
Modularity – Proposal for achieving functional
decomposition

Manoj Nair , NetCracker , May 2018

(with input from Alex Vul, Parviz Yegani, Nigel Davis)

Modularity

How functional capabilities can be decomposed and regrouped for flexible
deployments, to create functional variations.

How to decompose ?
- Based on business/domain capabilities (Domain Driven Design)
- Based on Verb – Example Collect, Analyze, Configure, Decompose
- Based on Noun/Entities – Example Service, VNF, Policy
- Based on software layers – Example DB layer, UI, Backend

Followed in ONAP

Followed in ONAP

Why we need modularity ?
- Standardize capabilities

- Have optional alternatives
- Enable functional variations
- Enable flexible deployment patterns
- Enable model driven capabilities

Microservice Architecture is a natural enabler for modularity
• Independent development and testing
• Enable CI/CD/CT

Modularity, Model Driven, Cloud Native – Some misconception

• Modularity != Microservice
• Boundary, Style of Decomposition matters

• Model Driven – Model driven for intent or Model Driven for Solution
behavior ?
• Intent: End state to be achieved, represented through IM/DM.
• Behavior: Behavior of solution to be tuned to achieve an end state

represented through configuration model
• Configuration of modules – Implementation meta model
• Sequence of actions – Workflow

• Cloud Native != Docker , != K8S , != Cloud based
• Applications with built-in capability to leverage the agility and

distributed nature of Cloud environment

Problem Statement 1: Modularity – Terminology and Functional
Composition

How Modularity achieved today in ONAP ? What is Microservice in ONAP ?

Different views on Microservice
• Docker Container
• POD
• Kubernetes Service
• Kubernetes Deployment
• Component
• A Functional Entity
• API End Point
• Application
• A Feature of an application

• These are all different levels of functionality or characteristic
ONAP stake holders use at different context.

• Two aspects to be considered – what is the level of
granularity of the functionality , what is the context
(deployment, information, run time etc)

• ONAP Follows a Project Specific view of Modularity
• Each project follows own methodology for decomposition of

functionality
• Most of the projects follow a software centric functional

decomposition rather than domain capability decomposition

ONAP modularity is currently driven by projects with software module (DB, Tools etc) based boundary, not domain capability
based boundaries

Problem Statement 2: Modularity and Tight Dependency

Design and Operational
Readiness

Fulfilment – Onboarding ,
Service Order Instantiation,

activation, configuration

Assurance , Closed loop
control

SDC

CLAMP

Policy PAP

Market Place

VNF SDK

SDC

Orchestration

A&AI

Policy

Multi-VIM

Common Services

Ext-API

Generic
Controller

SDNC

DCAE

Policy

CLAMP

OOF

VES

• Heavy fulfilment and assurance stack
with tight dependency between
components

• Heavy dependency on the design time
environment for enabling capabilities

• Each module follows own style and
category of APIs and defines own set
of entities requiring dependent
modules to evolve continuously

• Business logic and internal APIs to
access the business logic tightly
coupled.

• Operational stacks are not easily
replaceable.

• Stack components cannot be easily
replaced due to tight dependency

SDC

Different functional stacks in ONAP

A&AI

Problem Statement 3: Top-down vs Bottom-up Approach

Typical Service Provider Transformation (Top-down) ONAP Approach (Bottom-Up)

Business Process
Alignment

Functional Capabilities

Use Cases

Network Capabilities

Customer Experience

Business Process

Functional Capabilities

Application Capabilities

Balancing these two approaches is necessary for production deployment of ONAP
How modular functional capabilities that are aligned to standard business processes help in top-down operational
transformation

How ONAP modules are decomposed today ? (Reference
Amsterdam Microservices)
Not functional decomposition, but software decomposition, decomposition logic based on discretion of project owner

DCAE is a
software
platform to
host
domain
apps. More
of a task
based
decomposit
ion
(collection,
analysis,
storage) ,
mix of
platform
and domain
services

Monolithic
Microservice

Software
implementation
centric
decomposition

Monolithic
Microservice
(Config
management, SDN
Control, Resource
assignment all
combined)

Modularity : How Microservice Composition can be
Represented? Learnings from TMForum TAM

What we can learn from TAM :
• Define Microservice Levels (Level 1, Level 2

etc) that compose domain functions
• Similar (need not be same) in concept to

TMForum TAM with different levels of
application capability decomposition.

• Gives option to select the application
capabilities based on the well known TAM
like capability decomposition map.

• End user can select the capability and
associated micro services (at any level)
enabling those capabilities.

• Help identify functions and associated stake
holders in ONAP at different levels of
granularity

Benefits
• Consistency in Functional decomposition
• Single terminology across layers and across

projects
• Close relationship with Business process

terminology and business process flows
• Can reference APIs (Open APIs) rather than

proprietary APIs

TMF IG1118: Positioning of a Component in a hierarchy of
modular constructs

Reference: TMForum IG1118

• A component-system pattern is fractal, split a component and
you get more components, combine components and you get
a component.

