
MSB's Plan to Support Microservice-Based
ONAP with Istio Service Mesh

Huabing Zhao, PTL of MSB Project

2

ONAP Microservices-Based Architecture
Recommendation from Architecture Team Feedback from Community

3

MSB Overview-Components

• Registry
 Service information storage, MSB uses Consul as the service registry.
• MSB Discovery
 Provides REST APIs for service registration and discovery
• API Gateway
 Provide service request routing, load balancing and service governance. It can be deployed as

external Gateway or Internal Gateway.
• MSB SDK
 Java SDK for point to point communication

MSB

MSB
Discovery

External service Internal service

External Gateway Internal Gateway

 Registry

ONAP Microservices

Microservice A

Microservice B

Microservice C

MSB SDK
1 Service discovery

2 Service request

1 Service request

2 Route request to service provider

Desktop

OtherSystems

Mobile

External service request

MSB
Discovery

External Gateway Internal Gateway

4

Service Registration-Kube2msb Registrator
MSB

MSB
Discovery

External service Internal service

External Gateway Internal Gateway

 Registry

ONAP Operations Manager

ONAP

A&AI

Kube2msb registrator

Kube2msb registrator can register service endpoints for the microservices deployed by OOM

• OOM(Kubernetes) deploy/start/stop ONAP components.
• Registrator watches the kubernetes pod event .
• Registrator registers service endpoint info to MSB. It also updates the service info to MSB when ONAP
components are stopped/restarted/scaled by OOM

1 Pod Even (Start, Stop etc.)

Policy

SDC

SO

VF-CVF-C

2 Register Service
 Update Service

k8s
deployment
specs
(annotation)

5

MSB
Discovery

External service Internal service

External Gateway

Internal Gateway

 Registry

ONAP System

Microservice A
(For example:ExtAPI)

Microservice B

Microservice C

MSB
Discovery

External Gateway

Internal Gateway

registration

internal request

External request

Service Information

• External API Gateway sits at the edge of ONAP system and to expose the services to
the outside world.

• To push the service to External API Gateway, just set the visualRange of the registered
service to 0

• API Gatway provide reliable communication and some policies such as Retry, LB,
Circult Breaker, Rate Limiting, URL rewriting, etc.

• API Gateway is an open platform which can be extended by plugins

Service Communication-API Gateway

Desktop

OtherSystems

Mobile

6

Service Mesh
A service mesh is a dedicated infrastructure layer for handling service-to-service communication.
It's responsible for the reliable delivery of requests through the complex topology of services that
comprise a modern, cloud native application. In practice, the service mesh is typically implemented
as an array of lightweight network proxies that are deployed alongside application code, without
the application needing to be aware. -- Willian Morgan

client server

registry
1. register2. lookup

3. call
client server

registry 1. register
3. lookup

2. call
Proxy 4. forward

Before After
Separation of Concers：

• The remote communication
logic is moved into the proxy
and deployed as “sidecar”

• Service developers only need
to take care of the business
logic

7

Istio service mesh

 Stability and Reliability: Reliable communication with
retries and circuit breaker

 Security : Secured communication with TLS
 Performance: Latency aware load balancing with

warm cache
 Observability: Metrics measurement and distributed

tracing without instrumenting application
 Manageability: Routing rule and rate limiting

enforcement
 Testability: Fault injection to test resilience of the

services

Istio is a open source service mesh project.
Istio features: Istio Architecture

8

Why Istio?
The main advantage of Istio is introducing a
centralized Control Plane to manage the distributed
sidecars across the mesh, Control plane is a set of
centralized management utilities including:
• Pilot: routing tables, service discovery, and load

balancing pools
• Mixer: Policy enforcement and telemetry

collection
• Citadel: TLS mutual service authentication and

fine-grained RBAC

The Istio control plane is highly extendable by design.
 Multiple adapters can be plugged into Pilot to populate the services: Kubernetes, Consul, Mesos...
 Different backends can be connected to Mixer without modification at the application side: Prometheus, Heapster,AWS

CloudWatch...
 Standard API between Pilot and data plane for service discovery, LB pool and routing tables which decouples the sidecar

implementation and Pilot: Envoy, Linkerd, Nginmesh are all support Istio now and can work along with Istio as sidecar

Standard API

Kubernetes

Consul

M
esos

Logging

M
etrics

Q
uota

Data Plane

Control Plane

ONAP Istio Integration

Citadel

Service A

Envoy

Authentication

Load Balancing

Routing Telementry

Tracing

Service A

MSB Sidecar

Service A

MSB Sidecar

Service B

Envoy

Service C

Envoy

Kube2msb
registrator

M
SB API G

atew
ay

Service Catalog

Sw
agger U

I

Routes Telemetry TLS Certs

MSB PortalMixerPilot

External
 requests

Rate limits

Circuit Breaker Fault Injection

MSB Registry

Internal
Services

External
Services

Policy

 Integrate Istio with ONAP to provide a reliable,
secure and flexible service communication
layer(service discovery/retries/circuit breaker/route
rule/policy)

 Integrate with CNCF projects
 jaeger to provide distributed tracing
 prometheus and grafana for metrics collection

and display
 Add MSB Portal to control plane to provide service

Catalog ,swagger UI of Restful API, service mesh
configuration ,etc

 Leverage Istio to achieve close loop operation for
ONAP system itself - long time goal

Principles:
 Minimize the impacts to ONAP projects
 Start from a few Microservices
 Keep it compatible with existing inter-services

communication approaches
Bare Metal Virtual Machine Containers Clouds

Registration

Registration

Itracingmetrics

OOM Heat
Control Flow

Data Flow

Support Either Deployment With or Without Service Mesh

ServiceA ServiceB

MSB
Registry

Kube2MSB
Registrator

MSB API
Gateway

MSB
Registry

ServiceA

Kube2MSB
Registrator

ServiceBMSB API
Gateway

API Catalog
Swagger UI
Rule config

Mesh Portal

Pilot

Proxy Proxy
Rewrite rule

ONAP without Service Mesh ONAP with Service Mesh

• ONAP can work with or without service mesh
• Compatible with current inter-service communication approaches
• Be transparent to microservices, no modification at the application codes
• Support OOM and Heat deployment with/without service mesh for transition
• Give ONAP users the flexibility to choose based on their own requirement and scenario

It looks exactly the same from the microservie point of view

Some Considerations
Dataplane sidecar takes over all the traffics, however,

• ONAP modules may not adapt service mesh approach at once, need to allow
services inside and outside of the mesh to access each other

• Some traffics may not need to go through sidecar, for example, plain UDP
traffics

Service B

192.168.3.100192.168.3.100

Service A Service BEnvoy Envoy

Solution:
• Modify the IP Table rules to bypass

some specific traffics

Current Progress
• Istio installation with bookinfo sample application in ONAP lab-done
• Integrate MSB Discovery to Pilot via Consul plugin-done
• An agent to watch the MSB Discovery and put route rules to Pilot-80%
• User UI for Istio routing rules - 50%

Next
• Start with an ONAP moudle to deploy sidecar and test Istio functionalities
• Istio installation and sidecar auto injection -work with OOM
• Addone installation (Jaeger, Promeheus)-work with OOM
•

