
Custom Queries
This page will serve as a reference for how to use the AAI custom query interface and as a living
catalog of available custom queries.

• Before You Start!
• Getting Started with the Custom Query API

o API URI
o Optional Query Parameters
o Payload

• Available Queries

Before You Start!
It's important that you engage the AAI team before using these queries. We're are actively
evolving our schema, queries, and other things in AAI. Queries and query parameters may
change or be removed in the future. It's important that, at the very least, we know who is using
which queries so we can be cautious of changes in the future. And we can help you find the best
way to get the data you need.

Getting Started with the Custom Query API
To execute a custom query, a client will perform a PUT on the query API and include a payload
indicating the starting node and the query to be run. While the example below is for v9, this can
be called in any version v9 or higher. The version dictates which release's REST API version the
output will be based on.

API URI

PUT /aai/v$/query?format={format}

When calling the query API, the client must specify the output format as a query string. The
currently available output formats are below, along with examples. Click the Example Output to
expand.

count

Provides an count of the objects returned in the query.

Example Output
{
 "results": [
 {

 "generic-vnf": 4,
 "p-interface": 1,
 "vserver": 3,
 "service-instance": 1,
 "tenant": 1,
 "pserver": 1
 }
]
}

id

Provides an array of objects containing resource-type (AAI's node type; i.e., generic-vnf) and a
resource-link using the vertex ID from AAI's graph.

Example Output
{
 "results": [
 {
 "resource-type": "generic-vnf",
 "resource-link": "/aai/v9/resources/id/2388112"
 },
 {
 "resource-type": "generic-vnf",
 "resource-link": "/aai/v9/resources/id/4694112"
 },...]

}

pathed

Provides an array of objects containing resource-type (AAI's node type; i.e., generic-vnf) and a
resource-link using the AAI REST API pathed URIs.

Example Output
{
 "results": [
 {
 "resource-type": "generic-vnf",
 "resource-link": "/aai/v9/network/generic-vnfs/generic-vnf/lab20105v"
 },
 {
 "resource-type": "generic-vnf",
 "resource-link": "/aai/v9/network/generic-vnfs/generic-vnf/ro-stack01"
 },...]

}

resource

Provides the each object in the results array in the same format as AAI's REST API with depth =
1 (first level children and cousin relationships).

Example Output
{
 "results": [
 {
 "complex": {
 "physical-location-id": "complex5349-06",
 "complex-name": "complexsa-test",
 "resource-version": "1485403105490",
 "physical-location-type": "POP",
 "street1": "1111 Main Street",
 "city": "Anywhere",
 "state": "CA",
 "postal-code": "90210",
 "country": "USA",
 "region": "USA",
 "latitude": "34.07",
 "longitude": "-118.40",
 "relationship-list": {
 "relationship": [
 {
 "related-to": "pserver",
 "related-link": "https://aai.onap:8443/aai/v9/cloud-
infrastructure/pservers/pserver/pserver5349-06",
 "relationship-data": [
 {
 "relationship-key": "pserver.hostname",
 "relationship-value": "pserver5349-06"
 }
],
 "related-to-property": [
 {
 "property-key": "pserver.pserver-name2"
 }
]
 }
]
 }
 }
 },...]

}

resource_and_url

Provides each object in the results array in the same format as AAI's REST API with depth = 1
(first level children and cousin relationships) plus the pathed url for the result object in AAI.

Example Output
 {
 "results": [
 {
 "url": "https://aai.onap:8443/aai/v10/cloud-
infrastructure/complexes/complex/MSCWRUGY",
 "complex": {

 "physical-location-id": "MSCWRUGY",
 "complex-name": "arumscw2",
 "resource-version": "1486837035912",
 "physical-location-type": "",
 "street1": "UL. 8-MARTA - BLDG 14",
 "city": "MOSCOW",
 "state": "RU",
 "postal-code": "0",
 "country": "RUS",
 "region": "EMEA"
 }
 },...]
}

simple

Provides each result object in a simplified format. The node-type, graph vertex id, pathed url,
object properties, and directly related objects in the graph are all returned. Both direct
parent/child objects and cousin objects are included in the related-to array.