• MicroServices can be perceived as a component fulfilling a
cohesive function.

• A Branded Element constitutes of multiple features which in
turn are realized through set of functions – all levels can be a
composite component.

Solution

A Branded Higher
Level Component

Feature

Function

All different levels of microservice –
Macroservice, Miniservice,
Microservice

ONAP Capability Decomposition vs TAM Levels
(Example – Not Complete) Service Order

Management

Service Inventory
Management

Service Capability
Orchestration

Service Performance
Management

Service Quality
Management

Service Assurance
Control

Resource Catalog
Management

Resource Lifecycle
Management

Resource Inventory
Management

Resource Performance
Management

Resource Capability
Orchestration

Resource Fault
Management

Service Design and
Assign

Service Order
Orchestration

Service Configuration
Management

Service Activation
Management

Service Performance
Monitoring

Service-Resource
Inventory

Service Inventory
Reconciliation

Service Instantiation
and LCM

Service
Decomposition

Service Onboarding

Service Workflow
Configuration

Service Workflow
Control

Service Performance
Analysis

Service Performance
Reporting

Service Quality Model
Establishment

Service Quality
Collection & Monitoring

Service Quality
Analysis

Service Quality
Reporting

Resource
Commissioning & CM

Resource Inventory
Reconciliation

External API

Orchestrator
Generic

Controller
A&AI SDC

Multi-VIM

Policy

DMAPP MSB AAF

DCAE SDNC

MSO A&AI
Service SDC Catalog

SDC
Distribution

Engine

DCAE Service
Change
Handler

DCAE
Deployment

Handler

DCAE Policy
Handler

A&AI
Traversal

A&AI
Resources

App-C
Business

Logic
Portal Apps

VFC Catalog

VFC NS LCM

VFC
Workflow

VFC-resmgrvfc-vnfmgr

Common
Controller

SDK

Resource Inventory
Update

TAM
Level 1

ONAP Components

ONAP Microservices with core domain logic

PDPPAP
DCAE

Controller

TAM
Level 2

Resource Inventory
Retrieval

Resource Design and
Assign

Resource Order
Orchestration

Resource Discovery Resource Activation

Resource Fault &
Performance Data

Mediation

Modularity through Microservices

Level 1

•Microservices composing a business facing capability that is traditionally having end to end operational scope and technology neutral.

•Typically exposes Standard End to End Customer Facing Service Level API interfaces –TMF 641 etc.

•E.g. Service Order Management, SQM, SLAM, Service Catalog Management , Service Capability Orchestration, Resource Inventory
Management, Resource Order Management, etc.

Level 2

•A coarse-grained micro service logically grouping a set of features as branded component that can be exposed as an independent service
with well defined APIs.

•Typically exposes a standard API with scope limited to the functions being composed into the logical group

•E.g – NFVO, VNFM, VIM, EMS, Generic Controller, SDN Controller

Level 3

•A micro service realizing a single independent feature associated with a high level capability or platform capability

•Typically expose APIs associated with a single feature. Internally route the APIs to independent functional microservice

•E.g. - For Service Capability Orchestration : Decomposition, Onboarding, Instantiation & LCM , Workflow Management

Level 4

•A logically independent and tightly scoped component . Independently deployable and scalable.

•Typically exposes APIs between functions with internal scope

•E.g. Workflow engine, Runtime catalogue , VIM adaptor

A functional capability expressed in multiple levels of granularity. Each granular level is independently deployable, expose
well defined APIs. Granularity level left to the user - what independent capability mix is required at what level .

M
ic

ro
se

rv
ic

e
G

ra
n

u
la

ri
ty

 le
ve

ls

Level 0 is assumed to be a Solution which is composed of Level 1 MS – E.g. Domain Orchestrator

External API Layer

Internal API Layer

Internal API Layer

Modularity through Microservices: Personas at each level

Level 1

• Microservices composing a business facing capability that is traditionally having end to end operational
scope and technology neutral.

• BSS User , Operator Operations Staff, Business User, BSS Partner , Integration Engineer

Level 2

• A coarse-grained micro service logically grouping a set of features as branded component that can be
exposed as an independent service with well defined APIs.

