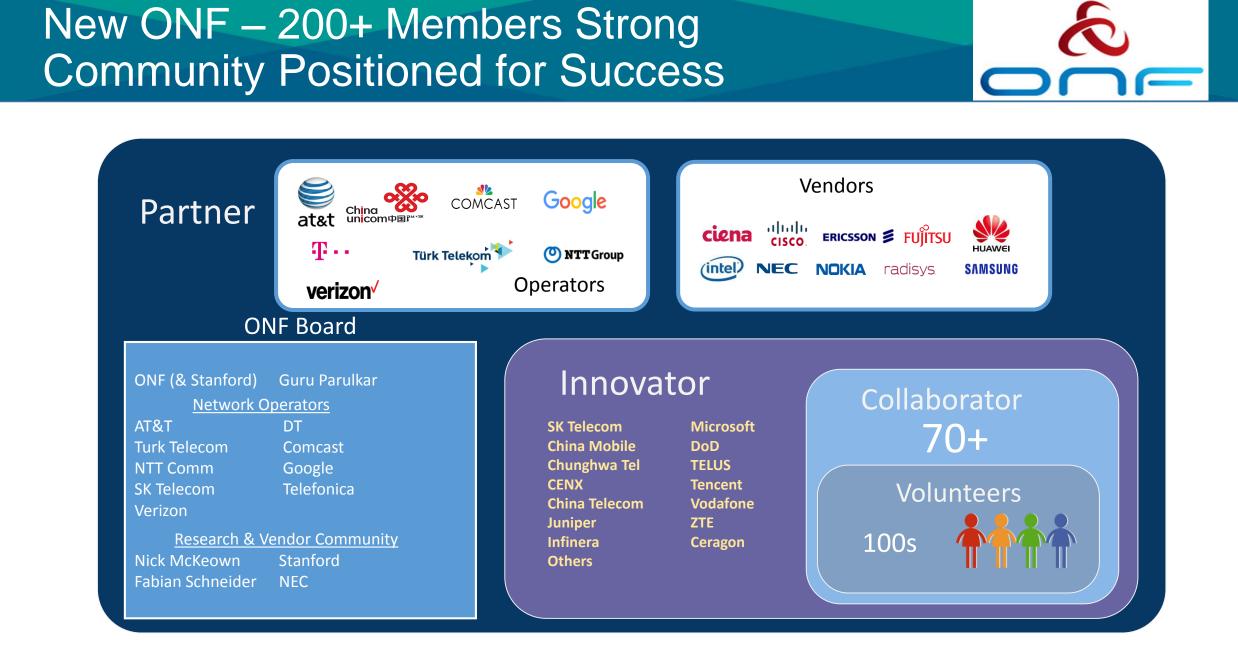


Open Transport Configuration & Control Lyndon Ong (Ciena)
 Config & control wireless networks with CIM & SDN-C Tracy Van Brakle (AT&T)
 First Joint ONF/ONAP Demonstration with SDN-R..... George Clapp (AT&T)


12 December 2017

Open Transport Configuration & Control

Lyndon Ong (Ciena)

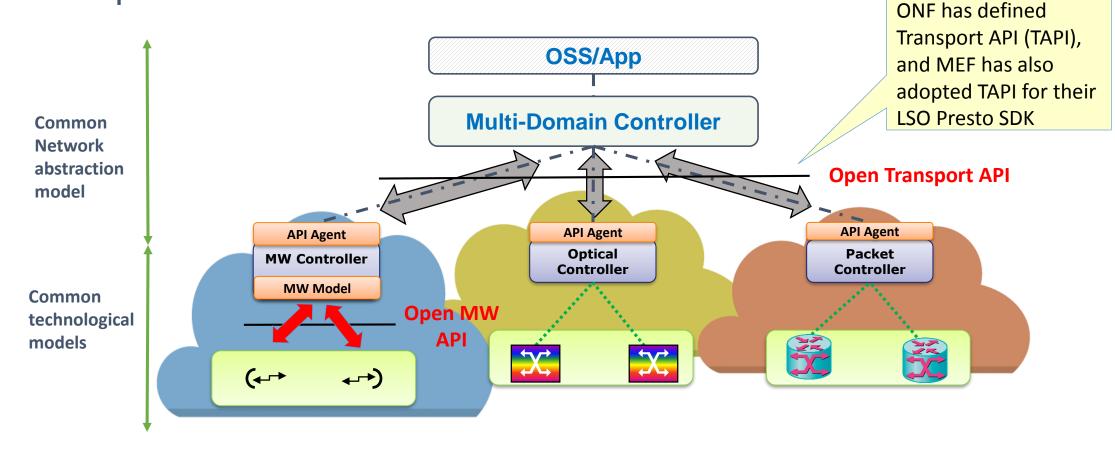
ONF Open Transport Config & Control (OTCC) Project

