

Using Microservices Architecture and

Patterns to address application

requirements on MEC
Presented by Cloud Architects: Prem Sankar Gopannan (E///) and Prakash Ramchandran (DellEMC)

Agenda – Part 1 – Prem Sankar G, Ericsson

• MEC Application requirements

• Microservices architecture and patterns

• Walkthrough – Sample app

• Offline applications
• Fat Client

• Processing done locally at UE

• Data feed from cloud

Application Types

• Online Applications
• Presentation layer

• All processing done online

• Requires connectivity

• Bandwidth

• Latency, Jitter and Delay

• Location and Presence

Key requirements for Applications

MEC Architecture

Network E2E with Edge Apps – An example Traffic flow

Device Edge

RU/DU
UPF (App
Routing)

NEF

ONAP

Value Added
Services

POP
BRAS, PE

Network Edge
Edge Cloud

(tens of thousands) Core Cloud (EPC)

AMF

UDM AUSF

UPF

PCF

Application Functions
AF1 AF2 AF3

Dyn
APP

Dyn
APP

Dyn
APP

Static APPs (eg. Caching,

CDN, Security)

UE APP

UE APP

UE APP

SMF

1

4

2

5

6

3

DN
Local
DN

1. UE APP requests AF to create
compute for it (Eg. AR/VR, Gaming
offload). UE provides information
such as ‘coordinates’, ‘max cost’,
‘max latency’ etc…

2. AF requests ONAP to create VNFs
in edge that is closer to UE that
satisfies UE request(ONAP figures
out the best region out of
thousands of clouds)

3. ONAP brings up VNFs on the Edge
Cloud using VIM API

4. AF informs NEF/SMF to create
traffic rule (to enable redirection
of UE APP traffic to new VNFs
created).

5. SMF informs UPF in the edge
cloud (Programs UE classifier of
UPF).

6. When the traffic comes from UE
APP, right application in the edge
cloud receives the traffic.

OOF

MC
DCAE

Reference – ONAP Edge working group – Srinivas Addepalli, Intel

Sample application – Pothole fixer

• Dashboard app – Control app for
the equipment that connects with
edge network/Dispatcher app

• Dispatcher app –Dispatches jobs
to equipment

• Potholefix app – App that is in
core cloud has info about pothole,
location and other information

• System functions
1. AF Request

2. Select VIM and triggers VNF
request

3. Bring up VNF on the selected
edge and establish transport
path

4. Redirect job to payload

Sample application – Pothole fixer

• Application functions
1. Require Fix – Pothole Image,

City Authority (for budget)

2. Response to bobcat
dashboard application

…

3. Terminate application

Microservice Architecture – Quick Intro

Reference – Martin Fowler, http://martinfowler.com

Microservices
Design

Patterns

Reference – Chris Richardson, http://microservices.io

• Database per Service

• Replaces 2 Phase Commit

• Uses Event streams to co-ordinate between the distributed database

• Co-ordination via two ways

• Choreography - each local transaction publishes domain events that trigger local
transactions in other services

• Orchestration - an orchestrator (object) tells the participants what local transactions to
execute

SAGA Patterns

Agenda – Part 2 by R.Prakash (Openstack)

• MEC – Architecture

• Cloudlet and Statelet

• Statelet Design and Flow

• Statelet proposed APIs

• Admin API for Persistent Volume (PV)

• User API for Persistent Volume (PV)

• Deployment options – OpenStack Zun micro services for PV

MEC reference architecture in a NFV environment
• UE uses Cloudlet(C) API over Mx2: UE App

to User/App Proxy (Ambassador Pattern)

• MEPM manages MEP over Mm5

• MEP manages (A) App VNF over Mp1

• Statelet(S) is a state management service to
MEP & ME App VNFM LCM over Mm6/Vi-
Vnfm

C

A

S

Mobile Edge Computing Standard V1 to V2

Cloudlet Application
Statelet

Openstack
Zun

LFN (CNI)

State Management for Edge Cloud on Server Side

UE talks to Cloudlet VM or container through Proxy for running Application

MEP Manager manages MEP
MEP manages Application

Statelet Support Cloudlet and Application to manage Application State using
Shared Persistent Volume pools with mount and unmount calls.