• Operations Staff, Devops Engineer, End to End Tester, Use Case Implementer, Integration Engineer

Level 3

• A micro service realizing a single independent feature associated with a high level capability or platform
capability

• Feature Tester , Use Case Developer, ONAP Project Developer, Devops Engineer

Level 4

• A logically independent and tightly scoped component . Independently deployable and scalable

• ONAP Project Developer , Devops Engineer

M
ic

ro
se

rv
ic

e
G

ra
n

u
la

ri
ty

 le
ve

ls

Level 0 is assumed to be a Solution which is composed of Level 1 MS – E.g. Domain Orchestrator

Modularity – Functional Layering (Only for representation, not complete)

Service Order
Management

Service Inventory
Management

Service Lifecycle
Management

Service Capability
Orchestration

Service Test
Management

Service Performance
Management

Service Problem
Management

Service Quality
Management

Service Assurance
Control

Resource Catalog
Management

Resource Lifecycle
Management

Resource Test
Management

Resource Order
Management

Resource Performance
Management

Resource Capability
Orchestration

Resource Fault
Management

Resource Domain
Management

Resource Usage
Management

Orchestrator VNF Manager VIM SDN Controller EMS

NMS DCAE Multi-VIM Policy A&AI

SDC

Service Design and
Assign

Service Order
Orchestration

Service Configuration
Management

Service Activation
Management

Ext-API

Service Performance
Monitoring

Service-Resource
Inventory

Service Inventory
Reconciliation

Service Instantiation
and LCM

Service
Decomposition

Service
Onboarding

Service Workflow
Configuration

Service Workflow
Control

Service Performance
Analysis

Service Performance
Reporting

Service Quality Model
Establishment

Service Quality
Collection & Monitoring

Service Quality
Analysis

Service Quality
Reporting

Resource
Commissioning & CM

Resource Inventory
Reconciliation

DMaaP Message
Router

DMaaP Data Router
MSB Registration

Proxy
MSB Service

Discovery Cluster
SDC Persistent Store

Orchestration
Workflow Engine

Level 1

Level 2

Level 3

Level 4
Consul Cluster Common Controller

SDK
Kubernetes

Distributed Data
Store

Multi-VIM Plugin VIM Adaptor

Alternate Layering/Grouping of Microservices for Modularity

MSO A&AI
Service

SDC Catalog
API

Gateway

SDC
Distribution

Engine

Common Services (Kubernetes Deployments)

DCAE Service
Change
Handler

Domain Services (Kubernetes Deployment)
SDC Catalog

Domain Application Components (Kubernetes Service)

Logging DMaaP

MSB
Configuration Data

Store

Common Controller
SDK

OOF Multi-VIM Plugin

Data Collector

MUSIC

PDP

PAP AAF

CLAMP DCAE Controller

Ext-API SO A&AI Policy DCAE

DCAE
Deployment

Handler

DCAE Policy
Handler

SDNC
Generic

Controller
SDC

A&AI
Traversal

A&AI
Resources

App-C
Business

Logic
Portal Apps Vfc-catalog

vfc-nslcm
Vfc-

workflow
VFC-resmgr vfc-vnfmgr

Platform Services (Kubernetes Deployment)

ELK Stack CDAP
Multi-VIM

Plugin
Workflow

Engine
VIM

Adaptor
DGBuilder ZookeeperKafkaConsul

Level 2

Level 3

Level 4

Internal API

Expose External APIs

CNCF
tools
play a
role
here

Expose Domain Functionality

ONAP Capabilities mapped to TAM (Example 1)

Orchestrator

Service Order
Management

Service Design and
Assign

Service Order
Orchestration

Service Configuration
Management

Service Activation
Management

Service
Decomposition

Service
Onboarding

Service Workflow
Configuration

Service Workflow
Control

SDC External API

Service Order Tracking and
Management

Update Service
Inventory

Service Parameter
Reservation

Service Configuration

Orchestration
Workflow Engine

Graph DB SDC Catalog

Cassandra

ONAP Capabilities mapped to TAM (Example 2)

A&AI

Service Inventory
Management

External API

Service –Resource
Relationship
Management

Service Inventory
Reconciliation /
Synchronization

Resource Inventory
Model Creation

Resource Inventory
Retrieval

Resource Inventory
Reconciliation

Resource Inventory
Update

SO

SDNC

Janus
Graph DB

Cassandra

Mapping of Microservice Levels to ONAP (Example - Not Complete – As-Is)

Level 1

Level 2

Level 3

Level 4

External APIOrchestrator VFC A&AI SDC Multi-VIM Policy

DMAPP

MSB

NFVO VNFM AAFDCAE

MSO

Runtime
Catalog

PAP
PDP-

X
PDP-

D

Policy
Config
Repo

Oper
Policy
Store

Rules
Engine

BRMS
GW

A&AI
Service

A&AI
Traversal

A&AI
Resource

SDNC/A
pp-C

Data
Collection

Service

Service
Deploym

ent

SDC
Catalog

Logic

API
Gateway

Controller
Platform

Dynamic
inventory

Graph

Cassandra

Controller

VES
Collector

Workflow
Engine

ONAP Microservices which
are supporting domain
functionality

ONAP Microservices which are
independent and providing
platform functionality

ONAP Microservices
realizing an independent
feature or group of features
that are mapped to a
standard component

