
© 2018 AT&T Intellectual Property. All rights reserved. AT&T and the AT&T logo are trademarks of AT&T Intellectual Property.1

ONAP DCAE Controller and policy – take 7.2 
rearchitected data flow between policy-handler and deployment-handler to 

avoid passing huge message on policy-update and catchup
no need to have the policy scope-prefixes in config of policy-handler anymore
using the approach by Terry – cleaner decoupling of policy-handler from 

deployment-handler

contributors: Alex Shatov & Jack Lucas & Chris Rath & Tommy Carpenter & 
Mike Hwang & Shu Shi & Andrew Gauld & Dominic Lunanuova & Avi Zahavi
& Terry Schmalzried & Lusheng Ji & Shrikant Acharya & Patricia Heffner & 
Dan Musgrove & Shadi Haidar

2018-0827



License

# ============LICENSE_START=======================================================
# Copyright (c) 2017-2018 AT&T Intellectual Property. All rights reserved.
# ================================================================================
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============LICENSE_END=========================================================
#
# ECOMP is a trademark and service mark of AT&T Intellectual Property.



Policies and DCAE controller – definitions and assumptions

Definitions, assumptions, relationships, and restrictions
• Policy is a volatile subset of configuration that can be changed after the component is deployed-installed-started 
• Changing the policy on the component (= node instance) is expected not to affect the topology of deployment-installation that is described in the 

blueprint
• Many-to-many relationship between the policies and components (= node instances) across multiple deployments/blueprints

o There can be many policies per each component
o Each policy can also be assigned to many components

• cloudify does expose the direct REST API (/node-instances) to node-instances=components with run-time-properties across all the deployments.  
• this data is going to be used by the deployment-handler to find all the components the policy applies to

• Policy change on one component is expected not to have any dependence on other components = Policy can be randomly updated on any 
component with no need to change another component

• Both the collection and the fields of policies on the components are expected to change (CUD) after the deployment of the component
• The size of a single policy_body is expected not to exceed 512kB when encoded into base64 – this is the value length limitation in consul

Policy storage and using config-binding service to bring the collection of policies along config
• Policy related logic in DCAE-Controller will not change any properties in application config

• no more merging of policy config into application config by the DCAE-Controller.  
• it is responsibility of the component to figure out how to merge the collection of policies into application config

• Config-binding service (CBS) used to set the config properties like resl, dmaap, etc will be enhanced to retrieve the records from 
<service_component_name>:policies/ folder from consul kv and return along the component config

• Policy related plugins of cloudify will store and update the full collection of policies (keyed by policy_id) on the component into folder 
<service_component_name>:policies/items/ on consul

• The policies collection is an unsorted list of policy_body objects
• The policy object (policy_body) is the single json structure associated with a single policy received from policy-engine on /getConfig call



Option #1 - Single policy per each dcae.nodes.policy node, 
multiple dcae.nodes.policy nodes per component

Structure and Lifecycle for the single policy per policy node – multiple policy nodes per blueprint
• Predefined=fixed number of policies per component that is specified in the blueprint + inputs on deployment of the blueprint
• Each policy is identified by policy-id (versionless policyName), whereas the content of the policy content is referred to as policy_body["config"]
• Ways to provide the policy_id and policy_body values to DCAE controller

a. multiple nodes of type dcae.nodes.policy each with the property of policy_id are expected to be provided in the blueprint.  The property 
policy_id will either have the default or assigned value that contains the policy-id value.  The component nodes will have a depend_on kind of 
relationship towards one or more policy nodes

b. multiple policy_id values can also be provided in the inputs to the deployment create step.  
c. DCAE controller (respective node level plugin inside cloudify) will retrieve the latest policy_body for each policy_id from the policy-engine 

through the call to policy-handler (DCAE-C microservice).  
d. event ‘policy-updated’ from the policy-engine contains policyName & policyVersion & matching criteria but no policy config data - the 

policy_id can be extracted from policyName.
e. policy-handler uses the policy_id info stored in cloudify per each component to filter the ‘policy-updated’ events
f. DCAE controller (respective node level plugin inside cloudify) will populate the policy related record in consul-kv with the updated collection 

of policies on the component
g. CBS will expose a new API to bring the policies collection from consul kv



Option #2 - varying collection of policies per policy-filter in dcae.nodes.policies node, 
multiple dcae.nodes.policies nodes per component

Structure and Lifecycle for the policies with policy-filter
• Collection of Policies can be defined by the dcae.nodes.policies node in the blueprint
• The policy-filter = properties of the dcae.nodes.policies node will mimic the parameters of PDP /getConfig API except the requestID (uuid) that is 

unique per each request.  Here is the sample.  
a) "configAttributes": {"key1":"value1"},  
b) "configName": "alex_config_name",  
c) "onapName": "DCAE",  
d) "policyName": "DCAE.Config_multi.*",  
e) "unique": false

• The size of the collection of policies that matches the policy-filter may increase or decrease over time.  
• Policy handler in DCAE-Controller will bring multiple latest policies from PDP that match the policy-filter
• The policy related plugins (and decorators) will store the multiple policies in runtime_properties along with the collection of the policy-filters
• Respective node level plugin inside cloudify will populate the policy related record in consul-kv with the updated collection of policies on the 

component
• CBS will expose a new API to bring the policies collection from consul kv



projects affected by move from take 6.y to 7.z
1. policy-handler

a. cleaner decoupling between policy-handler and deployment handler – policy-handler will not know the deployments and node_instances
b. remove the policy scope-prefixes from config because the policy-handler now matches the policy-filter and policy_id of deployed components to the policy data from PDP
c. retrieves all the policy-filters and policy_ids+version for components with policies or policy-filters from deployment-handler (cloudify)
d. match the existing policy-ids+versions and policy-filters found on components in deployment-handler (cloudify) to the policy headers from policy-update event and catch-up
e. on catch-up -- retrieves the coarse set of policies from PDP based on the existing policy-ids and policy-filters found on components in deployment-handler (cloudify)
f. creates the policy-update message for all policies found and/or matching the policy-filter with the changed policy version and passes that to deployment-handler to execute the 

policy-update operation on cloudify
g. the message to deployment-handler can be segmented by the set of policies to limit the message size (configurable)