Example Output
{
 "results": [
 {
 "id": "739696712",
 "node-type": "generic-vnf",
 "url": "https://aai.onap:8443/aai/v10/network/generic-
vnfs/generic-vnf/85f60b5e-6eff-49c8-9a79-550ee9eb4806",
 "properties": {
 "vnf-type": "WX",
 "service-id": "d7bb0a21-66f2-4e6d-87d9-9ef3ced63ae4",
 "equipment-role": "UCPE",
 "orchestration-status": "created",
 "management-option": "ONAP",
 "ipv4-oam-address": "12.80.1.20",
 "ipv4-loopback0-address": "32.40.70.237",
 "nm-lan-v6-address": "2001:1890:e00e:fffe::1:2806",
 "management-v6-address": "2001:1890:e00e:fffd::773",
 "vcpu": 4,
 "vmemory": 8,
 "vmemory-units": "GB",
 "vdisk": 150,
 "vdisk-units": "GB",
 "in-maint": false,
 "is-closed-loop-disabled": false,
 "resource-version": "1499958805125",
 "vnf-id": "85f60b5e-6eff-49c8-9a79-550ee9eb4806",
 "vnf-name": "USUCP5PHLPA0703UJWX01"
 },
 "related-to": [
 {
 "id": "739700808",
 "node-type": "license",

 "url": "https://aai.onap:8443/aai/v10/network/generic-
vnfs/generic-vnf/85f60b5e-6eff-49c8-9a79-550ee9eb4806/licenses/license/VCX-
SUB-00755-M/VCX-SUB-00755-M-TAG-20161206-81"
 },
 {
 "id": "411750576",
 "node-type": "service-instance",
 "url":
"https://aai.onap:8443/aai/v10/business/customers/customer/nFOD_GLOB_57829499
9/service-subscriptions/service-subscription/uCPE-VMS/service-
instances/service-instance/USUCP5PHLPA0703UJZZ01"
 },
 {
 "id": "15372328",
 "node-type": "vnf-image",
 "url": "https://aai.onap:8443/aai/v10/service-design-and-
creation/vnf-images/vnf-image/78252548-efb6-4b42-9cf7-2b3900c5e7e2"
 },
 {
 "id": "700920024",
 "node-type": "vserver",
 "url": "https://aai.onap:8443/aai/v10/cloud-
infrastructure/cloud-regions/cloud-
region/owner1/region1/tenants/tenant/USUCP5PHLPA0703UJZZ01%3A%3AuCPE-
VMS/vservers/vserver/a6085509-8da5-4f26-8f0f-a82739743b88"
 }
]
 }
]
}

Walking back through relationships in the simple format:

Let's say you got back a large tree of output in the simple format and need to go through the list
of objects to understand their relationships. For example, the output returned vnfs, vservers,
pservers and complexes but you want to only look at the results of a particular complex. First,
we'll find the JSON object for the complex by looking at the result objects for one with "node-
type": "complex" and "physical-location-id": (the CLLI of the location you want to filter on)
within the "properties" object. Next you would check the "related-to" object array for objects
with "node-type": "pserver", take the "id"s and search for objects with those IDs in the results
object array. You can keep crawling through the results in this way until you reach the objects
you need. You can use this method for any property you want to filter on.

{
 "results": [
 ...,
 {
 "id": "14147624",
 "node-type": "complex",
 "url": "https://aai.onap:8443/aai/v10/cloud-
infrastructure/complexes/complex/STLSMO0901",
 "properties": {
 ...
 "physical-location-id": "STLSMO0901",

 ...
 },
 "related-to": [
 {
 "id": "2134056",
 "node-type": "pserver",
 "url": "https://aai.onap:8443/aai/v10/cloud-
infrastructure/pservers/pserver/USUCP6CMIIL0237UJZZ01"
 },
 {
 "id": "2158632",
 "node-type": "pserver",
 "url": "https://aai.onap:8443/aai/v10/cloud-
infrastructure/pservers/pserver/USBARUBCTIL0118UJZZ01"
 },...
]
 },...
]
}

graphson

Provides the results using the graphson standard.

Example Output
 {
 "id": 2213998664,
 "label": "vertex",
 "outE": {
 "hasInstance": [
 {
 "id": "38lint5-10m5oaw-8ph-z88l3c",
 "inV": 2130153672,
 "properties": {
 "SVC-INFRA": "OUT",
 "prevent-delete": "NONE",
 "delete-other-v": "NONE",
 "contains-other-v": "NONE"
 }
 }
],
 "runsOnVserver": [
 {
 "id": "38lio7d-10m5oaw-15w5-11yxuso",
 "inV": 2295935016,
 "properties": {
 "prevent-delete": "NONE",
 "SVC-INFRA": "OUT",
 "delete-other-v": "NONE",
 "contains-other-v": "NONE"
 }
 }
]
 },
 "properties": {