SDC
Distribution

Engine

Message
Router

Data
Router

Data
Router

Identify functional levels of existing microservice

SNMP
Collector

TCA

CDAP Analytics
Platform

Holmes

Tiger team feedback (Alex, Parviz, David, Nigel)

• API Alignment – External and Internal API
- This may be the first step in decomposing domain functionality without making

any major structural change of projects

• Service Mesh and CNCF Project (Parviz’s Slide deck) Integration
- Increased interest in CNCF toolset, how a Service mesh based “intelligent

edge- dump pipe” model can be achieved

• Statelessness of Microservice

• Transaction support across microservices (Do we really need this?)

• What changes required in CI/CD/CT to support Modularity –
Automated Integration Tests , modular deployment composition.

Service/Resource Problem/Performance Management –
Typical functional decomposition – Reference TMF TAM

Microservice Functional Decomposition – Example DCAE

Micro
Function

Platform
Components

Service Performance
Management

Service Problem
Management

Service Quality
Management

Service Assurance
Control

Resource Performance
Management

Resource Fault
Management

DCAE

Façade enabled through MSB (Expose Operational API via External API)

Data Collection Analysis Reporting
Correction and

Resolution
Monitoring

SDC

Façade enabled through MSB, Service Mesh Fabric (Expose Internal API supporting group of entities of External API)

Assurance Service Design
& Deployment

CLAMP

Not implemented
in ONAP

CBS
Deployment

Handler

VES Collector
SNMP

Collector

DMaaP

Consul Cluster Cloudify

Policy
HandlerCDAP Broker

CDAP Cluster

Service Change
Handler

Holmes TCA

Drools Engine

Domain
Capability
Exposed
through
MSB/Ext-API

API Mapping
between External
and Internal API

Level 1

Level 2

Level 3

Level 4
PGaaS

CLAMP
Dashboard

Operational
Capabilities

Branded Component

Feature

Inventory

DCAE

ELK Stack

CDAP Broker

CDAP Cluster

Grouping of capabilities as required by the operational end user and business process modeler

Functional Decomposition – Observation

• Operational capabilities currently supported in ONAP are not easily
decomposable – vertically or horizontally - as there is tight coupling
between different microservices

• This will limit an operator’s preference for top down approach of
operational capability enablement

• Need to identify and logically separate (at least at the API level)
domain specific capabilities that can be easily identified for defining
business process flows

Information Context of Microservices – Key Considerations

• In ONAP there are different types of models used to control different
aspect of Microservices
- behavioral aspect – To represent intended behavior of Microservice which are

represented as configurations to achieve model driven capabilities – this may
be required to control MS behavior at runtime

- end result aspect/Intent – To represent end state expected to be achieved as
per business and customer demand– This may be an input to microservices
to carry out various actions

- deployment aspect – To represent how microservices are deployed and
functionalities are realized – For various deployment options

• All these aspects can be mapped to microservice layers

Information Context – Behavioral Aspect - Example DCAE -
(To be verified by OOM & DCAE)

DCAE CL Blueprint

DCAE Component
Metadata

Representation of what
model elements used to
configure DCAE , CLAMP
and Policy to achieve end
result

Configuration Policy Operational Policy

DB Schema
(Inventory)

DB Schema
(Policy Config)

EMF

XACML Drools Rules

PIP Schema

Closed Loop
Configuration

Information used by
DCAE , CLAMP to
provision dependent
Components using
internal API

A
ll

in
fo

rm
at

io
n

 r
el

at
ed

 t
o

in

st
ru

m
en

ta
ti

o
n

 o
f

D
C

A
E,

 C
L

fl
o

w

VES Schema

Low level schema
used by platform
level micro services

Policy Recipes for SO

Service template TOSCA
for CL (CLAMP)

Information Context – Intent – Example DCAE - (To be verified by OOM
& DCAE)

Example SID ABEs

DCAE Component
Metadata

Representation of Intent

DB Schema
(Policy Config)

XACML

Drools Rules

PIP Schema

Information used by
DCAE , CLAMP to
provision dependent
Components using
internal API ,
Information managed by
Level 3 MS

VES Schema

Low level schema
used by platform
level micro services

CLDS Model (Clamp)

CLDS Event (Clamp)

CLDS Healthcheck
(Clamp)

CLDS Model Instance
(Clamp)

CLDS Monitoring Details
(Clamp)

CLDS Template (Clamp)

DCAE Event (Clamp)

DCAE DeploymentDCAEPolicy

VES YAML Artifact Policy TOSCA Model for
CL

Application (CDAP)

MetricsObject

CDAP ConfigConsul Config

VNFD TOSCA
(tosca.capabilities.nfv.Metric)

