
Tutorial on how to run DCAE Gen2 in release 1 (based on Lusheng’s recording

dcae-weekly-20171116.mp4):

Author: Pawel Pawlak (pawel.pawlak3@orange.com)

ONAP R1 will be deployed through a Heat – special use of a yaml files, inside the file you can specify,

describe how a virtual system looks like using Openstack terms, so you can describe what kind of

virtual resources you need to you need Openstack to spin-up to finish your systems including

networks, security groups - so key pairs and all the VMs. Also inside that you can also specify what

kind of cloud in the scripts you want to run in each VM.

For people not familiar with Heat template you can see that there is a bunch of input parameters it

requires and there is what kind of resources are needed,

when Marco or anybody from the Integration Team want to deploy a whole ONAP system, they just

run Openstack and use a stack create command by spec giving command this heat template and well

as input parameter file for example this is an environmental (extension .env) files are used for

deploying into integration lab Pod25 there is a tenant called DCAE so this is an input parameters file

, so it contains parameters needed for any ONAP VMs + some of the special parameters for DCAE.

Overall the process will be: when the stack is created it creates all ONAP VMs (14 or 15 of them) one

of them is called DCAE Bootstrap – inside of this VM we run some preparation work such as verifying

and creating DNS zone needed for DCAE and then inside of this VM it is gonna fetch the DCAE’s

bootstrap container, the container itself is going to run bootstrap script for DCAE, it is gonna interact

with Openstack undernees and the launch the rest of the DCAE VMs and configure zone and launch

all the necessary service components. So that is the overall process, let me connect to pod25.

This is the dashboard for the Integration Lab. You can see that we deployed this last night after LF

released all the dockers in the release registry. There is a full deployment of ONAP including DCAE.

The starting point was deploying release-test stack using the template – here there are all the

resources included in this stack,

all kind of probes, VMs.

Let’s go back to VM view (under instances) – the top ones are all DCAE VMs

span up by Bootstrap VM,

 the rest of them are ONAP VMs started by the heat template, you can see app-c, VNs, message

router, there are all here, the networking of the system is such that we have the heat template will

create the network – this is a pre-deployment network called OOM ONAP (random string here),

 it is gonna create and launch all the VMs described in a heat template attached to this network: for

example this vm1 app-c, clamp, nso all attached to this network and the heat will also add the virtual

router

to connect this network to the external network so all the VMs on this network they can talk to the

rest of the world and DCAE will launch its VMs in the same network so this way the

intercommunication between all the ONAP VMs they can just use private addresses (it is described in

the heat template) and also we have configured DNS services , so they can call to each other using

host name as well. I will add more details regarding the DNS because it is a little bit complicated.

We can take a look at the details of how DCAE is started and can also show how to debug and check

the status. This is the VM where the DCAE are from (vm1-dcae-bootstrap). I am connecting into that

VM

ssh –i ~/.ssh/id_onap_dev ubuntu@10.12.5.3

and under the opt you can see 2 scripts: dcae2_install.sh and dcae_vm_init.sh.

Those are scripts provided under the demo project. If you go to demo boot you will find those demo

scripts. And the first dcae2_install.sh is where the cloud init of this VM it is going call this script it is

going to install the SW, configure the DNS and for DCAE it is going to download all those input files

for the blueprints,

 those input files contain templated parameters because for example we need to know where is the

keystone URL is all those it is only known at the deployment time, so those files are downloaded and

detempletized

that is the jinja2 step for detempletizing that, we can take a look for example in the inputs.yaml file

that is going to contain all those values which are localized for that particular ONAP deployment.

The next step DCAE to install script gonna call is dcae_vm_init script inside here it is rather large but

essentially what we do here is first we download the docker images for the bootstrap container with

command:

it may take some time depending on how fast your network is. While this is downloading we setup

the DNS.

 In the Integration Lab we use so called proxied DNS as a Service solution – the Pod25 Openstack

installation does not natively have designate support instead has smaller another Openstack

installation which has designate and we are really delegating all the DNS designated operations to

that stack, so these are the steps needed for using this proxy DNS as a Service solution.

First we wait for A&AI become ready as the solution is using multicloud which requires A&AI to be

ready so it can retrieve the information from the A&AI, so after A&AI is ready we can register those 2

blocks of information with A&AI – they will be used by multicloud to do the DNS proxy – designate

proxy. Then after that we verify that the registrations are good, then we wait for multicloud to

become ready, after that we register the DNS zone.