 "aai-last-mod-ts": [
 {
 "id": "38lijgp-10m5oaw-2rk5",
 "value": 1499913739139
 }
],
 "service-id": [
 {
 "id": "38lilft-10m5oaw-1czp",
 "value": "d7bb0a21-66f2-4e6d-87d9-9ef3ced63ae4"
 }
],
 "vnf-id": [
 {
 "id": "38lik95-10m5oaw-6uit",
 "value": "2d42aa64-c3e6-455b-af80-d9cc94247dc6"
 }
],
 "aai-uri": [
 {
 "id": "38liia1-10m5oaw-kw79",
 "value": "/network/generic-vnfs/generic-vnf/2d42aa64-
c3e6-455b-af80-d9cc94247dc6"
 }
],
 "prov-status": [
 {
 "id": "38lilu1-10m5oaw-afb9",
 "value": ""
 }
],
 "equipment-role": [
 {
 "id": "38lim89-10m5oaw-agw5",
 "value": ""
 }
],
 "aai-created-ts": [
 {
 "id": "38ligp5-10m5oaw-c3d1",
 "value": 1499913739138
 }
],
 "source-of-truth": [
 {
 "id": "38ligax-10m5oaw-4kcl",
 "value": "SDNC"
 }
],
 "vnf-type": [
 {
 "id": "38lil1l-10m5oaw-9og5",
 "value": "SW"
 }
],
 "aai-node-type": [
 {

 "id": "38liio9-10m5oaw-1n9h",
 "value": "generic-vnf"
 }
],
 "orchestration-status": [
 {
 "id": "38limmh-10m5oaw-bjlx",
 "value": "Created"
 }
],
 "in-maint": [
 {
 "id": "38lin0p-10m5oaw-3sp1",
 "value": false
 }
],
 "resource-version": [
 {
 "id": "38lij2h-10m5oaw-6io5",
 "value": "1499913739139"
 }
],
 "last-mod-source-of-truth": [
 {
 "id": "38lijux-10m5oaw-79j9",
 "value": "SDNC"
 }
],
 "is-closed-loop-disabled": [
 {
 "id": "38linex-10m5oaw-6net",
 "value": false
 }
],
 "vnf-name": [
 {
 "id": "38liknd-10m5oaw-85xh",
 "value": "USMSOADOMIL0186UJSW01"
 }
]
 }
 },...]
}

Optional Query Parameters

You can pass a depth query parameter on the resource or resource_and_url formats to indicate
what level of child objects you want returned. By default the output will be depth = 1 (first level
children).

PUT /aai/v$/query?format={resource OR resource_and_url}&depth=0

You can pass a nodes only query parameter to have the output only contain the object properties
with no relationships. By default the output will be of depth = 1 (first level children and cousin
relationships).

PUT /aai/v$/query?format={format}&nodesOnly=true

You can pass a subgraph query parameter that determines the behavior of the output. By default,
a query returns all of the objects from the query and all of their relationships. Using
subgraph=prune returns all of the objects from the query and only the edges between those
objects. Using subgraph=star returns all of the objects from the query plus all of the objects they
relate to.

PUT /aai/v$/query?format={format}&subgraph={subgraph}

Payload

Typically the query payload will include both a "start" and a "query" portion. The "start" can
indicate one or more starting nodes in the graph. If multiple nodes are specified, the result will
contain the query results for all of the start nodes. The "query" indicates the name of the query to
be run and also takes query parameters depending on the query. Please reference the page for
each specific saved query for how it should be used, but keep in mind that any URI can be used
in the start parameter as long as it provides the same object types. Note: The start URI must
adhere to standard percent-encoding rules to properly account for special characters.

{
 "start" : ["{namespace}/{resource}"],
 "query" : "query/{query-name}"
}

There also the option to pass a "start" to the query API with no specified query. This will return
the input node(s) in the format requested.

{
 "start" : ["{namespace}/{resource}"]
}

Available Queries

access-service-fromServiceInstance
The "access-service-fromServiceInstance" query allows a client to provide AAI a global-
customer-id a service-type for a service-subscription, and a service-instance-id to retrieve
service-subscription, customer, forwarding-path, configuration, evc, forwarder, forwarder-evc, p-
interface, pnf, lag-interface, and logical-link of link-type LAG.

Input:

global-customer-id

service-subscription

service-instance-id

Output:

service-subscription

customer

forwarding-path

configuration

evc

forwarder

forwarder-evc

p-interface

pnf

lag-interface

logical-link (of link-type LAG)

availabilityZoneAndComplex-
fromCloudRegion
The "availabilityZoneAndComplex-fromCloudRegion" query allows a client to provide AAI
a cloud-owner and cloud-region-id to retrieve the availability-zones and complex.