2. deployment-handler – removing policy matching logic
a. POST /policy – deprecated API that was based on full matching of policies to components and deployments -- no more matching of the policies to components – now the 

matching is done by the policy-handler
b. GET /policy - new API – returns the unique set of policy_ids+version(s) and the set of policy-filters found on deployed components with policies and/or policy-filters
c. PUT /policy - new API - expose policy-update execute operation that receives the delta of changed policies with criteria that matches to policy-filter

i. check whether the components still on the same state of policies before executing the operation of policy_update
ii. map the policies to deployments and node_instances
iii. execute policy-update operation as in R2 Beijing
iv. segmented delta might cause more than one policy-update message to policy-update plugin per deployment that will cause two-or-more updates to the policies 

collection and two-or-more policy notifications to the component in a row
3. onap-dcae-policy-lib – no change – still using delta on policies both for policy-update and catch-up



already implemented -- projects affected by move from take 5.x to 6.y
1. component spec

a. no need to specify the properties that are part of policies – DCAE-Controller will not merge the policies into application_config
b. do not add or remove the spec for policy apply_order if it was created for R2 already

2. TOSCA_lab
a. optionally separate the generation of component blueprint and policy models from the component spec or from separate component spec and policy spec
b. support for multiple dcae.nodes.policy nodes in the blueprint
c. support for multiple dcae.nodes.policies nodes with policy_filter in the blueprint as planned for R2
d. related changes to TOSCA service template consumed by CLAMP

3. DCAE_CLI tool – keep up with TOSCA Lab
4. onap-dcae-policy-lib

a. store/delete the <scn>:policies/ folder of records in consul kv
b. remove the shallow merge logic and remove the policy sorting logic
c. pass the whole collection of policy_body objects instead of policy config to plugins

5. dockerplugin
a. remove the policy merge call – we are no longer merging the policies into application config
b. change the policy-update notification message to pass policies, updated_policies, removed_policies (lists of policy_body objects) with the new message type of “policies” 

instead of “policy”
c. on delete the component node – we need to delete-tree in consul-kv or use the new decorator @Policies.cleanup_policies_on_node() to delete the policies record in consul-kv

6. cdapplugin, CDAP broker – obsolete
7. config-binding service (CBS)

a. new http API GET <CBS>/service_component_all/<service_component_name> to return the <scn>:policies/ folder of record from consul kv and along the config and other data
b. add a new API into the client lib

8. components under DCAE-C
a. get the full collection of policies (policy_body objects) from <CBS>/service_component_all/<service_component_name>
b. all the merging of the policies into application config is the responsibility of the component itself – DCAE-Controller is no longer doing any policy config merging into 

application config
c. policy-update notification will no longer contain the application_config – the component is responsible to retrieve the full config from CBS
d. policy-update notification data format changed – it will contain the lists of policy_body objects for the new field of policies on component, as well as for updated_policies, and 

removed_policies



ONAP 
DCAE 

Controller

mS blueprint and policies defined North of DCAE controller

Policy engine (PAP)

TOSCA_lab

SDC/designer

CLAMP
Policy engine (PDP)

Inventory

blueprint db

save blueprint for mS

Component spec Policies spec

UI of Policy engine

onboarding the 
models of 

policies

models of policies

TOSCA service template --
contains info on both the mS

and models of policies

create, update, delete, 
push policy

create, update, delete, 
push policy

models of policies



ONAP 
DCAE 

Controller

policies during the install workflow in DCAE controller

Deployment handler

"Component creator"

Cloudify

Cloudify plugins

execute install workflow

Policy handler

1) get the latest policy_body for policy_id value on each dcae.nodes.policy node(s) or multiple latest policies by policy-filter on dcae.nodes.policies node(s)
2) gather and save the policies into runtime_properties["policies"] on the node instance of the component 
3) store the list of policy_body objects into consul-kv under folder <service_component_name>:policies/items/ keyed by policy_id
4) install dockerized component

get_latest_policy(ies) :
policy_body = policyEngineUrl/getConfig => policy with 
policyVersion = max(int(policyVersion)) per policy_id

/getConfig {policyName:<policy_id>}
or by policy-filter

/getConfig {policyName: "DCAE.Config_.*", 
configAttributes: {"key": "value"}, … }

CLAMP Policy engine (PDP)

Inventory

blueprint db

deploy mS (service-type-id) with inputs

<scn>:policies/items/<policy_id1> = 
<policy_body1>, 

<scn>:policies/items/<policy_id2> = 
<policy_body2>, …

consul-kv

Dockerized component

install

get blueprint 
for mS (service-

type-id)



ONAP 
DCAE 

Controller

component gets policies from config-binding service (CBS) on install and any time later

Config-binding service (CBS)
1. gets the <service_component_name> and <service_component_name>:policies/ and other <scn> related records from consul kv
2. returns {

"config" : { … whatever the <CBS>/service_component/<scn> returns …},
"policies" : {"items": [<policy_body1>, <policy_body2>, …], 

"event": {"action": "gathered", "policies_count": 30, "timestamp": "2018-02-12T10:20:30.777Z", 
"update_id": "0e79edc0-6c64-425e-a618-cc13ef50cd56"}},

<other-suffix>: {…},
"timestamp" : "2018-02-14T10:30:30.999Z",  "requestID": "3914b74f-a09e-4186-b5a6-fbe934c59c24"

}

Dockerized Component

<scn>= {…}, <scn>:rel = […], <scn>:dmaap = {…}, 
<scn>:policies/items/<policy_id1> = <policy_body1>, 

<scn>:policies/items/<policy_id2> = <policy_body2>, …
<scn>:policies/event = {"action": "gathered","policies_count" : 30, "timestamp": "2018-02-12T10:20:30.777Z", 

"update_id" : "0e79edc0-6c64-425e-a618-cc13ef50cd56"} 

consul-kv

http GET <CBS>/service_component_all/<service_component_name>



Policy flow – on install
1. Cloudify plugin - policy_id or policy-filter from the blueprint + inputs

a) gets the latest policy_body(ies) from Policy Handler on dcae.nodes.policy and dcae.nodes.policies nodes
b) gathers and saves all policies in runtime_properties["policies"] as dict by policy_id on component node instance
c) store the list of policy_body objects into consul-kv under folder <service_component_name>:policies/items keyed by 

policy_id
d) install the component

2. Policy Handler to get the latest policy by policy_id (http get /policy_latest/<policy_id>) or by 
policy-filter (http post /policies_latest policy-filter: {…})
a) passes policy_id as policyName or passes the policy-filter to policy-engine
b) gets the collection of policies from policy engine (/getConfig)
c) picks the latest policy_body by max(int(policyVersion)) on each returned policy_id
d) returns the collection of policy object(s) to the policy_get plugin