So this is really for prepping DNS for the DCAE. After that we start to run the bootstrap container

docker run –d --name boot –v /opt/app/config:/opt/app/installer/config –e “LOCATION-$ZONE”

“$NEXUS_DOCKER_REPO/onap/org.onap.dcaegen2.deployments.bootstrap:$DOCKER_VERSION”

and then all the other interesting stuff happening inside of that bootstrap container, so there is a log

file at tmp/dcae2_install.log where we can see that docker images were being pooled,

 you can see lots of response code 000 – that is a step we are waiting for A&AI to become ready

– it takes like 30 - 40 minutes for A&AI to become ready. So than after that you can see the DNS

registering keystone token from the delegate designate OpenStack, then it lists all the current zones

registered there,

 finally it will register the new zone for the DNS for this particular ONAP installation

then we move on here: the docker is started and it is waiting for docker to finish its job,

 then it is end - the docker is done, we start the second docker image, docker container which is and

Enginx which provides the health check API for the robot testing framework.

The reason being the robot it is problem with an IP address and URL to pool for health tests status

but for DCAE because such health tests information is available at the console cluster and console

cluster IP address is dynamically assigned by DHCP, so we do not know beforehand, therefore we

setting up this proxy basically within this bootstrap VM at the end of deploying of DCAE we would

know where the console is and we setup this Enginx proxy, so the robot can always call bootstrap VM

which has a fixed static IP in the heat template. The robot can always pool this address, this URL

(http://10.12.3.3:8080/healthcheck and (http://10.0.4.1:8080/healthcheck) for the health check for

the whole DCAE. All those vertical dots are executions inside of the docker so you can see that there

are 2 docker containers running. This is the bootstrap container so we can do logs:

Docker logs –f boot

These were the steps it went through to install, to spin-up all the DCAE VMs and install service items

and those VMs, this is very detailed logs. That is the beginning of containers log,

the first thing it does is to install some software locally then it was pin-up one VM to install the

Cloudify Manager,

 so this is all installation of the software locally.

For the future we can pack all those steps into the bootstrap container itself, it does not inflate that

particular container but to improve boot-up time quite a lot as we need to do this every time. OK,

software is now installed, then it is asking to create a new server to install Cloudify Manager,

 then it does wait for that VM to come up,

 after it is coming up, then it will perform an installation work on that particular VM using SSH

 and here is all those things happening in the Cloudify Manager view – quite a lot logs to go through,

and at the end

of that after Cloudify Manager is up we can see (Manager is up at 10.12.5.165),

 the next step is to deploy a console cluster

and these are the steps to deploy a console cluster: again asking the Openstack to create VMs,

then installation of the software. Console cluster is 3 VM cluster – it is designed for HA reasons, you

can also distribute the members of this cluster,

they perform leader election, perform synchronization, so using this cluster you can really have a

very wide coverage of the information that is provided though a console. All these are installing

console. After the console is done, the next step is where we are installing the docker host.

 This docker host is used for installing DCAE platform components such as the Policy Handler, such as

Deploy Handler – those are already docker containerized and there will be running on that docker

host platform so that is installing docker platform. And after that the second docker host is launched

– it is used for installing the service components,

 so for example the VES collector is a service component – it is a docker container and it will be

installed on this docker host. So there are 2 docker hosts. Then after that there is a big a CDAP

cluster. CDAP cluster consists of 7 VMs – the reason is in production environment per the Hadoop

technology provider hoping works in this case they only trust VM cluster of certain size because only

that they can guarantee certain service level – they can say – ok we can handle even 3 VMs down for

example, that is the service level they want to provide and therefore the large size of the cluster.

There’s all the CDAPs steps.

Question: is it configurable the number of VMs in cluster to have for example only 1 VM for a demo

or test lab 7 cluster is quite big – it will be explained later on how to customize this configuration.

After the CDAP is installed there were installed additional components, you can see that there is a

CDAP Broker,

Policy Handler. All those components then the VES Collector, then the TCA , here is a Holmes

correlation

 – all those they are installed and at the end of the bootstrap container just goes into an internal loop

– the reason is that we want the container to be up – we can do things like that, we can log into that

and do additional blueprints to deploy, you can go to the container to do that. So in the logs you

gonna see a lot of this kind of statements.

