

Network Edge structure, latency &
ONAP services Considerations

Pasi Vaananen, Red Hat

30 May, 2018

Outline

• Network Structure and its implications

• Why stuff is required in / near the edge

• Latency basics

• Latency components

• Latency by process – application vs. control / management

• Work divisions Application / VIM / ONAP

• FM/AvM example

• ONAP and “real-time” operations & control loops

• What to distribute

• Recap / Takeways

Generic Network Structure

~10..100k’s

~1’s

~10’s

~100’s

~1k’s

E2: Access
Termination/Services

E1: Access

E3: Metro
Aggregation/Services

C1:
Regional DC

C2:
Core DC

U1: Cust. Sites

U0: Cust. Equipment

• Telcos: Cu(xDSL)Shorter CuxPON
• CableCos: Cu(HFC) Shorter CuxPON
• Fixed Wireless (solve last drop cost)
• L2 in access network (ELINE, ETREE)
• Services mostly over IP (typ NAT’ed)
• IP Multicast in access network (Video)
• Voice (VoIP/POTS), Video, Data
• CPEs: NIDs, STBs, WAPs, routers
• Complex @home networks

• Wireless preferred
• Coax: MoCA; twisted pair: xDSL
• Structured Cu: Ethernet

• 1’s to 10’s Millions locations

•Cu  Optical (xPON, ptpt, WDM)
•L2 (ELAN, ETREE, ELINE) & L2.5 (MPLS) access network
•L3 (IP – public & private; SD-WAN overlays)
•QoS / SLA guarantees  OAM
•Voice, Security, …
•CPEs  vCPEs (thin, thick)
•Typ. Wireless & Ethernet mix. @premises
•100k’s to Million+ locations

• 4G  5G
• ≤3Ghz + ≤6Ghz & ≥28+ Ghz
• Few large cells  +many small cells
• ELINE, ELAN;
• tight QoS/latency SLOs
• Data, Voice, SMS
• Services mostly over IP
• People: 10’s – 100M’s subscribers
• IoT: 100M’s of “things” (devices)

• Typically from core tiers
• Internet peering points
• Large customer connections
• Public cloud provider edge
• Network-Network interfaces (to peer operator

networks)
• All about speeds
• Publicly routable IP connectivity
• Optional services (e.g. On MPLS)
• Service interconnect / roaming with bi-lateral

agreements
• Transport services; simplicity & high speeds
• ≥100GBe; wavelength based services

Edge Tiers Core Tiers

lo

ca
ti

o
n

s/
ti

e
r

(/
o

p
e

r)

Edge tiers vs. access technologies overview

Metro
/ M-PoP Network
(IP/MPLS/Opt.)

Metro Aggregation &
Metro Services

Access Termination &
Access Services

Fixed Wireless
(WiFi, 5G,…)

Fixed Wireline
(Cu: xDSL, HFC

Optical: ptp, xPON)

Mobile RAN OSP
(4G, 5G)

Access

Edge
Aggregation /

E-PoP
Network

Customer Locations

Cust. Network
 (Ethernet, Wireless)

CPE

U0 U1 E1 E2 E3

Devices,
“Things”

≤20km [12.4mi], ≤100us optical fiber OWD

≤200km [124mi], ≤1ms optical fiber OWD

≤400km2 [154mi2] ≤40000km2 [15444mi2]

OpenStack options @edge (vRAN use cases)

Option 1: independent clusters
Fully Distributed OpenStack

R
C

#1
(R

T)

R
C

#2
(R

T)

R
C

#≤
N

R
(R

T)

Remote Server Pool

EN
#1

(R
T)

EN
#2

(R
T)

EN
##

N
E(

R
T)

EN
#3

(R
T)

Edge Server Pool

Fronthaul
(Network)

Full OpenStack

Full OpenStack

Mid | Backhaul
Network

Option 2: remote compute
Centralized OpenStack

R
C

#1
(R

T)

R
C

#2
(R

T)

R
C

#≤
N

R
(R

T)

Remote Server Pool

EN
#1

(R
T)

EN
#2

(R
T)

EN
##

N
E(

R
T)