3. Component after install
a. get the full collection of policies (policy_body objects) from <CBS>/service_component_all/<service_component_name>
b. all the merging of the policies into application config is the responsibility of the component itself – DCAE-Controller is no longer doing any policy 

config merging into application config
c. policy-update notification will no longer contain the application_config – the component is responsible to retrieve the full config from CBS
d. policy-update notification data format changed – it will contain the lists of policy_body objects for the new field of policies on component, as well 

as for updated_policies, and removed_policies

Policies and DCAE controller flows – high level view



Cloudify blueprint for policy in DCAE controller – Shu’s approach + Mike's docker_config

set policy-update interface
node_types:
dcae.nodes.vm 

derived_from: cloudify.nodes.Root
properties:
docker_config: 

default: {}

interfaces:
cloudify.interfaces.lifecycle:

create: node_plugin.vm.vm_create
dcae.interfaces.policy:

policy_update: your_plugin.yourplugin.your_policy_update

provide policy_id on policy node(s)
imports:
- https://nexus01.research.att.com:8443/repository/solutioning01-mte2-
raw/type_files/dcaepolicy/2.0.0/node-type.yaml

node_templates:
storage_policy:

type: dcae.nodes.policy
properties:

policy_id: DCAE.Config_VM_STORAGE

memory_policy:
type: dcae.nodes.policy
properties:

policy_id: DCAE.Config_VM_MEMORY

assign policies to components thru 
relationships, specify the field for policies 
in application_config and set policy script-

path
node_templates:
vm_1:

type: dcae.nodes.vm
properties:

docker_config: 
policy:

trigger_type: "docker"
script_path: "/opt/app/reconfigure.sh"

relationships:
- target: storage_policy
type: cloudify.relationships.depends_on

- target: memory_policy
type: cloudify.relationships.depends_on

...



the same inputs as json
inputs: {

"input_key_for_storage": "DCAE.Config_VM_STORAGE",
"input_key_for_memory": "DCAE.Config_VM_MEMORY"

}

Alternative entry of policy_id through the inputs for the blueprint

set policy_id property to 
get_input on policy node(s) in 

the blueprint
imports:
- https://nexus01.research.att.com:8443/repository/solutioning01-mte2-
raw/type_files/dcaepolicy/1.0.0/node-type.yaml

node_templates:
storage_policy:

type: dcae.nodes.policy
properties:

policy_id: { get_input: input_key_for_storage }

memory_policy:
type: dcae.nodes.policy
properties:

policy_id: { get_input: input_key_for_memory }

provide inputs values during 
deployment (yaml)

inputs:
input_key_for_storage: DCAE.Config_VM_STORAGE
input_key_for_memory: DCAE.Config_VM_MEMORY



Alternative - varying collection of policies by policy-filter – dcae.nodes.policies

dcae.nodes.policies in

https://nexus01.research.att.com:8443/repository/solutioning01-
mte2-raw/type_files/dcaepolicy/2.0.0/node-type.yaml

data_types:
dcae.data.policy_filter:

properties:
policyName : 

type : string
default: "DCAE.Config_.*"

configName : 
type : string
default: ""

onapName : 
type : string
default: "DCAE"

configAttributes : 
default: {}

unique : 
type : boolean
default: false

node_types:
dcae.nodes.policies

derived_from: cloudify.nodes.Root
properties:

policy_filter:
type: dcae.data.policy_filter
default: {}

interfaces:
cloudify.interfaces.lifecycle:

create: dcaepolicy.dcaepolicyplugin.policy_get

provide policy-filter on 
dcae.nodes.policies node(s)

imports:
- https://nexus01.research.att.com:8443/repository/solutioning01-mte2-
raw/type_files/dcaepolicy/2.0.0/node-type.yaml

node_templates:
storage_policies:

type: dcae.nodes.policies
properties:

policy_filter:
policyName : "DCAE.Config_MS_DKAT.*" 
configAttributes : {"key1":"value1"}

memory_policy:
type: dcae.nodes.policy
properties:

policy_id: DCAE.Config_VM_MEMORY

assign policies to components thru 
relationships, specify the field for 

policies in application_config and set 
script_path for policy-update 

notification
node_templates:
vm_1:

type: dcae.nodes.vm
properties:

docker_config: 
policy:

trigger_type: "docker"
script_path: "/opt/app/reconfigure.sh"

relationships:
- target: storage_policies
type: cloudify.relationships.depends_on

- target: memory_policy
type: cloudify.relationships.depends_on

…



SAMPLE topology - policy nodes in composition– Shu’s approach

node – vm_1

runtime_properties:
"policies": {
“DCAE.Config_VM_STORAGE”:

{“policy_id”:“DCAE.Config_VM_STORAGE”,
“policy_body”: {“policyVersion”:“1”, 

"config": {“min_storage”:”10GB”},
“policyName”:“DCAE.Config_VM_STORAGE.1.xml”}}, 

“DCAE.Config_VM_MEMORY”: 
{“policy_id”:“DCAE.Config_VM_MEMORY”, 
“policy_body”: {“policyVersion”:“5”, 

"config": “{\“min_memory\”:\”2GB\”}”,
“policyName”:“DCAE.Config_VM_MEMORY.5.xml”}} }

node – storage_policy 
type: dcae.nodes.policy
properties:

policy_id:  DCAE.Config_VM_STORAGE
runtime_properties:  # after policy_get
"policy_body": {“policyVersion”:“1”, 

"config": {“min_storage”:”10GB”},
“policyName”:“DCAE.Config_VM_STORAGE.1.xml”}

node – memory_policy
type: dcae.nodes.policy
properties:

policy_id: DCAE.Config_VM_MEMORY
runtime_properties:     # after policy_get
"policy_body":{“policyVersion”:“5”, 

"config": {“min_memory”:”2GB”},
“policyName”:“DCAE.Config_VM_MEMORY.5.xml”}

node – vm_2

runtime_properties:
"policies": {
“DCAE.Config_VM_MEMORY”:

{“policy_id”:“DCAE.Config_VM_MEMORY”, 
“policy_body”: {“policyVersion”:“5”, 

"config": {“min_memory”:”2GB”},
“policyName”:“DCAE.Config_VM_MEMORY.5.xml”}}} 

depends_on
depends_ondepends_on



Terminology in Policy engine and mapping to DCAE controller

Blueprint – yaml DCAE-C Policy Handler to use the Policy engine (PDP) API

• dcae.nodes.policy – node 
type for single policy 
identified by policy_id

• dcae.nodes.policies – node 
type for varying collection of 
policies by policy-filter (the 
same as in PDP /getConfig)