Let’s go back to a dashboard. You can see what we saw in the log. The first on is the Cloudify

Manager (dcaeorcl00),

console cluster - 3 VMs cluster (dcaecnsl00, dcaecnsl01 and dcaecnsl02), you have 2 docker hosts

(dcaedoks00 and dcaedokp00) then you have the CDAP cluster (dcaecdap00, dcaecdap01,

dcaecdap02, dcaecdap03, dcaecdap04, dcaecdap05),

Cloudify

Manager

Console

Clusters

2 Docker

Hosts

there is 1 VM for running postgres database (dcaepgvm00).

Because we are using Cloudify Manager the deployment is actually very flexible – you just need to

provide blueprint describing the system you want to deploy, then just call the Cloudify Manager to

do that. From the logs you can see that all the CFY commands. For example in the following

command:

CDAP

Cluster

Postgres

DB

We are calling Cloudify Manager to deploy the policy handler. For example the current CDAP cluster

blueprint that is provided on Nexus it is describing 7 VMs cluster – to deploy a much smaller CDAP

cluster, for example 3 VMs, then we just need to provide that 3 VMs blueprint or maybe even just 1

VM – depends on what is needed and what is available. The tradeoff of course is when you have

much smaller CDAP then you can provide a more friendlier dev environment however it becomes less

production ready so we deal with this different kinds of blueprints used for different environments

and long time ago we had the smaller blueprints but because the use experience and feedback from

AT&T production side and from vendor recommendations we have hence with 2 o 7 VMs inside of

AT&T that is why we are putting this out as a contribution to ONAP. In the future, especially for

earlier releases of ONAP, probably more larger interest is in just for pack and dev way so we work on

those kind of things making maybe a dev version configuration of the DCAE. Now in the meanwhile

also there are other things that we could configure.

Question: can you please completely show how blueprints needs to be changed?

Yes, that is what I am doing right now. We probably willing to get into the docker because everything

is formed there and inside of docker (docker exec –it boot /bin/bash) you can see that there is a file

called: installer.

Inside of installer (more installer) is the master installation engine, so you see all those commands,

we saw the logs earlier, really all is triggered right here so if you want to get look for the next detail

level of information for how DCAE deploys that it the script you want to start with. And for the

blueprints there is a folder blueprints right here- there are 2 blueprints we use – that is - they really

form the core of DCAE platform: you have centos_vm.yaml which is the blueprint for the Cloudify

Manager

and then you have the consul_cluster.yaml.

Some people may say in dev environment I really don’t want to have 3 VM cluster then you want to

locate this blueprint and come up with probably just single VM blueprint alternative.

After the core components of DCAE platform are deployed then the rest of the blueprints are

available and if you go to consul there is also the blueprints catalogue and here are the blueprints for

all the other components so for example CDAP (with cdapbp7.yaml) that is where the 7 VMs CDAP

blueprint is.

You can see how it is configured that is the beauty of open source – you can really take a look what is

under knees.

Of course to modify and get a blueprint for cloudify fully working it may not be an easy task so that is

probably later on into the learning process people would be able to “cup the lay dune?” but for now

there is another place where you can play with configurations that is we have the input files in the

config catalogue (inputs.yaml)

you can play with the some of the input files, so like CDAP (cdapinputs.yaml) that is the input file that

is red by the CDAP blueprint

 – you can play with the flavor_id (‘m1.large’). Again the hold on work say: recommended large

actually I think it would be a m1.xxlarge type of VM, only that it will have enough memory and

storage to sustain large data analytics or creations but just for running it and keeper running our

experience with Pod25 has been m1.large – it does not have to be xlarge, large seems to be to

sustain TCA but if you do the medium then you will have the VMs up, it will work for a while but you

can not really do anything with it. So that is one dimension that you can configure. Of course as

everything is automated from the heat template, to deploy DCAE really you only need to issue the

command of heat to create a stack (stack create) and the rest is automatic so to change those thing

in the middle you have to either encounter an error and you going to fix it or you have to somehow

interrupt the process. For all those input parameters the root of the information is in the heat

template environment file, so I can show you how that is linked. I am back on my laptop

flavor.id is configured inside of the onap_openstack.yaml file.