Deployment Aspect– Deployment Configuration for each Microservice
Layers (To be verified by OOM & DCAE) – Example DCAE

Level 4
Deployment Context of
Micro functionalities as
Pods/Docker
Containers

Level 3
Deployment Context of
Aggregate Features as
Deployments

Level 2
Deployment Context of
Coarse domain
functionality as Service

Heat Orchestration
Template

K8S Pod Deployment
Yaml

Helm Charts

Configuration
for Consul

Docker Images

Level 1
Deploys a custom
ONAP solution
depending on the
domain functionality
required

Cloudify
Blueprint

Drools Rules
package

DCAE Bootstrap
Script

Rancher
Template

Dcoker compose File
for DCAE bootstrap

Heat Template and Env
for DCAE bootstrap

K8s Service
Definition

Openstack VM
Images

Observation on Information Context

• No clear differentiation between behavioral aspect (configuration of
MS), and intent (what to be achieved – create CL).

• Majority of entities managed by Microservices are those to deal with
platform capabilities

• Not all domain capabilities are available as managed entities

Operational Context 1/2

• Day 0:
- Receives service order for enabling end to end service

- Wait for notification from BSS on availability of partner services/resources

• Day 1 :
- Query ONAP Service catalog for the infrastructure service corresponding to

the partner domain (Not done currently)

- Send an activation request to partner domain for infrastructure service (Not
done currently)

- Place a service instantiation request on ONAP over ETSI Os-Ma

- Carry out end to end testing (Not done currently)

• Day 2:
- Send the customer configuration in terms of FW, QoS, performance monitoring

configurations to partner SDNC over TAPI interface

• Day 3:
- Tune partner SDNC to meet end to end SLA.

Operational Context – 2/2 – DCAE

Level 4
ONAP
Engineering/
Integration
team facing
capabilities

Level 3
ONAP
managed
service team
facing
capabilities

Level 2
Operational &
Designer
User facing
Micro
Services

Service
Design/Assign

CLAMPSDC

Day 0(Design and Order) Day 1 (Service and Resource Provisioning) Day 2(Customer
Configuration)

Service Order
Orchestration

Ext-API (For Assurance Service
Order Item from OSS)

Service Capability Orchestration

Service LCM
Service Configuration

& Activation Management

CLAMP DCAE

CLAMP

APP-C(for VES
Agent Config)

Resource CM
Resource Discovery &

Activation

Resource
FM/PM

Level 1
Business
facing
capabilities

CBS

Deployment
Handler

Service Change
Handler

Inventory

Inventory

SLAM & SQM

Day 3 SLAM

Policy

Policy

Service Change
Handler

DMaaP
Consul Cluster Cloudify

Policy
Handler

CDAP Broker CDAP Cluster

Drools Engine

PGaaS

ELK Stack

Policy

PAP PDP

DMaaP

TCA

PDP PAP

Cloudify

Consul Cluster

CDAP Broker

CDAP Cluster

Policy Handler

TCAVES
Collector

VES
Collector

VES
Collector

PDP PAP

DCAE

CLAMP

Observation on Operational Context

• Functional overlap between Day 0 to Day 3 Operational Functions

• From Managed Services point of view it will be difficult to segregate
the stages of operations as same functions repeat across operational
stages.

• Level 4 support teams for Operations (Typically engineering) need to
be expertise across different branded components to provide effective
support

API Across MS Layers – Example DCAE – AS IS

Service
Components

Façade enabled through MSB (Expose Operational API via External API)

Data Collection Analysis Reporting
Correction and

Resolution
Monitoring

Façade enabled through MSB (Expose Internal API supporting group of entities of External API)

Assurance Service
Deployment

Not implemented
in ONAP

Domain Capability
Exposed through
MSB/Ext-API

Level 1

Level 2

Level 3
En

gi
n

e
M

an
ag

em
en

t

H
ea

lt
h

 C
h

ec
k

R
u

le
 M

an
ag

em
en

t

No APIs. DMaaP Topic No APIs. DMaaP Topic

Currently none of the Assurance capabilities are exposed through Ext-API

C
o

n
fi

g
B

in
d

in
g

Se
rv

ic
e

D
ep

lo
ym

en
t

H
an

d
le

r

D
C

A
E

In
ve

n
to

ry

V
ES

 C
o

lle
ct

o
r

C
D

A
P

 B
ro

ke
r

Currently most of the APIs are for exposing
platform capability not domain capabilities
(Data collection, Monitoring, Analysis,
Reporting, Trouble Mitigation)

Alex : Façade for micorservices – Focus on the functional APIs and expose those from microservices

Façade enabled through MSB at platform level

API Gateway and Service Mesh

API Gateway expose
(micro) services as
managed APIs

Service Mesh decouple and

offload most of the service-to-

service communication from
business logic.

