

How to add a new cloud region
and some thoughts

Bin Yang (Wind River), Alexis de Talhouët

VF2F Feb 5-8 , 2018

Agenda

• Status quo: tricky approach to onboard a Cloud Region

• Discrepancy: the assumptions and the constraint

• Workaround in short term

• Solution in long term

Status quo: Tricky approach to onboard a Cloud Region

• To add a new Cloud Region for ONAP
orchestration
- Add a Cloud Region Object into AAI

- Add a cloud-site in SO

- Launch another Robot VM

• Provision with new VIM/Cloud information via heat env file

• It will dedicatedly manage the new cloud region

• Not sure if it really works since it seems the cloud owner/region
id are hard-coded in Robot when it talks to A&AI

• wiki for detail instructions
https://wiki.onap.org/pages/viewpage.action?pageId=2
5431491

Representation of a VIM/Cloud and its consumers

VID

 A&AI

DCAE

SDN-C

Multi-VIM/Cloud

Service Orchestrator

APPC

VFC

Robot

ESR

VIM/Cloud Instance 1

/etc/mso/config.d/cloud_config.json:
 cloud-sites
 id=RegionOne
 …

/share/config/vm_properties.py:
 GLOBAL_INJECTED_REGION: RegionOne
/var/opt/OpenECOMP_ETE/robot/resources/global_
properties.robot:
 {GLOBAL_AAI_CLOUD_OWNER}: CloudOwner

VIM/Cloud Instance N ……

/cloud-infrastructure/cloud-regions:
 cloud-owner, cloud-region-id : CloudOwner,
RegionOne
 …

https://wiki.onap.org/pages/viewpage.action?pageId=25431491
https://wiki.onap.org/pages/viewpage.action?pageId=25431491

Discrepancy: the assumptions and the constraint

• Robot/VID/SDNC assume
- assume that “cloud-owner” is hard-coded as “CloudOwner”
- “cloud-region-id” is used to identify a VIM/Cloud instance so it is expected to

be unique globally

• Robot assumes
- “cloud-region-id” being the “region id” of underlying OpenStack
- Robot use this cloud-region-id to make request to underlying VIM/Cloud

instance.

• Constraint resulted by assumptions above:
- No more than 1 VIM/Cloud instance with same “region id” is not allowed to be

represented in ONAP
- Cloud Owner cannot be value other than “CloudOwner”.

Workaround in short term: compose and pass “vim-id”

• Context:
- The API between SO and SDNC does not pass cloud-owner, it only specifies cloud-region-id.

• The practice of MultiCloud (hence its consumers):
- concatenate cloud-owner and cloud-region-id to be one string named “vim-id”

- the format is: {vim-id} = {cloud-owner}_{cloud-region-id}

- Decode the {vim-id} into “cloud-owner” and “cloud-region-id” by looking for the first “_” in the {vim-id}

- Constraint: {cloud-owner} can be arbitrary string except “_”

• Proposed workaround in short term:
- VID LCP list:

• populate the list with list of {vim-id} instead of {cloud-region-id}

• Pass the {vim-id} to SO instead of {cloud-region-id}

- SO and SDNC:

• Accept the {vim-id} as input and decode it into {cloud-owner} and {cloud-region-id}

• Fetch cloud region information from AAI

• Keep the API between SO and SDNC intact, but pass {vim-id} instead of {cloud-region-id} to specify the cloud region

- Robot:

• Do not use hard-code cloud owner and cloud region id

• Ask users to specify the cloud region via {cloud-owner} and {cloud-region-id}

• Fetch the cloud region information from A&AI.

• This workaround
- guarantees the centralized representation of VIM/Cloud instance in ONAP

- Simplifies the registration of new VIM/Cloud instance into ONAP

- Minimize the changes to ONAP components

Solution in long term: specify cloud region by composed key

• Purpose:
- Get rid of the constraint imposed by th workaround in short term
- format of {vim-id}: {cloud-owner} can be arbitrary string except “_”

• Principle:
- Centralized representation of VIM/Cloud instance in A&AI
- Mandate exposed APIs of all components: Specify the cloud region by

composed key: {cloud-owner}, {cloud-region-id}

• Transition approach
- Keep the API with {vim-id} intact
- Add new API to support composed key of {cloud-owner}, {cloud-region-id}
- Depreciate the usage of APIs with {vim-id} in future

Suggested action plan

• ARC subcommittee
- In B Release, finalize the format of {vim-id},candidates:

• {vim-id} = {cloud-owner}_{cloud-region-id}, depreciated since cloud-owner can use “_”
• {vim-id} = {cloud-owner}.{cloud-region-id}
• {vim-id} = {cloud-owner}#{cloud-region-id}

• VID
- In B Release, uses {vim-id} instead of {cloud-region-id}

• SO/SDNC
- In B Release, use {vim-id} instead of {cloud-region-id}
- In C Release, leverage A&AI for representation of VIM/Cloud instance

• Robot
- In B Release, allow users to specify {vim-id} whenever executing scripts
- In B Release, leverages A&AI for representation of VIM/Cloud instance

• MultiCloud/VFC
- In B Release, renew the {vim-id} according to the format finazlied by ARC subcommittee

Suggestions?

s

谢谢