Input:

cloud-owner

cloud-region-id

Output:

availability-zones

complex

cloud-region-and-source-FromConfiguration
The "cloud-region-and-source-FromConfiguration" query allows a client to provide AAI
with a configuration-id and retrieve the source cloud-region and source vnf..

Query needs to be submitted using format=simple&nodesOnly=true

Input:

configuration-id

Output:

cloud-region

generic-vnf (source vnf)

cloudRegion-fromCountry
The "cloudRegion-fromCountry" query allows a client to provide AAI with a country and
retrieve all appropriate cloud-regions.

Input:

country

Output:

cloud-region

cloudRegion-
fromCountryCloudRegionVersion

The "cloudRegion-fromCountryCloudRegionVersion" query allows a client to provide AAI
with a country code and cloud-region-version and returns the appropriate cloud-regions.

Input:

country

cloud-region-version

Output:

cloud-region

cloudRegion-fromNfType
The "cloudRegion-fromNfType" query allows a client to provide AAI with an nf-type and
returns the cloud-regions running those vnfs.

Input:

nf-type

Output:

cloud-region

cloudRegion-fromNfTypeVendorVersion
The "cloudRegion-fromNfTypeVendorVersion" query allows a client to provide AAI with an
nf-type, application-vendor, and optional application-version and retrieve the cloud-regions.

Input:

nf-type

application-vendor

optional application-version

Output:

cloud-region

cloud-region-fromVnf
The "cloud-region-fromVnf" query allows a client to provide AAI with a vnf-id and retrieves
the tenant, cloud-region, and cloud-owner.

Input:

vnf-id

Output:

vserver

vnfc

tenant

cloud-region

cloud-region-sites
The "cloud-region-sites" query allows a client to provide AAI with a cloud-owner and retrieves
the cloud-regions having that owner and all of the complexes containing those cloud-regions.

Input:

cloud-regions

The set of cloud-regions is determined by the cloud-owner.

Output:

the cloud-regions

the complexes

colocated-devices
The "colocated-devices" query allows a client to provide AAI a physical server and retrieves all
other physical devices in the same location along with details on their physical interfaces and
links.

Input:

pserver

Output:

pservers

pnfs

p-interfaces

physical-links

complex-fromVnf
The "complex-fromVnf" query allows a client to provide AAI a vnf name or ID to retrieve the
generic-vnf, pserver, complex, licenses, and entitlements.

Input:

vnf name or vnf ID

Output:

generic-vnf

pserver

complex

licenses

entitlements

count-vnf-byVnfType
The "count-vnf-byVnfType" query allows a client to get a list of the number of generic-vnfs
for each vnf type.

Format must be set to "console", otherwise no data will be displayed.

Input:

None

Output:

vnf-types = count of generic-vnfs

destination-FromConfiguration
The "destination-FromConfiguration" query allows a client to provide AAI with a
configuration-id and retrieve the destination vnf or pnf..

Query needs to be submitted using format=simple&nodesOnly=true

Input:

configuration-id

Output:

pnf

generic-vnf (destination vnf)

fabric-information-fromVnf
The fabric-information-fromVnf query will retrieve fabric information for a given VNF.

Input:

generic-vnf

Output:

vserver, p-interface, pserver, vlan-tag

fn-topology
The "fn-topology" query allows a client to provide AAI service-instance-id or line-of-business-
name then return vnf, vnfc, vserver, pserver, pnf.

Input:

service-instance-id OR line-of-business-name

Output:

vnf, vnfc, vserver, pserver, pnf

generic-vnfFromModelbyRegion
The "generic-vnfFromModelbyRegion" query allows a client to provide AAI with a global-
customer-id, service-type, model parameters, and cloud-region-id and retrieves the related
generic-vnfs.

Input:

global-customer-id

service-type

model-version-id

model-invariant-id

cloud-region-id

Output:

generic-vnf

getNetworks
The getNetworks query will retrieve l3-networks for a given network-role, cloud-region and
owning-entity

Input:

network-role of l3-network

cloud-region-id where the l3-network resides

owning-entity-id of the service instance running on the l3-network

Output:

l3-network

getNetworksByServiceInstance
The "getNetworksByServiceInstance" query allows a client to return provider networks with
associated vlan-tags and tenant networks with associated vlan-tags by service-instance-id.

Input:

service-instance-id

Output:

l3-network, vlan-tag

getServiceTopology
The "getServiceTopology" query allows a client to provide AAI with a service-instance and
retrieve the generic-vnfs, vlans, vservers, l-interfaces, pservers, complexes, and allotted-
resources. It then finds any service-instances attached to the allotted-resources and retrieves the
above values for those service-instances except for pservers, complexes, and allotted-resources.
The client must provide a path to the service-instance from customer and service-subscription.