Service mesh is merely an inter-service communication infrastructure which doesn’t have any business notion. So it
will be ideal to be used at lower levels of Microservices.

API Mapping External vs Internal APIs – Example DCAE

External APIs
TMF , ETSI, MEF, ONF APIs Alignment
Good to have API Gateway here ,
Service Mesh is optional

Support specific entities associated
with TMF , ETSI, MEF, ONF APIs

AND/OR
ONAP Internal Feature Level APIs
Good to have Service Mesh here

External API along with MSB is expected to play the role of API mediation between External and Internal API.
Alternatively Service Mesh can be implemented at Level 3 or Level 4 to support API mapping and routing functionality

State Handling of Microservice – Example DCAE – Current

Potential DCAE functions that maintain states

Healthcheck,
reachability, XNF State

Alarm correlation, Rule
processing state

Closed loop processing
state

Control loop state
Configuration state

To be confirmed with DCAE team !

State Handling of Microservice – Example DCAE – Proposed

MUSIC – Distributed Persistent Store with Eventual Consistency

Distributed Configuration Store (OOM)

DCAE nDCAE 1

• Music has distributed locking mechanism to control processing across different instances.
• OOM already maintains a Consul cluster . This can be reused for DCAE without a dedicated cluster

States - Distributed concerns – What CAP Model ONAP
Components Require

• CAP – Consistency, Availability, Partition Tolerance

• CAP Theorem – Only any two properties in CAP can be supported. The properties are selected based
on business requirement.

• Saga Pattern or State at Source : Each local transaction within a microservice (that is having own DB to
manage state) triggers an event and the dependent services updates the local copy of the state.

• Have common services to support different consistency models across microservices
- Strong consistency : All provisioning/activation/configuration (mastership), workflow management function

- Eventual consistency : Monitoring data, Inventory, Topology

• Music supports an eventually consistent store

• Need to identify Microservice functions which require a strong consistency mechanism

• Consistency mechanisms
- Raft

- Gossip

• Tools for distributed consistency management
- Zookeeper

- Hazlecast

- Redis

Transaction Support – How MS enable ACID properties

• ACID – Atomicity, Consistency, Isolation, Durability

• Potential areas in ONAP currently using Transaction Model
- SO interaction with SDNC, VIM driven by workflows (need error mitigation workflows to

support atomicity)

- Closed loop control flow – Need to have separate event handling mechanism to revert any
false positive trigger conditions

- Distributed transactions in an Active-Active HA deployment

• It is a good practice to avoid transaction across microservices especially in a
distributed environment

• Use Saga Pattern (described in previous slide). But with caution- it can lead to
complexity, cyclic dependency.

• One option for avoiding erroneous transactions is to use two phase commit

• In distributed transactions, to avoid race conditions it is a good practice to use
distributed lock with the key assigned to a master

Microservices – Building blocks (Tools to be developed to ease
development, ensure consistency)

• Potential Options
- Microservices SDK : Violates independent development concerns, tooling

requirement

- Code generation : Possible – Meta language to be chosen

- Configuration Templates – Selection of template language, compatibility with different
development styles

- Enforce guidelines : Require tooling – Sonar for example with additional rules

• Suggested Approach
- Each microservice owner (depending on the layer of functionality) to define APIs as

per a predefined guideline – Potential option Swagger

- Generate code based on Swagger API , MS owner to implement the APIs and register
API end point to configuration templates through meta information

- Configuration templates: Define standard configuration template for MS meta
information and dependencies

- OOM,MSB to read the configuration templates to do wiring between MS

Next Steps

Way forward – Summary

• Short term :
- ONAP microservices identification from top down functionality point of view rather than project

specific microservice grouping

- Regrouping of microservices to segregate microservices providing domain functionality, common
microservices and platform microservices

- API layer separation from business logic

- Domain capability enablement through APIs at different levels of micro functionality

- Architecture/Design review to verify the microservices alignment to overall ONAP level goals rather
than limiting to project goals

- Project teams to come up with strategy to separate domain functions and platform functions

- Stateless and Stateful MS – Strong and Eventual Consistency Mechanism Requirements –
Leverage Distributed/shared storage if possible.

- Checklist to verify MS readiness across projects

• Long term :
- Define microservices based on domain functionality , i.e common functionality to be regrouped to a

lower level microservice

- Create a microservice map based on domain functionality which can be used as a capability
catalog for operators to pick and choose the specific functionality required.

Initial Recommendations to project teams

All projects identify the
functional layers of

microservice – core business
logic, common service
dependency, platform

functionality .