Let’s go down into the DCAE section – you will see that there are 2 variables flavor_id:

one is for the CDAP VM cluster what kind of flavor VM you want to use and the other one is for the

rest of the VMs (we are using flavor medium) for the CDAP it is large. That is my local environment,

on the carrier it is xlarge. Just to show better: cdap VMs are using m1.large and the rest of DCAE VMs

are using m1.medium.

Depends on what kind of analytic application you want to include in the DCAE, for you demo you

don’t need to have all the components loaded. For example if you are not using the CDAP version of

the TCA you don’t have to deploy CDAP cluster at all, and to change those kind of things you need to

go into the installer script where everything evokes from, you can find out where CDAP cluster is

deployed and take those out so you don’t have that. Another trick I sometimes play is I just set this

parameter (dcaeos_flavor_id_cdap: {get_param: flavor_large} to a flavor small and all it does to your

openstack environment is it will invoke VM but nothing inside work of course so it is not

recommended of course because you may break the integrity of the whole system however if you

are sure of what you are doing that could be – you can use that kind of method to reduce resources

used for your demo. Of course it is not for the production and anything like that but that is another

place that you can customize. Since we are here, we will go over the parameters.

So you can see here is where all those parameters are written into the DCAE bootstrap.

All these are either parameters provided from the env file while you are running the stack creation or

there are some resource that found-up from this heat. All these files, all these parameters are very

straight forward (onap_openstack.yaml) the logic here is:

The bootstrap VM:

dcae_c_vm:
 type: OS::Nova::Server
 properties:

this is the cloud init part VM initialization, so it will get all those values

str_replace:
 params:
into some variables and it will just write those variables (echo “__) down to disk files inside that VM,

 so this is the heat template, so at the end you will see the steps

(curl –k __nexus_repo__/org.onap.demo/boot/__artifacts_version__/dcae2_install.sh –o
/opt/dcae2_install.sh) it is downloading the scripts and running installation script (./dcae2_install.sh
> /tmp/dcae2_install.log 2>&1) so that is all the bootstrap VM does.

And now I am going to (ssh –i ~/.ssh/id_onap_dev ubusntu@10.12.5.3) inside the bootstrap VM to
show the results of the execution of the cloud init.
You can see that all echo lines becomes disk files.

Let’s take a look at the sdc_floating_ip_addr.txt – that is how all the associations are being made
(more sdc_floating_ip_addr.txt -> 10.12.5.12).

And when we are downloading the input templates (/opt/app/input-templates more
cdapinputs.yaml).

That is an original form of the inputs file (ubuntu1604_id: ‘{{Ubuntu_1604_image }}’)

you can see all those things are changed into templates and for example how these templates are
resolved is for example: template centos_7_image and then expansion script will look in this config
directory finding a file called centos_7_image without extension and will replace what is in this file
plugged into this jinja to templates and the results are copied into the different directory (cd
../config/ more cdapinputs.yaml).

Everything is detemplatized using the values provided from the config directory.

So if you want to change when running the bootstrap docker container this directly is mapped from
disc directory on the host VM into the docker.

So you can see at the end when we are running it, we map (docker run –d –name boot –v
/opt/app/config:/opt/app/installer/config) the volumes local disc opt/app/config into what is inside
of the docker container opt/app/installer/config.

So for example when it is running it is waiting for AAI to become ready if you want to customize you
can login to the bootstrap VM and customize the files inside the app config. In the input files you can
place things over there and when the docker container is ready to run it is gonna map into the docker
container and we see all modified the values than it will run the stuff like you specify.

DNS as you know because in DCAE we use DHCP assigned flow the dynamic IP addresses which is
different from what the heat solution uses – that uses static IP addresses on the intra ONAP
communication there used fixed prealocated IP address. For DCAE we use in the production
environment, we started with DHCP assigned dynamic IP addresses and using host names or DNS
based solution for different VMS to find each other. DNS is time and scale proven technique for this

kind of problem if you deal with really large deployment crossing different regions, different data
centers multiple of zones DNS is a reasonable solution. When we take that and move to ONAP – here
there is a gap how to dynamically update IP address to DNS name association, that means designate
– there is not designate inside the pod25 we worked with Windriver trying to find out the solution
but because the pod25 environment is there so called carrier grade cloud solution – it has a cluster of
controllers and again you have a leader election relation those kind of things it becomes very difficult
to add the component that is originally not there, so they were saying they have to bring down whole
system to perform such a task it would be very interruption for the integration, so the final solution is
it is a little bit really like this I had to explain so many times actually to a picture here.