• identify policy node(s) by the 
type dcae.nodes.policy or 
dcae.nodes.policies

• find policies on component 
node by following the 
depends.on relationship(s) up 
to the policy node(s)

policyName -- String - PK to policy object in PDP – formatted as a file name.  
example: “DCAE.Config_dcae_policy_name.2.xml”
The delimiter is “.” 
DCAE is the scope of the policy, there could be several subscopes each delimited 
by the dot “.”  
Config_ is the policyClass=“Config” followed by the delimiter “_” – PAP does 
not have that in the policyName – only PDP has it
dcae_policy_name is the actual name (code) of the policy
“2” is the stringified integer value of the policy version - owned by PAP
“xml” is the extension that does not correlate with the format of the policy body

policy_id
– string property in blueprint + 

input
startsWith “DCAE.Config_”

policy_id -- is the prefix (scope + 
“.Config_” + policy_name) of the 
policy file name
policy_id is the versionless left part 
of the policyName

policyName = policy_id + “.” + <version> + “.xml”

blueprint does not know about 
policy version

policy_body["policyVersion"] –
stringified int – use to detect the 
update

policyVersion – stringified integer that is owned and autoincremented by PAP 
on each policy create and update

runtime policy config is not 
expected to be used inside 
blueprint

policy_body["config"] – safely 
parses to JSON

on creating/updating the policy: configBody – stringified JSON
on retrieving the policy: http /getConfig: config – stringified JSON



Sample messages to REST API of Policy-engine – maze of policyNames

/createPolicy or /updatePolicy -- in PAP
// policyName = <scope>.<policy-name>  -- yes ‘recursive’ definition 
{

"policyName": "DCAE.host_capacity_policy_id_value",

"policyClass": "Config",

"configBody": "{\"hello\":\"world\"}",
"configBodyType": "JSON",
"configName": "alex_config_name",
"onapName": "DCAE",
"policyConfigType": "Base",
"policyDescription": “sample policy" ,
"ttlDate": "2017-08-14T16:54:31.696Z"

}

// PAP creates-updates the policy with name and auto-increments the version

// PAP policyName = <scope>.<class>_<policy-name>.<version>.xml

PAP response: "content-type": "text/plain;charset=ISO-8859-1"
Transaction ID: a8b1b3fe-60b3-4b34-89e2-8fabd430282c --Policy with the 

name DCAE.Config_host_capacity_policy_id_value.1.xml was successfully 

created.

DCAE policy-handler: /getConfig – from PDP
// all policies (all versions) in scope.class “DCAE.Config_”  -- append “.*”
{

"policyName": "DCAE.Config_.*"

}
// specific policy by policy_id -- PDP returns all versions
{

"policyName": "DCAE.Config_host_capacity_policy_id_value"

}
// get the single version of the policy only if you know the version and the 
// full-policy-name = <scope>.<class>_<policy-name>.<version>.xml
{

"policyName": "DCAE.Config_host_capacity_policy_id_value.5.xml"

}/pushPolicy – from PAP to PDP into ‘default’ group
// policyName = <scope>.<policy-name>
{

"policyName": "DCAE.host_capacity_policy_id_value",

"policyType": "Base"
}

policy_id in blueprint (yaml)
// policy_id = <scope>.<class>_<policy-name>

policy_id: DCAE.Config_host_capacity_policy_id_value



Sample policy_body structure in policy-handler retrieved from PDP for policy_id

DCAE policy-handler picks the max int(policyVersion) and parses the config as json

"policy_body": {
"policyName": "DCAE.Config_host_capacity_policy_id_value.69.xml",
"policyConfigMessage": "Config Retrieved! ",
"responseAttributes": {},
"policyConfigStatus": "CONFIG_RETRIEVED",
"type": "JSON",
"matchingConditions": { "ONAPName": "DCAE", "ConfigName": "alex_config_name", "priority":"1"},
"property": null,
"config": {

"hello": "world"
},
"policyVersion": "69"

}

DCAE policy-handler retrieves all versions 

for policy_id: /getConfig – from PDP
// specific policy by policy_id -- PDP returns all versions
// policy_id = "DCAE.Config_host_capacity_policy_id_value"
{

"policyName": "DCAE.Config_host_capacity_policy_id_value"

}

/createPolicy or /updatePolicy -- in PAP
{

"policyName": "DCAE.host_capacity_policy_id_value",

"policyClass": "Config",

"configBody": "{\"hello\":\"world\"}",
"configBodyType": "JSON", 
"attributes": {"MATCHING":{"priority":"1"}},
"configName": "alex_config_name",
"onapName": "DCAE",…

}



Cloudify plugins getting the policy values from Policy engine through Policy Handler

Cloudify plugin policy.policy_get
@operation
def policy_get(**kwargs):

ctx.instance.runtime_properties[“policy_body”] = _policy_handler.get_latest_policy( 
ctx.node.properties[“policy_id”]) 

Cloudify plugin vm.vm_create
def _merge_policy_with_node(target):

"""get all properties of the policy node and add the actual policy"""
policy = dict(target.node.properties)
policy[“policy_body”] = target.instance.runtime_properties[“policy_body”]
return policy

@operation
def vm_create (**kwargs):

policies = dict([(rel.target.node.properties[[“policy_id”], \
_merge_policy_with_node(rel.target)) \

for rel in ctx.instance.relationships \
if “dcae.nodes.policy” in rel.target.node.type_hierarchy \
and [“policy_id” in rel.target.node.properties \
and rel.target.node.properties[[“policy_id”] \
and “policy_body” in rel.target.instance.runtime_properties \
and rel.target.instance.runtime_properties[“policy_body”] \

])
if policies:

ctx.instance.runtime_properties["policies"] = policies

Policy Handler to use the Policy engine API
def get_latest_policy(policy_id):

policy_configs = _policy_engine.post(“getConfig”, {policyName: policy_id})
latest_policy_config = None
for policy_config in policy_configs:
if not latest_policy_config \
or int(policy_config["policyVersion"]) > int(latest_policy_config["policyVersion"]):
latest_policy_config = policy_config

return {“policy_id” : policy_id, “policy_body” : latest_policy_config}

Policy engine (PDP)



ONAP DCAE Controller

DCAE controller – how the policy updated after 7.0 (R3 Casablanca)
per Terry (not exposing deployment info to policy-handler)

Deployment handler

Cloudify

Cloudify plugin "policy_update"

Policy handler

Policy engine (PDP)

push policy-update message-event
notificationReceived(PDPNotification)

1) loop thru collections of received policies (delta – only the changes to the policies)
2) verifies the policy applicable to component by policy_id and policyVersion or by policy-filter
3) remove/update/add policies in runtime_properties["policies"]
4) put the list of policy_body objects into consul-kv under folder <service_component_name>:policies
5) if docker_config["policy"]["trigger_type"] == "docker" : notify the component by invoking script inside docker container