Optional : Refactoring to
enable functional

decomposition based on
domain capabilities rather

than software
implementation layers

API layer separation from
Business logic

Identify Consistency Model at
Project and Microservice
Level– Strong or Eventual

consistency

Identify Transaction Model
across Microservices –

Strategies for eliminating
cross MS Transactions

Service Mesh for Internal
communication and API GW
for External communication

act like Façade to express
domain functionality

Projects to leverage common
platform level MS reduce

project level foot print

Governance Model & Guidelines

MSA compatibility and
maturity assessment
based on modularity,
model driven, cloud
native capabilities –

Check list preparation

Recommendations to
project teams based on

maturity assessment

Tools recommendations
and CI/CD

recommendations to
verify the MSA alignment

(SonarQube updates)

Checklist and
measurability of MSA

compliance on
continuous basis

Governance

Governance - MSA Enforcement through Objective
Measurement

• Checklist to be shared across projects in regular cycles

• Checklist to cover following things to evaluate a projects compliance to MSA

- Modularity

- Model Driven Capability Enablement

- Cloud Native Behavior

• A weighted score of the checklist response to be used as input for certifying projects for MSA
Compliance

0

2

4

6

8
Modularity

Model DrivenCloud Native

MSA Architecture Compliance- DCAE

Desired Level for Casablanca DCAE Score

Guidelines for Projects

Recommendations - Microservice Structural Changes

• Short Term

- Single responsibility principle – Try not to club multiple functionalities in to single microservices (for example SO)

- Have the API layer separated from core domain logic implemented by Microservice so that APIs can evolve independently of domain logic

- Identify stateful services and check the possibility of leveraging DBaaS from OOM or Music

- Enhance the APIs to have functional capability – for example define APIs to support top down approach , which will support top level service capabilities in terms of
managing specific entities.

- Enable swagger based tooling for consistent API representation and code generation across MS

- Expand the Microservices API scope to cover Operational, Security and Functional capabilities

- Identify the domain entities managed by each microservice – domain entities are data elements that represent a domain object. Domain entities are accessed through
the APIs.

- Identify the categorization of microservice – i.e those providing platform capabilities (for example those wrapping specific reusable tools), domain capabilities (i.e those
implementing core business logic – for example service decomposition) , and shared capabilities (those supporting the domain capabilities like VIM Adaptors)

- Reduce cross dependency across microservices through bounded context principles – i.e a domain entity identity changes across the microservice boundaries , let the
dependent microservice manage the identities.

- Use consistent configuration model for microservices – leverage OOM provided Consul if possible

- Each microservice should be built with fault tolerance capabilities – i.e through high availability enabled through OOM, with capability to regain state after a failure and
minimum impact to dependent services. This can be done through replicas in OOM, but state management across instances should be addressed.

- Follow the Microservices functional decomposition pattern suggested in this ppt – Branded Component , Feature , Function

- Allow versioning of microservices – from deployment perspective. Identify the impact of two versions running simultaneously

- Enable portability of Microservices – i.e. Microservice implementation should separate the platform dependent libraries to a common platform layer microservice for
easy portability

• Long Term

- Enabling OOM to provide a catalog of available services from which associated capabilities can be that can be deployed

Recommendations – Microservice Interaction

• Short term
- Reduce chatty interaction between microservices. Design microservices with low coupling and high cohesion – i.e. reduce inter dependency

between microservices and related logic is kept in single microservice

- Separation of core business logic and intra microservice interaction mechanism – this can be an enabler to support service mesh in the mid
term.

- Avoid all hard wiring between components – i.e do not define dependencies at the code level instead define it through a metadata – this is
applicable for API access as well. Example – SDC hard wiring for catalog access (from VFC)

- For replicated microservices , leverage OOM provided HAProxy, Loadbalancer mechanism or leverage MSB provided load balancer

- Distributed state management using eventually consistent data store rather than incorporating dedicated logic in microservices

- Enhancement of Music to generate data change notifications which can be propagated through DMaaP

- All interaction between microservices to be policy driven with capability to control the interactions from a central service – leverage MSB
capabilities and Configuration Policies. Additionally, control interaction between microservices as per meta file that can be enforced by OOM
during instantiation of MS.

- Enable tracing of interaction across microservices – leverage CNCF tools such as OpenTracing. Incorporate this capability as part of Logging

- Reduce interaction between microservices within a branded component through regrouping of internal dependencies and use Asynchronous
communication pattern for all internal communication to avoid long delays. Use REST/HTTP at the external facing MS and use Asynchronous
communication (pub/sub) if possible for internal communication. Where ever REST is used support notification mechanism for delayed
response. All action invocations between MS is preferred to be asynchronous.

- Distributed transaction, State management : Enable Saga or State at source pattern – especially for those services that are not using distributed
data store. Saga is a sequence of local transactions where each transaction updates data within a single service, first transaction is initiated by
an external request then each subsequent step is triggered by the completion of the previous one which is notified by an event.