EN
#3

(R
T)

Edge Server Pool

Fronthaul
(Network)

Full OpenStack

OpenStack
Remote
Nodes

Mid | Backhaul
Network

≤100us
≤20km
(CPRI,
eCPRI)

Option 3: hybrid of 1 and 2

R
C

#1
(R

T)

R
C

#2
(R

T)

R
C

#≤
N

R
(R

T)

[SMALL] Remote Server Pool

EN
#1

(R
T)

EN
#2

(R
T)

EN
##

N
E(

R
T)

EN
#3

(R
T)

Edge Server Pool

Fronthaul
(Network)

Full OpenStack

OpenStack
Remote
Nodes

R
C

#1
(R

T)

R
C

#2
(R

T)

R
C

#≤
N

R
(R

T)

[LARGE] Remote Server Pool

Full OpenStack

Mid | Backhaul
Network

≤2..5ms
≤200km

(typ. Req)

E1

E2

E3

1..50 1..50 Med: 51..200; Large 201-1500

Why move stuff towards the edge ?

• Moving towards the edge has three categories of reasons:
- Meeting constraints / reduction of latency (e.g. vRAN / low latency EC/MEC)

- Reduction of backhaul / transport bandwith (e.g. CDN close to customers)

- Distribution of load / improvement of resiliency (autonomy, smaller impact zones)

• Why NOT move stuff towards the edge ?
- Extreme moves start increasing the cost (smaller equipment, reduction /

elimination of pooling potential – ultimately “back to box” constraints)

- Moving too much can start have adverse consequences – e.g. moving CDN
servers too far start affecting the content cache hit rates to the level that it
becomes uneconomical

- If the latency is the driver, then move just as far “out” as required to satisfy the
latency constraints

• “Distribute what you can, centralize what you must”

Latency types

• Latency is always to be specified as a time between two reference
events, as observed at the specified reference measurement point(s)
- e.g. “10ms latency+ by itself does not specify anything…

• Main cases:
- Through latency (e.g. through the transmission channel, VNFCI, PE, …)
- Response time latency; time from req to corresponding resp (e.g. signaling

message pairs, msg res/ack, latency to “serve” something, …)

• Through latency component types:
- Unidirectional: one-way latency of specific path (One-Way-Delay, OWD)
- Bidirectional: Round Trip Time (RTT), composed of two uni-directional paths

(and responder latency – typically embedded on remotely observed resp. time
latency)

- Note that RTT component OWD paths and/or associated latencies are not
necessarily the same for both directions

Latency types illustration

Transit or
Middlebox
(DP) node

Session
Endpoint

or “Server”

Through Latency

Request - Response
Latency

Dest. Src.

Src.

Dest.

tIN tOUT

treq-IN

tresp-OUT

Source Tnode Destination

tNET1

tdest-Rx

tsrc-Tx

tIN

tOUT

tdest-Rx

Requester Tnode

treq-Tx

tresp-OUT

treq-IN
treq-Tx

tresp-Rx
tresp-Rx

Total Transaction Latency:
tresp-Rx - treq-Tx

NF Latency:
tresp-OUT - treq-IN

NF
Latency:
tOUT - tIN

Total One-Way Transfer
Delay (latency):
tdest-Rx - tsrc-Tx

Latency sensitivity (i.e. tolerance to added latency components) needs to be considered in the context of the

application type and total latency from endpoint’s view (either total transaction latency or transfer delay).

Note:
Externally observable latency MAY
include one or several external latency
contributors (e.g. external service calls
and associated networking latencies)

Example measurement ref. point locations

tsrc-Tx

tNET2

Path OWD; measurement requires accurate/synchronized clocks

RTT

Common component latencies

Latency Type Description Fixed/Variable Comments

Serialization /
Deserialization

Time to send / receive packet over
transmission channel

Fixed Depends on the transmission
rate of the channel

Coding Time to add / remove medium specific
codings

Typ. Fixed Esp. for noisy / low quality
channel using mechanisms
such as FEC

Channel access Time to gain access to transmission
channel after having PDU to transmit

Variable Applies to shared channels
(xPON, DOCSIS, wireless, …)

Transmission Propagation delay through the channel Fixed For single mode fiber,
~5us/km

Switching /
multiplexing

Latency through the switch elements Fixed (excl. queuing) Typ store and forward
latencies

Queuing Waiting time in queues Variable Depends on load

Processing Time to process a request / packet Fixed (excl.
scheduling / queuing)

May include external calls for
req-response transactions

BOLD: generally applicable to all NFV use cases, others are primarily associated with access networks

Management-Control Continuum (MCC) ?

