Architectural Enhancements to

the ONAP Policy Framework for
Casablanca

Pamela Dragosh
Liam Fallon

5th June, 2018

Highlights

« Simplification of the structure of the ONAP PF
- More straightforward to develop policies
- Microservice oriented, PDP is the main unit of scalability

» Generic model driven support for policies of all types
- Arbitrary PDPs are supported
- Policy design and deployment is the same for all policies

* Policy Lifecycle Management
- Passive/Test/Safe/Active modes supported
- Policy Upgrade and Rollback

 Unified and Controlled Policy execution
- All policy execution performed in PDPs
- Synchronous and asynchronous execution supported
- Lay a stronger foundation for conflict detection, mitigation, and prevention

C1 THELINUXFOUNDATION

Current Architecture

DCAE and Other

Stateless : MAVEN Stateful Closed
GUls XACML Policy-Enabled Repository Loop
{CLAME.IROLIEY) Transactions Elements Transactions
|
PORTAL I DROOLS Policy
Other Policy Deployment

Deployment

Policy Creation & Management

DROOLS Policy
Notification

BRMS GW

DMaaP
Interface

XACML
Interface

PDP-D
(DROOLS Policy
DY a e8] DROOLS

Session
State

PAP

(Policy Access — Policy Deployment m——p- PDP-X
Point) (XACML Policy
> Decision Point)

Persistence of
Policies and Policy
Dictionaries

Policies .
Transaction State

Node State 1
Management
Management Active Standby
Management
Policies & | 4 ‘
i g : Policies
Dictionaries | Node Active DROOLS

Node State

\

Standby Data

Session State

POLICY REPOSITORY
(XACML DB)

State Mgmt
Info

Active
Standby Info

Session
Persist Info

> Node State Management

9/28/2017 Figure 3: ONAP POLICY CREATION AND DEPLOYMENT DETAILS

C1 THELINUX FOUNDATION @ ONAP :

OPEN NETWORK AUTOMATION PLATFORM

Current Architectural Limitations

 Policies that are specific to drools are routed through the PDP-X via BRMSGW. This is un_sustainable,long-
term as we move to a distributed PDP micro service architecture and need to utilize a Policy Distribution API
to groups of PDP's spread out over the installation of ONAP.

« BRMSGW hard codes dependencies for policies that are specific to drools. The long term architecture view is
for policy artifacts to be located in a nexus repository that are pulled by appropriate PDP micro service
engines. Dependencies would be set in the policy artifact jar files themselves and not hard coded into the
platform as a JSON file. Having a JSON file to specify dependencies is a poor implementation architecture
and there is no need to re-create Policy artifacts.

* Policy template/model/rule develgr%ment environment is too tightly integrated with the Platform code and is
not sustainable in the long term. The long term vision is for separate of Platform from Policies and the current
architecture is too far off in its development to move to this goal.

* New policy models require too much development effort for integration with the Policy GUI. The long term
oal was a platform that could ingest oI|C\t/:modeIs organically and not require any development work. The
oll_lc_y GfUI should be to interpret any TOSCA Model ingested and flexibly present a GUI for a user to create

policies from.

* Policy APl is not RESTful and acts more like database query rather than request for a Policy Decision. APl
also hardcodes types of policies that can be created which is not the long term goal for the architecture which
is to be able to create domains for policies and flexible import models for those domains.

» Policy API does not support Lifecycle m_anagtement for policies that are deployed such as modes and
retlrerr%?&]é.lThls additional requirement is better suited for the new proposed Policy Lifecycle API than the
curren :

C1 THELINUXFOUNDATION

Target Architecture (WIP)

[Portal] ,
Policy
Lifecycle
L 4 API
' Policy GUI

API Clients (CRUDD):
CLAMP, CLI, SDC Service
Distribution

API Clients acting as W
PEPs:
CLI, DCAE, OOF J

C1 THELINUXFOUNDATION

Full Detalls

See
https://wiki.onap.org/display/DW/The+ONAP+Policy+Framework

C1 THELINUXFOUNDATION