• Long Term
- Move towards event driven microservices – i.e state stored in a distributed eventually consistent data store and any change in state triggers a

notification to subscribed microservices which act upon change in state

Recommendations – Microservice Operational Changes

• Short Term
- Microservices interdependency to be represented in a meta file for the OOM system to bring up MS in sequence

- Microservices capabilities and associated API end points to be represented through metafile for OOM to register the
capabilities with MSB . Currently component level end points are registered, instead functional capability driven
endpoint registration to be supported

- Configurations of microservices to be represented in a consistent manner and not hard coding should be encouraged

- All point to point interaction to be blocked and all interaction to be driven through MSB, API Gateway or DMaaP which
are controlled through access policies

- Follow the layering pattern suggested in this presentation for mapping Services, Deployments, Pods and containers

- Project teams to understand the Pod and container concept used by K8S – all related cohesive functionality to be
grouped under a Pod. Currently each container is mapped to a Pod. Project teams to regroup their functionality that
need to fit into a Pod

- Project teams to identify the impact of multi-tenancy in ONAP – i.e ONAP deployment shared by multiple operational
tenants. This will lead to different instances of MS Pods to be deployed in the cluster. Identify the functionality that can
be shared across tenants. Follow the platform , common functionality , business logic level grouping for low impact to
support tenancy

- All the inter MS interactions to be controlled through RBAC and associated policies.

- OOM : Enable selective installation of capabilities by having a catalog of capabilities to choose from which maps to
associated microservices deployments – dependency resolution to be done automatically

- OOM: Support different flavors of deployment – x node cluster, single machine, distributed clusters etc.

- OAM dashboard for Microservices – with potential Prometheus integration

Recommendations – Enablers for MSA – Tools , Techniques

• Swagger metadata and associated code generation for consistent representation of APIs

• Microservices health monitoring
- Prometheus
- Log tracing using CNCF toolsets

• Cloud native tool sets
- Refer to a separate analysis done by Tiger team

• Template tools (Data mapping)
- For model mapping from one format to other – Jinja2, Velocity etc.

• SDK tools
- Eclipse custom plugin developed for microservices
- Maven archetype for microservices project structure with DMaaP client , MSB client, Consul based

configuration template etc

• Tools for consistency and state Replications
- MUSIC
- Zookeeper
- Redis
- Hazelcast

• Sidecar and service mesh
- Refer to separate analysis done by Tiger team

s

Thank You

Trouble to Resolve : TMForum recommended decomposition

Service Problem Management

Close Service Trouble Report

Correct & Resolve Service Problem

Reassign / Reconfigure Failed Service

Manage Service Restoration

Implement Service Problem Work Arounds

Invoke Support Service Problem Management
Processes

Create Service Trouble Report

Generate Service Problem

Convert Report To Service Problem Format

Estimate Time For Restoring Service

Diagnose Service Problem

Verify Service Configuration

Perform Specific Service Problem Diagnostics

Perform Specific Service Problem Tests

Schedule Routine Service Problem Tests

Stop And Start Audit On Services

Notify T&M Root Cause Service Problem

Report Service Problem

Monitor Customer Problem

Distribute Customer Problem Notifications

Distribute Customer Problem Management
Reports & Summaries

Survey & Analyze Service Problem

Manage Service Alarm Event Notifications

Filter Service Alarm Event Notifications

Correlate Service Alarm Event Notifications

Abate Service Alarm Event Records

Trigger Defined Service Alarm Action

Track & Manage Service Problem

Coordinate Service Problem

Perform First in Service Testing

Cancel Service Problem

Escalate/End Service Problem

Perform Final Service Test

Service Problem Management

Close Resource Trouble Report

Correct & Resolve Resource Trouble

Repair / Replace Failed Resource

Isolate Unit with Fault

Manage Standby Resource Units

Implement Resource Trouble Work Arounds
Invoke Support Resource Trouble Management

Processes

Create Resource Trouble Report

Generate Resource Trouble

Convert Report To Resource Trouble Format
Estimate Time For Restoring Resource

Localize Resource Trouble

Verify Resource Configuration

Perform Specific Resource Trouble Diagnostics

Perform Specific Resource Trouble Tests

Stop And Start Audit On Resources

Schedule Routine Resource Trouble Tests

Notify T&M Root Cause Resource Trouble

Report Resource Trouble
Distribute Notifications

Distribute Management Reports & Summaries
Monitor Resource Trouble

Survey & Analyze Resource Trouble

Manage Resource Alarm Event Notifications

Filter Resource Alarm Event Notifications

Correlate Resource Alarm Event Notifications

Abate Alarm Event Records

Trigger Defined Action

Track & Manage Resource Trouble

Coordinate Resource TroubleCoordinate Resource Trouble

Perform First in Testing

Cancel Resource Trouble

Escalate/End Resource Trouble

Perform Final Test

Engaging External Suppliers

Service Trouble Management Resource Trouble Management