Other than annoying
things like speed of light…

Notes:
• yes, the boundaries between management and control are getting increasingly intermixed / irrelevant
• no, it does not mean that they do not exist – performance and latency related constraints and implementation related
implications remain real (and in the many cases are reflected in the design of the associated interfaces etc.)

At least the document ack’s the
Basic facts

Source: TMF IG1118

https://www.tmforum.org/resources/exploratory-report/ig1118-oss-bss-futures-preparing-the-future-mode-of-operation-r14-5-1/

Common Application (VNF) level rates / latencies in NFV

Type Description Rate / Latency (per
interface or instance)

Comments

Management Plane
Operations

Management system driven changes 1k / O(ms’s-seconds) Typically ASCII / Restful
encodings on protocols / APIs

Control Plane
Operations

Protocol driven changes 10k-100k / O(ms’s) Typically binary encodings on
protocols

Flow level operations Traffic driven flow-level operations 100k-10M / O(us’s-ms’s) For each new traffic flow &
flow state retirement

Packet level operations
(e.g. VNF DP ops)

Time to process a single packet arrival 1M-100Mpps / O(ns-us’s) Run-to-completion process

• Arrival rates and processing latencies are related, but decoupled
• For control plane interactions, aggregate rates can be very high when user population originated (e.g. mobile network

interactions), typically less frequent for the network internal controls
• For packet level processing, while typically run-to completion, processing latency is determined by parallelism in SW (HW)

implementations (i.e. single thread performance is key determinant on single pkt level latency in SW)
• For control and esp. management plane processes, relationship is more complicated – includes both parallelism of the

serving process level but also potentially many other external component interactions as well (uServices)

Latency recap

• Latency has to be associated with SOMETHING i.e. scenario w/ reference points

• Application level latencies
- Primarily applications problem, but:
- Latency constrained VNF/VNFCI placement (e.g. how close to access an entity needs to be

placed) requires exposure to capability to place entities based on some latency constraints
- Above IMPLIES that there needs to be some information available about latency

characteristics within the system to be feasible
- Measured latencies: latency between reference points is based on active measurements by

the infrastructure elements (but ref. points may be outside of the managed scope in the worst
case – e.g. UE to eNB L1/L2 processing VM) !?

- Implied latencies: use topological relationships as a proxy (e.g max # nodes from…)

• Infrastructure / ONAP service latencies
- This should be the primary focus; related but decoupled from the application level latencies
- Need to get some ideas on targets in place to be able to do meaningful designs
- Depends on the service and scope (increasing scope while moving “up” on hierarchy, but also

increasing time)
- Focus on the control loop latencies first (loop tightening has lots of implications on component

service design and placement)

NFV System Dependencies (simplified view)

Facility Power Facility Cooling

Shared Storage Shared Network

NFVI System Fabric

NFVI Node Shared HW

NFVI Node Shared SW

NFVI Node Instance Specific SW

EMs / VNFs / VNF Component Instances

NFV Service Instances (VNFs)

Network Service Instances (VNFs+PNFs)

DCIM

Stor Mgmt Net Mgmt

Fabric (underlay) Mgmt

Compute, Network
(overlay), Storage Mgmt

G-VNFM / S-VNFMs

NFVO

E2EO

OSS + BSS Systems

G
e

n
e

ra
lly

: h
ig

h
e

r le
v
e

l e
n

titie
s
 d

e
p

e
n

d
 o

n
 th

e
 lo

w
e

r le
v
e

l e
n

titie
s

G
e

n
e

ra
lly

: in
c
re

a
s
in

g
 s

c
o

p
e

, in
c
re

a
s
in

g
 re

s
p

o
n

s
e

 tim
e

Managed Subsystem – Management Subsystem Dependency

Shared NFVI Services (supports many NFVI nodes) NFVI+VIM FM & AM

VIM subsystems NFVI Node Internal subsystems (ea. NFVI compute node) NFVI+VNF FM & AM

LCM overview

Pre-Deployment

Service

Devel.