This query is meant to replace the named query "dhv-service-topology-2". The format closest to
this original query can be found with format=simple&depth=0&nodesOnly=true

Input:

service-instance (full path starting from customer and service-subscription)

Output:

service-instance

generic-vnf

l-interface

vlan

l3-interface-ipv4/6-address list

vserver

pserver

complex

allotted-resource

service-instance (from allotted-resources)

images-fromCloudRegionNfType
The "images-fromCloudRegionNfType" query allows a client to provide AAI with a cloud-
region-id and nf-type and retrieve all related images.

Input:

cloud-region-id

nf-type

Output:

image

instance-group-byCloudRegion
The "instance-group-byCloudRegion" query allows the user to get all instance-groups by
cloud-region-id and filter by instance-group type/role/function.

Input:

cloud-region

instance-group type, role and function

Output:

instance-group

ips-networks-fromVnf

The "ips-networks-fromVnf" query allows a client to provide AAI one or more VNFs and
retrieve various data all associated VIP and fixed IPs and their related networks.

Input:

generic-vnf

Output:

the generic-vnf

the related vnfs and their related vip-ipv4/6-address-list and l3-interface-ipv4/6-address-list

the related vservers and their related l3-interface-ipv4/6-address-list

the l3-networks related to all of the address lists

the related complex

l3-networks-by-cloud-region-network-role
The "l3-networks-by-cloud-region-network-role" query retrieves l3-networks for a given
cloud-region-id, tenant.tenant-id (Optional) and network-role.

Input:

cloud-region

network-role

Output:

l3-network

linked-devices
The "linked-devices" query allows a client to provide AAI a generic-vnf, vserver, or newvce
and retrieve all connected generic-vnfs, vservers, and newvces.

Input:

generic-vnf, vserver, or newvce

Output:

all connected generic-vnfs, vservers, and newvces

locationNetTypeNetRole-fromCloudRegion
The "locationNetTypeNetRole-fromCloudRegion" query allows a client to provide AAI with
a cloud-region-id and returns the cloud-region, complex, and l3-networks.

Input:

cloud-region-id

Output:

cloud-region

complex

l3-network

network-collection-ByServiceInstance
The "network-collection-ByServiceInstance" query

Query to return the service-instance and associated collection, instance-group and associated l3-
networks for a given service-instance-id.

Input:

service-instance

Output:

Service-instance and associated collection, instance-group and l3-networks for a given service-
instance-id.

network-name-fromNetwork-role
The " network-name-fromNetwork-role" query allows a client to provide AAI with a cloud-
owner and cloud-region-id and retrieves the related l3-networks and network-policies.

Input:

network-role

cloud-region

cloud-owner

Output:

l3-network

network-policy

nfType-fromCloudRegion
The "nfType-fromCloudRegion" query allows a client to provide AAI with a cloud-region-id
and returns a list of all generic-vnfs with an nf-type.

Input:

cloud-region-id

Output:

nf-type

owning-entity-fromService-instance
The "owning-entity-fromService-instance" query allows a client to provide AAI with a service-
instance-id and retrieves the owning-entity.

Input:

service-instance-id

Output:

owning-entity

pending-topology-detail

The "pending-topology-detail" query allows a client to provide AAI a generic as input and
returns the generic-vnf, platform(s), line(s)-of-business, owning-entity, project, vnfc(s), vnfc ip
address(es), vip ip addresses subnet(s), and l3-networks.

Input:

generic-vnf

Output:

generic-vnf

platform

line-of-business

owning-entity

project

vnfc

vnfc, vnfc.l3-interface-ipv4/6-address-list

vip-ipv4/6-address-list

subnet, l3-network

pnf-fromModel-byRegion
The "pnf-fromModel-byRegion" query allows a client to provide AAI with a cloud-region,
equip-vendor, equip-model, model-invariant-id of service-instance, model-version-id of service-
instance and retrieves the pnf.

Input:

cloud-region

equip-vendor

equip-model

model-invariant-id of service-instance

model-version-id of service-instance

Output:

pnf

pnf-topology
The "pnf-topology" query allows a client to provide AAI a D1 Device, using the hostname, and
retrieve data related to that device and its connected uCPE and/or other D1 device. This includes
data about the D1 device itself (the pnf, and location) as well as about a connected uCPE (the
pserver, interfaces and physical links used for the connection) and/or other D1 device (the pnf,
interfaces and physical links used for the connection).

Input:

pnf

Using pnf.pnf-name to identify the pnf is preferred.