Persistent Volume for state management at Edge

Admin
hostPath, Cinder or
CephFS
PV Pools

1.Create PV

User

2. Request PV Claim
Claim

32

3.Grant PV Claim.

4. Mount PVC to VM or Conatiner

4

...
4

Host
Volume

VM
/mt

VM
/mt

Host
Volume

POD
/mt

POD
/mt

1

1

State Management using Persistent Volume for Edge Cloud
• A Persistent Volume (PV) is a network attached storage in the cluster, which is

provisioned by the administrator and user claims them from the Pools to mount them in

PODs or VMs and finally used by the applications contained in them.

• PVs based on the Storage Class resource. A StorageClass contains pre-defined

provisioners and parameters to create a Persistent Volume.

• Volume Types that support managing storage using Persistent Volumes are several but

we will limit it to hostPath, CephFS or Cinder as in Openstack for Cloudlet. For minikube

demo we use hostPath. Note for VMs use Cinder/CephS.

• So the Object PV will have C,RC,GC,MT(attach), UMT(detach) REST Calls for Cloudlets

to support State mangement for both Openstack VMs and Containers.

Admin APIs
PV Pool,PV/PVExtend

Object Action Type Attributes

PV_Pool Create Defalut PV of Type hostPath

PV_Pool Delete Defalut PV of Type hostPath

PV Create hostPath /Default Adapt from k8s

PV Create Cinder / BlockStore Adapt from Openstack

PV Create CephFS/ FileStore Adpat from Ceph

PVExtend Create Host Volume k8s Worker Node

PVExtend Create Host Volume Openstack compute Node

PV Delete PV Name PV_Pool

PV_Pool Delete PV_Pool Name PV list

User APIs
PV Claim, Grant, Mount, UnMount

Object Action Type Attributes

PV Claim PV_Pool Capacity

PV Grant PV_Pool Capacity

PV Mount PV Name Mount Device

PV UnMount Mount Device PV Name

PV Assign PV Name PV_Pool

PV_Pool Assign PV_Pool Name PV list

References
MEC: Cloudlet, Statelet, ME Applications
• http://www.etsi.org/technologies-clusters/technologies/multi-access-edge-computing
• http://www.etsi.org/deliver/etsi_gr/MEC/001_099/017/01.01.01_60/gr_MEC017v010101p.pdf
• https://www.cncf.io/blog/2017/05/23/cncf-hosts-container-networking-interface-cni/
• https://docs.openstack.org/queens/api/
• Refer APIs for Zun, Senlin, manila to define and design Statelet
• First add Statelet API for PV (Admin/User) to Zun for Containers
• Use Senlin to form container clusters using Zun and use Senlin Profile and Policy for placement
• Use Shared File Systems service (manila) if you use CephFS
• https://www.openstack.org/edge-computing/
• https://www.openstack.org/assets/edge/slides/2017-09-07-a-satya-opendev-keynote.pdf
• https://docs.openstack.org/kolla/latest/
• https://wiki.opnfv.org
• https://wiki.onap.org
• http://microservices.io/
• Contacts: Prem Sanka Gopannan (premsankar@gmail.com)/ Prakash Ramchandran (cloud24x7@ieee.org)

https://www.cncf.io/blog/2017/05/23/cncf-hosts-container-networking-interface-cni/
https://docs.openstack.org/queens/api/
https://www.openstack.org/edge-computing/
https://www.openstack.org/assets/edge/slides/2017-09-07-a-satya-opendev-keynote.pdf
https://docs.openstack.org/kolla/latest/
https://wiki.opnfv.org/
https://wiki.onap.org/
http://microservices.io/

Network EdgeTelco Cloud
OSS

Transformation
Next Generation

Access

5G

Networks

SD-WAN,

vCPE/uCPE
NFV, SDN

SAS, Big Data,

Real-Time Visibility
CORD, MEC, MDC

C-RAN, CUPS,

Network Slicing

Solutions and Ecosystem Advanced Architecture