So we have setup a separate Openstack instance. It is new, They have to had designate so they put
designated inside. This is a larger pod25. Through heat , the heat first bring-up the ONAP VMs
including the bootstrap VM and they are all put onto the private network called oam_onap_abcd is a
run id and 10.0 addresses are all fixed and one of them these nodes is the DNS router (vm1-dns-
router 10.0.100.1). So all those VMs they use this DNS router as their default DNS resolution server –
this guy knows the static mapping for example 100.1 is DNS.simpledemo.onap.org or something like
that. And DCAE’s VMs they are span-up and they are connected to the same private network and
they use the same DNS server as a default resolution server. What we configured is on this DNS
resolution server added a forwarder entry that is if any host names or any domains DNS server does
not about, it is gonna ask another guy it is a DNS server that is running behind the DNS designate
service inside of this separate Openstack and this guy is forwarder’s is google’s 8.8.8.8 so when the
communication is from abcd.dcagen2.onap.org (dynamic addresses) to here (static addresses)
domain so we use a simpledemo.onap.org domain so DNS will be request going to this guy and he
knows it is on his private domain, so he will return the private IP address and the communication is
done like that. IF VM from static IP addresses wants to refer to a VMs with dynamic ip addresses, for
example he wants to know how to that host name, so that is name resolution will go to this guy
(vm1-dns-router 10.0.100.1) and abcd.dcaegen2.onap.org is a separate domain which I don’t know,
then vm1-dns-router 10.0.100.1 will gonna forward this request to Designate DNS – this guy knows
because we saw in the script it registered this domain with this DNS – he would return the IP address
of abcd.dcaegen2.onap.org where the VM is running to the requester. So this way both groups they
can communicate with each other using host names – that is the DNS solution at least for the
integration lab. And it works because one of the design goal they setup the heat solution is you can
have multiple installations of ONAP within same environment, so this does work because different

DNS groups they do register different zones with the designate. Let me just quickly show you how
you can check after you started DCAE how to check the status,

if you go to any use of the consoles IP, - in dcaecns00 IP address 10.12.5.240 and go in your web
browser to 10.12.5.240:8800, you can see the status of all DCAE components. Here is the TCA,
Holmes, VES, all those things.

That is one component. You can also directly access qualify manager’s UI: 10.12.5.165 to deploy an
additional blueprints for example these are all deployed blueprints through bootstrap script.

And it provides a really nice logging , you can check it up here.

For CDAP, it has a GUI, you can check , go to CDAP02 10.12.6.2:11011

– that is CDAP UI and we are not using default namescpace, you can see that there is a cdap
namespace, see lots of information there.

All these are opensource tools there are documentations in the public domain on how to use it. So
that is about it, we are close to the end.

Question: If you are talking of designate here, are there plans to continue using designate here?
Well it is still under discussion, because here is the trade-off: If you are bounded to a static IP
addresses and you use those, then the designate is not really needed because you don’t have
dynamic requirements to update the DNS records. But if you want to use dynamically assigned IP
addresses then you need some way to dynamically register the host name to IP binding. That is
where the designate comes in. But of course there are alternative technologies – you could stand-up
a bind server and provide some API to it. We are evaluating exactly which way we want to go at this
point but we know it is an experience. I guess lot of installations do not have a designate. Just from
our own internal experience once you done it, it is not that hard but you know that is just from our
perspective. Yes, we are evaluating what to do with that internally as well.

Question: Hi Lusheng, just quick question about the documentation because I went through the VNF
requirements and in a chapter ”Monitoring and management requirements” and there is mentioned
about to VES Jason there is also some chapter about Google Protocol Buffer and Avro and I wonder if
it should be kept because today as far as I understand there is only VES plain text collector and there
is no Google Protocol Buffer or Avro supported yet.
OK do you mind if we follow this offline?, yes, OK I will write you an e-mail just to put the link to that
part, ok thank you.

Chat question: is there a recording of this session? Yes, we are recording this and I am gonna put it in
DCAE wiki page as well.