Output:

the pnf

related complex

related p-interface(s), physical-links(s), pserver(s) and pserver p-interface(s), and/or pnf(s) and
pnf p-interface(s)

pserver-fromConfiguration
The "pserver-fromConfiguration" query allows a client to provide AAI with a configuration-
id and retrieves the configuration and related l-interfaces, pservers, and generic-vnfs.

Input:

configuration-id

Output:

l-interface

pserver

generic-vnf

pnf

pserver-fromConfigurationFilterInterfaceId
The "pserver-fromConfigurationFilterInterfaceId" query allows a client to provide AAI with
a configuration-id and interface-id and retrieves the configuration, l-interface, and related
pservers, and generic-vnfs.

Input:

configuration-id

interface-id

Output:

configuration

l-interface

pserver

generic-vnf

pservers-fromVnf
The "pservers-fromVnf" query allows a client to provide AAI a vNF and retrieve all of the
pservers hosting that vNF.

Input:

generic-vnf

Output:

pserver

pservers-withNoComplex
The "pservers-withNoComplex" query allows a client to get a list of pservers that have no edge
to any complex.

Format must be set to "console", otherwise no data will be displayed.

Input:

None

Output:

pserver

related-to
The "related-to" query allows a client to provide AAI any starting node and request all related
nodes of a requested node-type.

Input:

A start node of any single node-type

A related to parameter value of any single node-type, related to the starting node type. (Providing
a node-type not related to the starting type will result in an error)

Output:

The related to node-type

service-fromPserverandSubsName
The "service-fromPServerandSubsName" query allows a client to provide AAI a hostname
and subscriber name, then return service instance and service subscription information.

Input:

hostname and subscriber-name

Output:

service-instance and service-subscription

serviceModels-byDistributionStatus
The "serviceModels-byDistributionStatus" query allows a client to provide AAI with a
distribution-status and optional model-invariant-id and retrieve the model and model-ver.

Input:

distribution-status

Optional model-invaraint-id

Output:

model

model-ver

service-sites
The "service-sites" query allows a client to provide AAI a service type and a customer id to
retrieve the service-instances, cloud regions, generic-vnfs, and complexes.

Input:

Service type

Customer ID

Output:

all attributes of the following vertices:

service-instance, cloud region, generic-vnf, complex

service-topology
The "service-topology" query allows a client to provide AAI with a service-instance and
retrieve the generic-vnfs, connected tenants, vservers, vnfcs, pservers, and their interfaces.

This query is intended to use with format=resource_and_url and depth=0, using the node urls to
identify parent-child relationships.

Input:

service-instance

Output:

service-instance

generic-vnf

tenant

vserver

vnfc

l-interface

l3-interface-ipv4/6-address list

subnet

l3-network

pserver

p-interface

physical-link

site-l3network-cloudRegion
The "site-l3network-cloudRegion" query allows a client to provide AAI with a physical-
location-id and returns the network-role, country, cloud-region-id and cloud-region-version in
that location.

Input:

physical-location-id

Output:

network-role

country

cloud-region-id

cloud-region-version

sites-byCloudRegionId
The "sites-byCloudRegionId " query allows a client to provide AAI with a cloud-region-id and
an optional cloud-region-version and returns the appropriate complexes.

Input:

cloud-region-id

optional cloud-region-version

Output:

complex object(s)

sites-byCountryFilterCloudRegionId
The "sites-byCountryFilterCloudRegionId" query allows a client to provide AAI with a 3-
digit country code and cloud-region-id to retrieve the appropriate complexes.

Input:

country code

cloud-region-Id

Output:

complex object(s)

sites-byCountryFilterCloudRegionVer
The "sites-byCountryFilterCloudRegionVer" query allows a client to provide AAI with a 3-
digit country code and cloud-region-version number to retrieve the appropriate complexes.

Input:

country code

cloud-region-version

Output:

complex object(s)

so-request-vfModule
The "so-request-vfModule" query allows a client to provide AAI a vf-module then return all
the reference objects needed to send MSO an orchestration request.

Input:

vf-module

Output:

vf-module

generic-vnf

service-instance

volume-group

cloud-region

spaas-topology-fromServiceInstance
The "spaas-topology-fromServiceInstance" query allows a client to provide AAI global-
custom-id and service-type, then return vertical topology for overlay and underlay information.

Input:

global-custom-id service-type

Output:

vserver, flavor, image, l-interface, logical-link, l3-interface-ipv4(6)-address-list, subnet, l3-
network, pserver, complex, physical-link

topology-detail

The "topology-detail" query allows a client to provide AAI a generic-vnf as input and returns
the generic-vnf, platform(s), line(s)-of-business, owning-entity, project, vnfc(s), vserver(s),
vserver l-interface(s), ip address(es), subnet(s), l3-networks, cloud-region and complex.

