
ONAP Beijing Lessons Learned

Wednesday, June 20, 2018

Partners in crime



Disclaimers

• What is presented in this deck is what was discussed during the 2 
Lessons Learned sessions
- for the sake of time

- keep momentum

- More Lessons Learned

• 60+ people attended the Lessons Learned sessions on Monday and 
Tuesday

https://wiki.onap.org/display/DW/ONAP+Beijing+Lesson+Learned+and+Casablanca+Process+Improvement


Items Covered

• Communications

• Labs and Test Environment

• Release Management

• Jira

• Code Review

• Development Infrastructure



Communication – Wiki, Mailing Lists, IRC (1/2)

• RocketChat:
- Need absolutely clear and unambiguous validation that RocketChat can be 

used via https from China and most companies without requiring a VPN, or the 
use of an alternative device/network. -Kenny: Must be secured if setup by LF 
(simply b/c of well known pwd).

• WIKI Help: 
things are hard to find unless you type the right keywords or have the proper 
URL. 

- Some information no more accurate

- Matter of organization, not matter of quantity of information



Communication – Wiki, Mailing Lists, IRC (2/2)

• Sub-Committees  TSC
1. Is there a good enough flow of information-communication between sub-

committees and projects? Overall: yes.

2. Sub-committee feedback toward the TSC is not systematic (as we wish).

• Sub Committees
1. Expectation from sub-sub-committee back to the team and then driving the 

execution

2. Use-case owner is missing

3. Use-case team to fill a checklist? We may defined what that role is.



Labs & Test Environment

1. Despite the effort made by some ONAP partners in providing Labs, 
we have reached the limit on current labs infrastructure.

2. After M4 code freeze, the community is spending a lot of time to get 
the Health Check sanity test to pass.

3. Need to develop a full Agile CI-CD pipeline. Full Chain to run 
automatically the sanity HC, CSIT, E2E. Everything running 
continuously.

4. How to make better usage of XCI-CD environment (OPNFV,...)

5. Supporting HEAT and OOM based deployments is getting harder 
with duplicate maintenance of the config values

6. Improve CSIT coverage to cover all features that the project delivers 
and to reduce manual testing (if any)



Release Management

1. Grouping of Projects (staggered - offset): to address Release 
dependency. Idea of 3 months project (push back at TSC)

2. Defining another milestone (no that good idea?)

3. Start early pair-wise testing?



Jira

1. PTLs are owner of the scope of iteration (pay attention when 
creating a task and do not add into current iteration backlog)

2. Review the 2 JIRA workflows and define 1 workflow for ALL



Code Review

1. Requires active committers and more active code reviewers (right 
now only few committers or reviewers are always reviewing and 
merging the code)

2. Commit process: code review. Dialog necessary.

3. Concerns on big code merge that comes late.

4. In case big code should come in, define an upper timeframe limit.



Development Infrastructure

1. The LF toolchain that is currently in place, do allow to merge in master code that has 
not been thoroughly tested. This leads to massive disruption in the testing.

2. Nexus 3 slowness. This has been impacting Integration Team tremendously as it tooks
3-4 more times just to download Docker images.

3. Slowness of the full IT chain (jenkins, nexus, wiki,..)

4. Local testing: how easy to setup an env for a developer to perform its own testing 
before submitting code. Need reference VNF, AAI, ... (too much time spend to setup 
environment). Idea of lab reference to be used as a model for configuration. (currently 
SB-07 serves that purpose).

5. Pair wise testing for a great value added in Beijing release.

6. Backup and restore capacity for SB 04-07 in Windriver? Have we ever asked 
Windriver?

7. Feature parity on LABS (do not over taxe Windriver).

8. Nexus IQ scan performed during the verify. If error then block the build.

9. Idea of parallel on a single job. Currently atomic at build level. To investigate-optimize 
Jenkins Jobs. (time to build the VMs, ...).



s

谢谢