1. retrieve the deployments+ node_instances
with runtime_properties again

2. match updated-added-removed policies to 
deployments+ node_instances by policy_ids
and policy-filter-ids

3. per deployment - execute_operation = 
policy_update

with operation_kwargs = {updated_policies = 
[policy,…], removed_policies =[policy,…]} and 

node_instance_ids = [component_id]

get full policy-config data for each matched 
added/updated policy from deployment-
handler

many /getConfig
{policyName:<policyName>}

"Decision maker" create/update/delete, push policy Policy engine (PAP)

<scn>:policies/items/<policy_id1> = 
<policy_body1>,

<scn>:policies/items/<policy_id3> = 
<policy_body3>, …

consul-kv

Dockerized component

policy-update notification

get all deployments + components with 
policies or policy-filters – return set of 
policy_id+version(s) and policy-filters

match by the policy_id and policy-filter to the policies received from 
policy-engine – mimic the matching used by PDP
calculate the latest+removed policies with matching policy_id and 
policy-filter-ids (delta)

get the set of policy_id+version(s) and policy-filters

send potentially segmented message(s) with the latest+removed policies with matching policy-filter-ids (delta)



Policy update flow inside DCAE controller – high level view after 7.0

1. Policy-handler North API gets policy-update event from the policy engine
a) receives the collection of policy names and policy_version and matching criteria, no policy_body
b) retrieves the set of policy_id+version(s) and policy-filters for all components with policies and policy-filters from deployment-handler

2. Deployment-handler gets all the components with policies
a) calls cloudify and finds all the components under cloudify = node instances
b) filters the components (node-instances) to have either policies or policy-filters in runtime-properties
c) returns the set of policy_id+version(s) and policy-filters

3. Policy-handler gets the latest policies from PDP that match to deployed policies, matches to deployed policies, and sends the policy-update 
message to deployment-handler

a) matches by the policy_id and policy-filter to the policies received from policy-engine in policy-update message – mimics the matching used by PDP 
b) gets from PDP the latest policies for each matched policy by policName
c) prepares and sends the set of the latest+removed policies to deployment-handler  

i. this message can be segmented by policy_ids to reduce the size of each message below the configurable limit

4. Deployment-handler matches policies to deployments + node_instacnes and executes the policy_update per deployment
a) calls cloudify and finds all the components under cloudify = node instances again
b) matches latest+removed policies to deployments + node_instacnes and 
c) calls cloudify to execute_operation=policy_update on each found deployment with the list of node-instances and passes policies: [{policy_id, 

policy_body}] + policy-filter-matches

5. Policy_update plugin in cloudify (as in R2 Beijing) updates the policies in cloudify and consul and notifies the component
a) loop thru collections of received policies (delta – only the changes to the policies)
b) verifies the policy applicable to component by policy_id and policyVersion or by policy-filter
c) remove/update/add policies in runtime_properties["policies"]
d) put the list of policy_body objects into consul-kv under folder <service_component_name>:policies
e) if docker_config["policy"]["trigger_type"] == "docker" : notify the component by invoking script inside docker container



ONAP DCAE Controller

DCAE controller – how the policy updated after 7.0 (R3)

Deployment handler

Cloudify

Cloudify plugin "policy_update"

Policy handler

Policy engine (PDP)

push policy-update message-event
notificationReceived(PDPNotification)

1) loop thru collections of received policies (delta – only the changes to the policies)
2) verifies the policy applicable to component by policy_id and policyVersion or by policy-filter
3) remove/update/add policies in runtime_properties["policies"]
4) put the list of policy_body objects into consul-kv under folder <service_component_name>:policies
5) if docker_config["policy"]["trigger_type"] == "docker" : notify the component by invoking script inside docker container

on every affected deployment_id
execute_operation = policy_update

with operation_kwargs = {updated_policies = 
[policy,…], removed_policies =[policy,…]} and 

node_instance_ids = [component_id]

get full policy-config data for each matched 
added/updated policy from deployment-
handler

many /getConfig
{policyName:<policyName>}

"Decision maker" create/update/delete, push policy Policy engine (PAP)

<scn>:policies/items/<policy_id1> = 
<policy_body1>,

<scn>:policies/items/<policy_id3> = 
<policy_body3>, …

consul-kv

Dockerized component

policy-update notification

get all deployments + components with 
policies or policy-filters

find deployments + components that have policy_id or match by the
policy-filter to the policies received from policy-engine – mimic the 
matching used by PDP 

get all deployments + components with policies or policy-filters

notify deploy-handler once per deployment + the list of the updated policy objects + list of removed policy_names + 
catch_up=false + policies_event.update_id of each component + list of components (node-instances)



Policy update flow inside DCAE controller – high level view after 7.0

1. Policy-handler North API gets policy-update event from the policy engine
a) receives the collection of policy names and policy_version and matching criteria, no policy_body
b) retrieves all components with policies and policy-filters from deployment-handler

2. Deployment-handler gets all the components with policies
a) calls cloudify and finds all the components under cloudify = node instances
b) filters the components (node-instances) to have either policies or policy-filters in runtime-properties

3. Policy-handler matches the policy-update event to components and sends policy-update message per deployment to deployment-handler
a) joins the components with policies or policy-filters from deployment-handler to the policy-update event

i. finds the node-instances that have the policy_id from policy-update or policy-remove event notification received from policy-engine
ii. finds the node-instances with the policy-filter matching to matching criteria from policy-update event -- mimics the matching done in PDP 

b) gets from PDP the latest policy for each policy_id extracted from the each policy-update policyName
a) if another version of the removed-policy found in PDP – the policy-handler will use that as an update-policy rather than remove policy
b) if policy not found in PDP and the policy is reported as removed in policy-update event, then the policy-handler will pass this policyName as 

removed policy downstream to deployment handler
c) prepares and sends to deployment-handler the execute_operation=policy_update per each affected deployment with the list of node-instances 

and passes updated_policies: [{policy_id, policy_body}], added_policies: {policy_filter_id: {policy_filter_id, policies: {…}}], and removed_policies: 
[policy_id, …]

4. Deployment-handler executes the policy_update per deployment
a) calls cloudify to execute_operation=policy_update on each found deployment with the list of node-instances and passes updated_policies: 

[{policy_id, policy_body}], added_policies: {policy_filter_id: {policy_filter_id, policies: {…}}], and removed_policies: [policy_id, …]