Input:

generic-vnf

Output:

generic-vnf

platform

line-of-business

owning-entity

project

vnfc

vserver, vserver.l-interface, vserver.l-interface.l3-interface-ipv4/6-address-list

subnet, l3-network

cloud-region

complex

topology-detail-fromVnf
The "topology-detail-fromVnf" query allows a client to provide AAI with a service-id of a
VNF and retrieve various data related to that VNF. This includes data about the VNF itself (the
generic-vnf), the related vnfc, the related vserver (along with the tenant, cloud-region, image and
flavor) and the related pserver (along with the complex) as done in the topology-summary query.
In addition, this query returns availability-zone, service-instance, l-interface, l3-interface-ipv4-
address-list, l3-interface-ipv6-address-list, and volume-group.

Input:

generic-vnf service-id.

Output:

generic-vnf

vnfc

vserver, tenant, cloud-region, image, flavor

pserver, complex

availability-zone

service-instance

l-interface

l3-interface-ipv4-address-list

l3-interface-ipv6-address-list

volume-group

topology-detail-fromVserver
The "topology-detail-fromVserver" query allows a client to provide AAI a vserver as input
and returns the generic-vnf, platform(s), line(s)-of-business, owning-entity, project, vnfc(s),
vserver(s), vserver l-interface(s), ip address(es), subnet(s), l3-networks, cloud-region and
complex. Updated in 1806 to return the following additional objects: pserver, availability-zone,
tenant, image, flavor, virtual-data-center, vf-module, and volume-group.

Input:

vserver

Output:

generic-vnf

platform

line-of-business

owning-entity

project

vnfc

vserver, vserver.l-interface, vserver.l-interface.l3-interface-ipv4/6-address-list

subnet, l3-network

cloud-region

complex

pserver

availability-zone

tenant

image

flavor

virtual-data-center

vf-module

volume-group

topology-fromCloudRegionIdandServiceId
The "topology-fromCloudRegionIdandServiceId" query allows a client to provide AAI cloud-
owner, cloud-region-id and service-id, then return topology related to the service id.

Input:

cloud-owner cloud-region-id service-id

Output:

service-instance, vserver, flavor, image, volume, vnfc, snapshot, vf-module, l-interface, logical-
link, l3-interface-ipv4(6)-address-list, subnet, l3-network

topology-summary
The "topology-summary" query allows a client to provide AAI one or more VNFs and retrieve
various data related to that VNF. This includes data about the VNF itself (the generic-vnf), the
related vnfc, the related vserver (along with the tenant, cloud-region, image and flavor) and the
related pserver (along with the complex).

Input:

generic-vnf

The original intent was to pass all generic-vnfs with a specified service-id.

(adding owning-entity, project, platform and line-of-business in 1810 as first step to depreciating
service-id)

Output:

the generic-vnf

related platform, line-of-business (1810)

related owning-entity, project (from related service-instance) (1810)

related vnfc

related vserver, tenant, cloud-region, image, flavor

related pserver, complex

topology-summary-fromCloudRegion
The "topology-summary-fromCloudRegion" query allows a client to provide AAI a cloud
region and retrieve a summary of the topology within that cloud region including the tenants,
VMs, VNFs and physical servers.

Input:

cloud-region

Note: In the interest of performance, it is highly recommended to run this query for only one
cloud-region at a time.

Output:

cloud-region

tenants

vservers

generic-vnfs

pservers

topology-summary-fromTenant
The "topology-summary-fromTenant" query allows a client to provide AAI a tenant and
retrieve a summary of the topology within that tenant including VMs, VNFs and physical servers
and the containing cloud region.

Input:

tenant

Output:

tenant

cloud-region

vservers

generic-vnfs

pservers

ucpe-instance
The "ucpe-instance" query allows a client to provide AAI a physical server or physical network
device, using the hostname, and retrieve the device and the complex it is located in. This
includes the pserver or pnf itself and the complex.

Input:

pserver or pnf

Using pserver hostname or pnf pnf-name to identify the starting node is preferred.

Output:

the pserver or pnf

related complex

ucpe-topology

The "ucpe-topology" query allows a client to provide AAI a uCPE physical server, using the
hostname, and retrieve various data related to that uCPE. This includes data about the uCPE
itself (the pserver, location, interfaces, hosted vnfs, service instances, service subscriptions and
customer) as well as about a connected physical D1 device (the pnf, interfaces and physical
links).

Input:

pserver

Using pserver.hostname to identify the pserver is preferred.

