redirection in case of a 401 response, "Jwt is expired" from envoy. It can be done with
EnvoyFilter.
Make a custom theme for login.
We should proceed more after an agreement with the customer:

We need to know IdP that will be used in the final solution; it may/will have different options than
Keycloak.
Claim aud should be validated to forbid the abuse of the token.
We should have a bypass for OAuth2-Proxy, based on some header with a password, IP, TLS,
etc. We must have the option to authorize traffic from tests or 3rd parties.

Option 3: Rely on JWT Tokens Directly

Chapter 3: Open Questions

https://github.com/istio/istio/issues/8619