5. Policy_update plugin in cloudify updates the policies in cloudify and consul and notifies the component
a) loop thru collections of received policies (delta – only the changes to the policies)
b) verifies the policy applicable to component by policy_id and policyVersion or by policy-filter
c) remove/update/add policies in runtime_properties["policies"]
d) put the list of policy_body objects into consul-kv under folder <service_component_name>:policies
e) if docker_config["policy"]["trigger_type"] == "docker" : notify the component by invoking script inside docker container



ONAP DCAE Controller

DCAE controller – how the policy updated before 7.0

Deployment handler

Cloudify

find components that have policy_id && 
policy_version != 
runtime_properties["policies"][policy_id] 
["policy_body"]["policyVersion"] or match
the policy-filter – need to mimic the 
matching in PDP 

Cloudify plugin "policy_update"

Policy handler

Policy engine (PDP)

push policy-update message-event
notificationReceived(PDPNotification)

1) loop thru collections of received policies
2) verifies the policy applicable to component by policy_id and policyVersion or by policy-filter
3) remove/update/add policies in runtime_properties["policies"]
4) update the list of policy_body objects into consul-kv under folder <service_component_name>:policies
5) if docker_config["policy"]["trigger_type"] == "docker" : notify the component by invoking script inside docker container

latest_policies: {policy_id:{policy_id + policy_body}},
removed_policies : [{policy_id + policyName + 

policy_version}, …]

on every found deployment_id
execute_operation = update_policy

with operation_kwargs = {updated_policies = 
[policy,…], removed_policies =[policy,…]} and 

node_instance_ids = [component_id]

1) if policy of DCAE scope got updated
2) get full policy-config data for each updated policy from 

policy-engine
3) notify deploy-handler with the list of the updated policy 

objects + list of removed policy_names

many /getConfig
{policyName:<policyName>}

"Decision maker" create/update/delete, push policy Policy engine (PAP)

<scn>:policies/items/<policy_id1> = 
<policy_body1>,

<scn>:policies/items/<policy_id3> = 
<policy_body3>, …

consul-kv

Dockerized component

policy-update notification



Policy update flow inside DCAE controller – high level view before 7.0

1. Policy Handler North API gets policy-update event from the policy engine
a) receives the collection of policy names and policy_version, no policy_body
b) event contains many irrelevant policies
c) filters by policyName.startsWith(“DCAE.Config_”)
d) retrieves full policy-object from policy-engine per each updated policyName
e) extracts policy_id from each policyName – trims off the extension and the version
f) tries to get from PDP the latest policy for each policy_id extracted from the each policyName of removed-policy list

a) if another version of the removed-policy found in PDP – the policy-handler will use that as an update-policy rather than remove policy
b) if policy not found in PDP, then policy-handler will pass this policyName as removed policy downstream to deployment handler

g) sends policy-updated list with full policy objects along with the list of removed {policy_id + policyVersion} to Deploy-handler

2. Deploy-handler {policy_id: {policy_id, policy_body : {<full object from PDP>}}} + removed_policies [policy_id+policyVersion+policyName]
a) calls cloudify and finds all the components under cloudify = node instances
b) finds the node-instances that have the policy_id and not equal policy_version
c) finds the node-instances that match the policy-filter -- mimics the matching done in PDP 
d) finds the node-instances that have the removed policies and collects the removed policies
e) calls cloudify to execute_operation=update_policy on each found deployment with the list of node-instances and passes updated_policies: 

[{policy_id, policy_body}], added_policies: {policy_filter_id: {policy_filter_id, policies: {…}}], and removed_policies: [policy_id, …]

3. Plugin in cloudify
a) verifies the received policies are applicable to component by policy_id and policy_version or matches by policy-filter
b) remove/update/add policies in runtime_properties["policies"] of the node instance for the component
c) store the list of policy_body objects into consul-kv under key of <service_component_name>:policies
d) notify the component about the policies change by invoking script docker_config["policy"]["script_path"] inside the docker container plugins for 

Dockerized components in case docker_config["policy"]["trigger_type"] == "docker" 



Jack L. approach on execute_operation policy_update – high-level

policy_update in blueprint
node_types:

dcae.node.vm
derived_from: cloudify.nodes.Root
interfaces:

dcae.interfaces.policy:
policy_update: your_plugin.yourplugin.your_policy_update

yourplugin.your_policy_update in Cloudify
@operation
def your_policy_update(updated_policies, removed_policies,**kwargs):

policies = ctx.instance.runtime_properties[“policies”]
for policy in updated_policies:

if policy[“policy_id”] in policies:
policies[policy[“policy_id”]]["policy_body"] = policy["policy_body"]

ctx.instance.runtime_properties[“policies”] = policies

Run execute_operation policy_update on specific component_id = vm_2_9d982
cfy executions start -d alex-game_depl -w execute_operation -p 
"{'operation':'dcae.interfaces.policy.policy_update','operation_kwargs':{'updated_policies':[{'policy_id':' DCAE.Config_VM_MEMORY', 'policy_body': 
{"config": '{\“min_memory\”:\”8GB\”}','policyVersion':’222’,'policyName':'DCAE.Config_VM_MEMORY.222.xml'}}], 'removed_policies':[]}, 
'node_instance_ids':[‘vm_2_9d982']}"

node – vm_2 (instance vm_2_9d982) after:
policies: {
“DCAE.Config_VM_MEMORY”: 
{“policy_id”:“DCAE.Config_VM_MEMORY”, 
“policy_body”: {“policyVersion”:“222”, "config": 

“{\“min_memory\”:\”8GB\”}”, 
“policyName”:“DCAE.Config_VM_MEMORY.222.xml”}} 

node – vm_2 (instance vm_2_9d982) before:
policies: {
“DCAE.Config_VM_MEMORY”: 
{“policy_id”:“DCAE.Config_VM_MEMORY”, 
“policy_body”: {“policyVersion”:“5”, "config": 

“{\“min_memory\”:\”2GB\”}”, 
“policyName”:“DCAE.Config_VM_MEMORY.5.xml”}} 



On policy-update: pass policies delta and state to the component

dockerized component
1. Trigger: docker_config["policy"]["trigger_type"] == "docker" in the blueprint of the component
2. Path to script in the blueprint of the component at docker_config["policy"]["script_path"]
3. In this case, the component needs to have the reconfigure-policy-update script inside Docker container at the path specified in the blueprint under 

docker_config["policy"]["script_path"].  
4. Script args

a) $1=<reconfigure-type> ("policies") – new type of "policies" instead of older "policy" to indicate the change of API
b) $2=<updated_policies_message> - json

5. Cloudify plugin on policy_updated event on each component (node instance) will 
a) policy-lib will store the list of policy_body objects into consul-kv under key of <service_component_name>:policies
b) invoke /bin/sh <script_path> “policies” "{\“updated_policies\”:[{…}], \"removed_policies\":[{…}], \"policies\":[{…}]}" inside the docker container 

to notify the component about the policy-update
c) the plugin will no longer send the application_config to the script – instead it will send the full collection of policies.  
d) Each of collections updated_policies, removed_policies, and policies is now a list of policy_body objects, rather than the list policy_body["config"] 

objects
6. It is now the responsibility of the component to retrieve the latest application config from the config-binding service (CBS)
7. It is up to script what to do with the event – either raise (kill) the signal to the app, or call IPC on the app or call REST API on the app or anything else the app 

and script developer can come up with.  