Deploy

“Run-time” LCM Operations

Retire

Update/

Upgrade

Service Assurance Optimize:
Power,

Perf, SLA,

Location,

Scale, $,

…

Operators Operator (with Policy-Driven Automation)

Physical Infrastructure

Infrastructure SW

Components & Services

Virtualised Resource /

Component Instances

Virtualised SW Instances

VFs, VNFs; “CF”s, “CNF”s

Component

Service Instances

“End to End“ composite

Service Instances

Service Bundles,

Offers, “Slices”

Configuration Mgmt

Av. Flt. Perf.

SW+HW

Devel.

Providers

Config

(CRUD) Domain / Scope
CI/CD

Sec.

+

NFVI  BMaaS

VIM  IaaS

VNFM  PaaS

NFVI

NFVO

Yellow area:

Potential applicability of Policy Based

Management & Control Operations

FM/AvM timelines example – an operator survey

Source: Heavy Reading NFV operator survey of 128 service providers, “Telco Requirements for NFVI”, November 2016

79% ≤1sec

FM timelines example – ETSI REL / Verizon proposal

• “We assume that each High Availability (HA) layer depicted in Figure 1 has independent HA
mechanism (i.e. failure recovery). Therefore, each layer has its own failure recovery timer as
described below. The failure recovery time is the summation of the time for failure
identification and the time for switching from failed entity to the health entity.”

- The failure recovery time for INF-L1 is T11;

- The failure recovery time for VM-L is T2;

- The failure recovery time for VNF-L is T3;

- The failure recovery time for INF-L2 is T4; and

- The failure recovery time for CONNECTION-L is T5, where

- T11 <T4<T2<T3<T5 (EQ.1)”

• “EQ.1 may or may not hold all the time. The main objective here is to ensure that the timers
are configured such that there is no race condition among layers. In other words, there must
be adequate time gap between failure recovery timers of layers. These relationships
between timers are further explained in Figure 5.”

• “Time intervals between the timers above are desired to be within 100 msecs. Therefore, the
desired relationships among the timers are:

- T4=T11+100 msecs; T2=T4+100 msecs; T3=T2+100 msecs; T5=T3+100 msecs (EQ. 2)”

Notes:
• While the times and “layering” (i.e. dependencies) are subject to discussion, overall this contribution represents a good illustration of

the common general design pattern of coordinated multi-layer network recovery timing (“lowest layer first”).
• Source (Mehmet Toy / Verizon – ETSI REL): https://docbox.etsi.org/ISG/NFV/REL/05-CONTRIBUTIONS/2017//NFVREL(17)000120r3_CLAUSE_4_OF_REL008__ARCHITECTURE_FOR_ERROR_HANDLING.docx

https://docbox.etsi.org/ISG/NFV/REL/05-CONTRIBUTIONS/2017/NFVREL(17)000120r3_CLAUSE_4_OF_REL008__ARCHITECTURE_FOR_ERROR_HANDLING.docx
https://docbox.etsi.org/ISG/NFV/REL/05-CONTRIBUTIONS/2017/NFVREL(17)000120r3_CLAUSE_4_OF_REL008__ARCHITECTURE_FOR_ERROR_HANDLING.docx
https://docbox.etsi.org/ISG/NFV/REL/05-CONTRIBUTIONS/2017/NFVREL(17)000120r3_CLAUSE_4_OF_REL008__ARCHITECTURE_FOR_ERROR_HANDLING.docx
https://docbox.etsi.org/ISG/NFV/REL/05-CONTRIBUTIONS/2017/NFVREL(17)000120r3_CLAUSE_4_OF_REL008__ARCHITECTURE_FOR_ERROR_HANDLING.docx

FM cycle

Generic Fault Management Cycle Phases (ETSI terminology)