Output:

the pserver

related complex

related p-interface(s), physical-links(s), pnf(s) and pnf p-interface(s)

related generic-vnf(s), vnf-image(s), service-instance(s), service-subscription(s) and customer

vfModule-fromServiceInstance
The "vfModule-fromServiceInstance" query allows a client to provide AAI a service-instance-
id to retrieve vf-module only.

Input:

service-instance-id

Output:

vf-module

vnf-instances-
fromServiceInstancebyModelVersion
The "vnf-instances-fromServiceInstancebyModelVersion" query allows a client to provide
AAI a list of service-instances for a customer and service-type and return the generic-vnfs using
a particular model-version-id.

Input:

service-instances

filters for generic-vnf vnf-type and model-version-id

Output:

generic-vnf(s)

vnfs-fromPserver
The "vnfs-fromPserver" query allows a client to provide AAI with a pserver hostname and
retrieve the generic-vnfs related to it. This query also supports pre-filtering the vnf results.

Input:

pserver hostname

optional generic-vnf properties

Output:

generic-vnfs

vnfs-fromServiceInstance
The "vnfs-fromServiceInstance" query allows a client to provide AAI a service-instance and
retrieve the related VNFs.

Input:

service-instance

Output:

generic-vnf

vnfs-vlans-fromServiceInstance
The "vnfs-vlans-fromServiceInstance" query allows a client to provide AAI a service-instance
id, then return associated vnfs and corresponding VLAN ID assignment information for each
VNF that is associated to the VNF.

Input:

service-instance

Output:

generic-vnf

vlan

vnf-topology-fromServiceInstance
The "vnf-topology-fromServiceInstance" query allows a client to provide AAI a service-
instance and retrieve much of the topology related to it. The related VNF, vservers and pserver,
along with any IP addresses and l3-networks on the VNF or vserver, the service-instance and
allotted-resource, the tenant and cloud region.

In 1810 this custom query is modified to add provider, tenant networks

Input:

service-instance

Output:

generic-vnf all related vf-modules, service-instance, configuration, customer, allotted-
resource(s), generic-vnf.l3-interface-ipv4-address-list, generic-vnf.l3-interface-ipv6-address-list,
l3-network (vlan-tag), all related vservers, tenant, cloud-region, vserver.l3-interface-ipv4-
address-list, vserver.l3-interface-ipv6-address-list, l3-network, and pserver

vnf-topology-fromVfModule
The "vnf-topology-fromVfModule" query allows a client to provide AAI a vf-module and
retrieve much of the topology related to it. The related VNF, vservers and pserver, along with
any IP addresses and l3-networks on the VNF or vserver, the service-instance and allotted-
resource, the tenant and cloud region.

Input:

vf-module

Output:

generic-vnf all related vf-modules, service-instance, customer, allotted-resource(s), generic-
vnf.l3-interface-ipv4-address-list, generic-vnf.l3-interface-ipv6-address-list, l3-network, all
related vservers, tenant, cloud-region, vserver.l3-interface-ipv4-address-list, vserver.l3-interface-
ipv6-address-list, l3-network, and pserver

vnf-topology-fromVnf
The "vnf-topology-fromVnf" query allows a client to provide AAI a generic-vnf and retrieve
much of the topology related to it. The related VNF, vservers and pserver, along with any IP
addresses and l3-networks on the VNF or vserver, the service-instance and allotted-resource, the
tenant and cloud region.

Input:

generic-vnf

Output:

generic-vnf all related vf-modules, service-instance, service-subscription, customer, allotted-
resource(s), generic-vnf.l-interface, l3-network, vservers, tenant, cloud-region, vserver.l-
interface, l-interface.l3-interface-ipv4-address-list, l-interface.l3-interface-ipv6-address-list, l3-
network, and pserver

vserver-fromInstanceGroup
The "vserver-fromInstanceGroup" query allows a client to provide AAI a instance-group.id to
retrieve VNF and vserver information.

Input:

id

Output:

generic-vnf

vserver

vserver-fromVnf
The "vserver-fromVnf" query allows a client to provide AAI with a vnf-id and nfc-function of
the vnfc and retrieves the vserver, vnfc, and l-interface.

Input:

vnf-id

nfc-function

Output:

vserver

vnfc

l-interface

vserverlogicallink-frompServer
The "vserverlogicallink-frompServer" query allows a client to provide AAI a hostname, then
return logical link of vserver from the compute node.

Input:

hostname

Output:

logical-link object

vservers-fromPserver-tree
The "vservers-fromPserver-tree" query allows a client to provide AAI one or more pservers
and retrieve each pserver with the vservers it hosts nested under it in the output.

Input:

pserver

Output:

pserver

vserver