This way the DCAE-Controller platform does not need to know anything about the application logic to apply the policy change and each application will have the 
full control and easy testing of how to react to reconfigure (policy-update) event. 



Sample /opt/app/reconfigure.sh inside the Docker container to process the policy-update 
notification

/opt/app/reconfigure.sh
----------------------------------------------------------

#!/bin/bash

## /opt/app/reconfigure.sh “policies” "{\“updated_policies\”:[{…}], \"removed_policies\":[{…}], \"policies\":[…]}"

MSG_TYPE=$1
MSG=$2

DEMO_DIR=/opt/app/demo_dir
RUNSCRIPT=/opt/app/reconfigure.sh
DATAFILE=$(date +%Y_%m%d-%H%M%S)_${MSG_TYPE}.json

cd ${DEMO_DIR}
LOG_FILE=demo.log

echo "===================" ${LOG_FILE} | tee -a ${LOG_FILE}
(date && whoami && hostname -f && pwd) | tee -a ${LOG_FILE}

echo "running script" ${RUNSCRIPT} "with params($@)" | tee -a ${LOG_FILE}

# save the message into datafile named as <datetime>_<msg_type>.json
printf "${MSG}\n" >> ${DATAFILE}

ls -la | tee -a ${LOG_FILE}
echo ${DATAFILE} | tee -a ${LOG_FILE}
cat ${DATAFILE} | tee -a ${LOG_FILE}



DCAE controller – recovery after downtime – send REST GET /catch_up to policy-handler or restart the policy-handler or wait 
for the periodic auto catch_up – per Terry (not exposing deployment info to policy-handler)

Policy engine (PDP)REST GET /catch_up

Deployment handler

Cloudify

Cloudify plugin "policy_update"

Policy handler

1) loop thru collections of received policies (delta – only the changes to the policies)
2) verifies the policy applicable to component by policy_id and policyVersion or by policy-filter
3) remove/update/add policies in runtime_properties["policies"]
4) put the list of policy_body objects into consul-kv under folder <service_component_name>:policies
5) if docker_config["policy"]["trigger_type"] == "docker" : notify the component by invoking script inside docker container

1. retrieve the deployments+ 
node_instances with runtime_properties
again

2. match updated-added-removed policies 
to deployments+ node_instances by 
policy_ids and policy-filter-ids

3. per deployment - execute_operation = 
policy_update

with operation_kwargs = {updated_policies = 
[policy,…], removed_policies =[policy,…]} and 

node_instance_ids = [component_id]

get policy-configs for the coarse scope-
prefixes

<scn>:policies/items/<policy_id1> = 
<policy_body1>,

<scn>:policies/items/<policy_id3> = 
<policy_body3>, …

consul-kv

Dockerized componentpolicy-update notification

get all deployments + components with 
policies or policy-filters – return set of 

policy_id+version and policy-filters

send potentially segmented message(s) with the latest+removed policies with matching policy-filter-ids (delta)

/getConfig {policyName:“DCAE.Config_*”}

match by the policy_id and policy-filter to the policies received from policy-engine – mimic the matching used by PDP
calculate the latest+removed policies with matching policy-filter-ids (delta)

get the set of policy_id+version(s) and policy-filters

coarse the scope-prefixes from all policy_ids and policy-filters

ONAP DCAE Controller



Policy catch-up flow inside DCAE controller – high level view after 7.0

1. Policy-handler gets /cath_up or periodic catch_up
a) retrieves the set of policy_id+version(s) and policy-filters for all components with policies and policy-filters from deployment-handler

2. Deployment-handler gets all the components with policies
a) calls cloudify and finds all the components under cloudify = node instances
b) filters the components (node-instances) to have either policies or policy-filters in runtime-properties
c) returns the set of policy_id+version(s) and policy-filters

3. Policy-handler gets the latest policies from PDP that match to deployed policies, matches to deployed policies, and sends the policy-update 
message to deployment-handler

a) coarses the collection of policy_ids and policyNames from policy-filters into a list of regex values on policyName for PDP
b) gets from PDP the latest policies for the coarse regex values on  policyName
c) joins the components with policies or policy-filters from deployment-handler to the retrieved latest policies

i. matches by policy_id and by policy-filter -- mimics the matching done in PDP
ii. determines whether the policy version changed or whether the policy is removed

d) prepares and sends the set of the latest+removed policies to deployment-handler  
i. this message can be segmented by policy_ids to reduce the size of each message below the configurable limit

4. Deployment-handler matches policies to deployments + node_instacnes and executes the policy_update per deployment
a) calls cloudify and finds all the components under cloudify = node instances again
b) matches latest+removed policies to deployments + node_instacnes and 
c) calls cloudify to execute_operation=policy_update on each found deployment with the list of node-instances and passes policies: [{policy_id, 

policy_body}] + policy-filter-matches 

5. Policy_update plugin in cloudify (as in R2 Beijing) updates the policies in cloudify and consul and notifies the component
a) loop thru collections of received policies (delta – only the changes to the policies)
b) verifies the policy applicable to component by policy_id and policyVersion or by policy-filter
c) remove/update/add policies in runtime_properties["policies"]
d) put the list of policy_body objects into consul-kv under folder <service_component_name>:policies
e) if docker_config["policy"]["trigger_type"] == "docker" : notify the component by invoking script inside docker container



DCAE controller – recovery after downtime – send REST GET /catch_up to policy-handler or 
restart the policy-handler or wait for the periodic auto catch_up

Policy engine (PDP)REST GET /catch_up

Deployment handler

Cloudify

Cloudify plugin "policy_update"

Policy handler

1) loop thru collections of received policies (the full new state of policies)
2) verifies the policy applicable to component by policy_id and policyVersion or by policy-filter
3) remove/update/add policies in runtime_properties["policies"] from catch_up=true and the full new state of policies
4) put the list of policy_body objects into consul-kv under folder <service_component_name>:policies
5) if docker_config["policy"]["trigger_type"] == "docker" : notify the component by invoking script inside docker container

on the deployment
if flag-whether-policies-changed or any of 

policies.event.update_id changed on any of 
component:

1. remove the non-active operations from 
the queue

2. execute_operation = policy_update
with operation_kwargs = {policies = [policy,…], 

catch_up =true} and 
node_instance_ids = [component_id]

get policy-configs for the coarse scope-
prefixes

<scn>:policies/items/<policy_id1> = 
<policy_body1>,

<scn>:policies/items/<policy_id3> = 
<policy_body3>, …

consul-kv

Dockerized componentpolicy-update notification

get all deployments + components with 
policies or policy-filters

notify deploy-handler once per deployment + policies=full latest policy-state of all the components + catch_up=true + 
policies_event.update_id of each component + flag-whether-policies-changed + list of components (node-instances)

/getConfig {policyName:“DCAE.Config_*”}

find deployments + components that have policy_id or match by the policy-filter to the policies received from policy-
engine – mimic the matching used by PDP 

get all deployments + components with policies or policy-filters

coarse the scope-prefixes from all policy_ids and policy-filters

ONAP DCAE Controller



Policy catch-up flow inside DCAE controller – high level view after 7.0

1. Policy-handler gets /cath_up or periodic catch_up
a) retrieves all components with policies and policy-filters from deployment-handler

2. Deployment-handler gets all the components with policies
a) calls cloudify and finds all the components under cloudify = node instances
b) filters the components (node-instances) to have either policies or policy-filters in runtime-properties

3. Policy-handler gets latest policies that match to components and sends policy-update message per deployment to deployment-handler
a) combines (coarses) the collection of policy_ids and policyNames from policy-filters into re on policyName for PDP
b) gets from PDP the latest policies for the coarse re on  policyName
c) joins the components with policies or policy-filters from deployment-handler to the retrieved latest policies

i. finds the node-instances that have the policy_id of policy received from policy-engine
ii. finds the node-instances with the policy-filter matching to matching criteria from policy retrieved from PDP -- mimics the matching done in 

PDP 
d) prepares and sends the catch-up message to deployment-handler the execute_operation=policy_update per each affected deployment with the 

list of node-instances and passes policies: [{policy_id, policy_body}] + policy-filter-matches

4. Deployment-handler executes the policy_update per deployment
a) calls cloudify to execute_operation=policy_update on each found deployment with the list of node-instances and passes policies: [{policy_id, 

policy_body}] + policy-filter-matches 

5. Policy_update plugin in cloudify updates the policies in cloudify and consul and notifies the component
a) loop thru collections of received policies (the full new state of policies)
b) verifies the policy applicable to component by policy_id and policyVersion or by policy-filter
c) update policies in runtime_properties["policies"] and calculate the delta for notification
d) put the list of policy_body objects into consul-kv under folder <service_component_name>:policies
e) if docker_config["policy"]["trigger_type"] == "docker" : notify the component by invoking script inside docker container



Deployment handler
(dispatcher)

/policy
find components that have policy_id && 
policy_version != 
runtime_properties["policies"][policy_id] 
["policy_body"]["policyVersion"] or match 
the policy-filter
-- removed_policies = policies not in PDP 
but still found in cloudify

on every found deployment_id
execute_operation = update_policy

with operation_kwargs = {updated_policies = 
[policy,…], removed_policies = 

[{policy_id+policy_version+policyName}, …]} 
and 

node_instance_ids = [component_id]

DCAE controller – recovery after downtime – send REST GET /catch_up to policy-handler or 
restart the policy-handler

Policy handler

Policy engine (PDP)

catch_up = true and list of policy 
objects {policy_id:{policy_id + 

policy_body}}

1) get all full policy-config data per scope
2) notify deploy-handler with the list of all the policy 

objects

/getConfig {policyName:“DCAE.Config_*”}

REST GET /catch_up

Cloudify

Cloudify plugin "policy_update"



DCAE controller – how the policy update queued

Deployment handler

on every found deployment_id
if the deployment is busy – store the 

update_policy or catch_up operation with 
execute_params in executions_queue

(memory only)
-- if catch_up – remove all non-active 

queued operations

On install deployment or execute_operation
completed successfully
– check whether there is something in 
executions_queue for the deployment_id. 
-- if there is update_policy operation – invoke the 
policy_update with policy_id from execute_params = 
{policy_id} as if it came from Policy Handler and remove 
the queued record



Links related to policy in DCAE controller
• ONAP wiki

 https://wiki.onap.org/display/DW/DCAE+gen2+architecture+of+policy-
handling+by+DCAE-controller

• policy-handler: 

 https://gerrit.onap.org/r/#/admin/projects/dcaegen2/platform/policy-
handler 

 https://gerrit.onap.org/r/gitweb?p=dcaegen2/platform/policy-
handler.git;a=summary

• policy-handler installation blueprint: 

 https://gerrit.onap.org/r/#/admin/projects/dcaegen2/platform/blueprints

 https://gerrit.onap.org/r/gitweb?p=dcaegen2/platform/blueprints.git;a=tr
ee;f=blueprints;hb=HEAD 

• deployment-handler with policy-update api:

 https://gerrit.onap.org/r/#/admin/projects/dcaegen2/platform/deployme
nt-handler

 https://gerrit.onap.org/r/gitweb?p=dcaegen2/platform/deployment-
handler.git;a=summary 

 swagger UI http://<deployment-handler>/swagger-ui/#

• dcaepolicyplugin plugin and dcae.nodes.policy (*.policies) node 
types

 https://gerrit.onap.org/r/#/admin/projects/dcaegen2/platform/plugins

 https://gerrit.onap.org/r/gitweb?p=dcaegen2/platform/plugins.git;a=tree;f
=dcae-policy;hb=HEAD   

• onap-dcae-dcaepolicy-lib -- consumed by dockerplugin in cloudify
of DCAE-C: 

 https://gerrit.onap.org/r/#/admin/projects/dcae/utils

 https://gerrit.onap.org/r/gitweb?p=dcaegen2/utils.git;a=tree;f=python-
dcae-policy;hb=HEAD    

 https://pypi.python.org/pypi/onap-dcae-dcaepolicy-lib -- to become 
obsolete after setting up pypi in onap.org

• policy-engine wiki and API

 https://wiki.onap.org/display/DW/Policy

 https://wiki.onap.org/display/DW/Policy+API

• ONAP sonar reports

 https://sonar.onap.org/projects?search=dcaegen2&sort=-analysis_date