• Detection – Low-latency, low-overhead, low false positives / false

negatives mechanisms

• Localization – Physical/Virtualized resources to resource

consumer(s) mapping within the context of fault trees

• Isolation – Remove the ability of the failed component to affect

service state of un-affecged instances

• Remediation – Service restoration through failover to redundant

resource / component, or component restart

• Recovery – Restoration of intended redundancy configuration

FM Cycle Timeline; key phases (generic)

FM cycle targeting

• TDET + TNOT + TREM ≤ 50ms (for lowest layers in hiearchy – “network”)

• TDET – Detection Time

• TNOT – Notification Time

• TREM – Remediation Time

Minimize; but – single fault event (e.g. node failure) may require
correlation and multiple notifications (e.g. one notification per manager of
affected VNF)

Often the longest process, not fully under control of infrastructure, may
require multiple interactions from VNF to VIM levels

The high level goal is to minimize timeline from fault to service restoration – i.e. minimize the length of the
observable service outage. Service Availability could in principle be managed by infrastructure services, but
Service Continuity requires some participation by the associated VNFCI and availability management processes.

Some earlier work with the right basic idea ?

ETSI GANA Reference Architecture;
• Hierarchy of policy control loops w/

Increasing loop scope & increasing time

One of the early ONAP policy slidewares;
• Hierarchy of policy control loops (w/

Increasing loop scope & increasing time ?)

ONAP Control Loop Example (EVTaction)

Critical Path of the ONAP control loop (evt_src  evt collection  normalizer  FM  policy  controller  VIM

Centralization vs. De-Centralization candidates

• To remain in Central ONAP
- All Design Time components

- Service Orchestration (at least top level if hiearchical)

• To be distributed ?
- Basically all components required for autonomous Closed-Loop Control

- DMaaP/MSB service instances (don’t want to go thru central)

- DCAE

- Policy components

- Controllers (SDNC, APPC/VF-C)

• Uncertain …
- A&AI – Edge; depends on interaction details ?

- Catalogs (subset only ?)

What are we doing in this area – shortlist

• OPNFV Barometer project: infrastructure events and metrics collection; exposure
for higher level entities; node-local recovery policies
- Goal is to integrate with ONAP policy management infrastructure to close the loop (FM, PM)
- Need full fault correlation solution (OPNFV Doctor vs. Holmes vs. other stuff ?)

• Testing of Kafka vs. AMQP etc. for the messaging performance (latency)

• FEMDEC distributed Messaging with Inria + Orange collaboration for OpenStack
Edge Use cases

• OPNFV VCO project: learn by doing – VCO 2.0 works on (LTE 1st) vRAN case,
everything from eNB / EPC / MEC / EPC etc. in a mix of Baremetal, Virtual
Machine and Containers; will assess ONAP integration feasibility after Beijing rel.
is out.

• Testing of OpenStack configurations with remote compute nodes for edge use
cases (focused on RAN use cases / with RAN latencies)

• K8s for the “CNF” LCM feasibility / gaps assessment

• K8s networking, EPA etc. gaps filling in associated communities

• Participation on multiple edge related projects in all domains

Key Take-Aways

• Application & ONAP operation times are related but mostly independent

• The “tightest” loop (in terms of loop time) determines the placement, messaging and
timing constraints associated with it’s implementation
- The supportable loop time determines it’s usability in context of time constrained ops

• For decentralized loops, ALL components associated with the loop need to be
decentralized (e.g. messaging, DCAE, policy, controller, VIM)

• Need control processes and control loops at different levels (compute nodes, VIM / VIM
subsystems, regions, and network / service levels)

• Many domain specific “policy” processes are in place already, need to be able to manage,
not re-invent them

• Complex domain-interactions exist, we do not have adequate models available yet (e.g.
availability / service states, power/resource management, perf mgmt, fault management,
multi-layer interactions)

• Keep in mind that for uServices, communications latency can become relevant for even
centralized (i.e. colocated services due to increasing amount of sub-service transactions)

• Other than latency considerations will also have impact (regional / sub-regional
autonomy, bandwith etc.)