- Mission
 - Promote common configuration and control interfaces for transport networks in SDN, defining these interfaces with open source software and software defined standards

Leadership – OTCC TST

- Lyndon Ong, Ciena, OTCC project lead
- Giorgio Cazzaniga, SIAE, Wireless Transport sub-project lead
- Karthik Sethuraman, NEC, Transport API sub-project lead
- Kam Lam, Fiberhome, OT Info Model sub-project lead

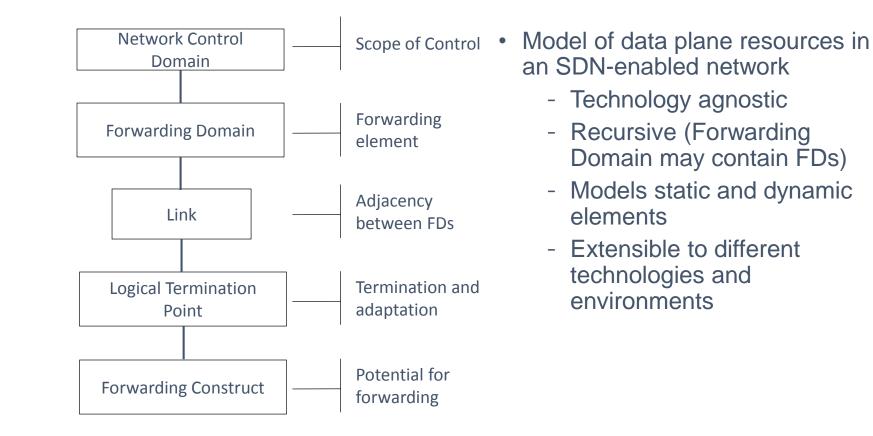
Results


- OpenFlow extensions for optical
- Transport API Functional Requirements and SDK (related OIF and MEF demonstrations)
 - <u>https://github.com/OpenNetworkingFoundation/Snowmass-ONFOpenTransport</u>
- Wireless Transport Information Model (related WT PoCs)

API Definition and Development

-S -

Open APIs for network control are essential



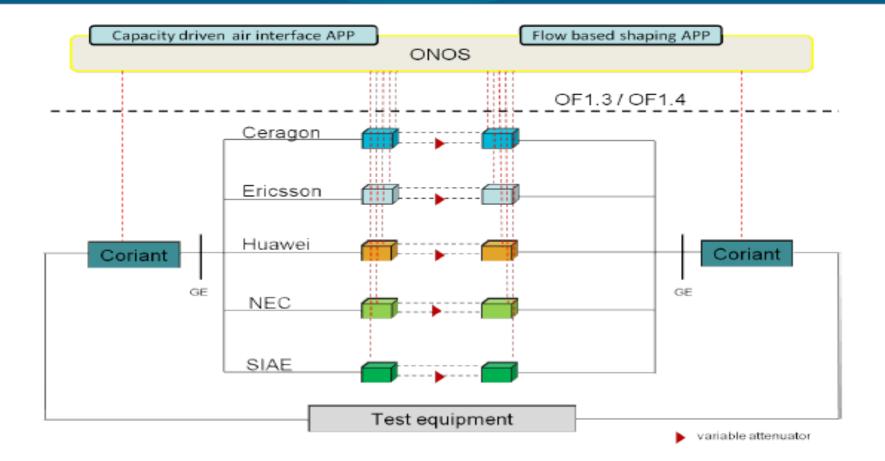
5

Common Information Model (simplified)

Product of the ONF Information Modeling and Tooling Project ONF TR-512 Core Information Model v1.3 – see <u>https://wiki.opennetworking.org/display/OIMT/Ready+for+ONF+Approval</u>

Configuring and controlling wireless networks with ONF CIM & ONAP SDN-C

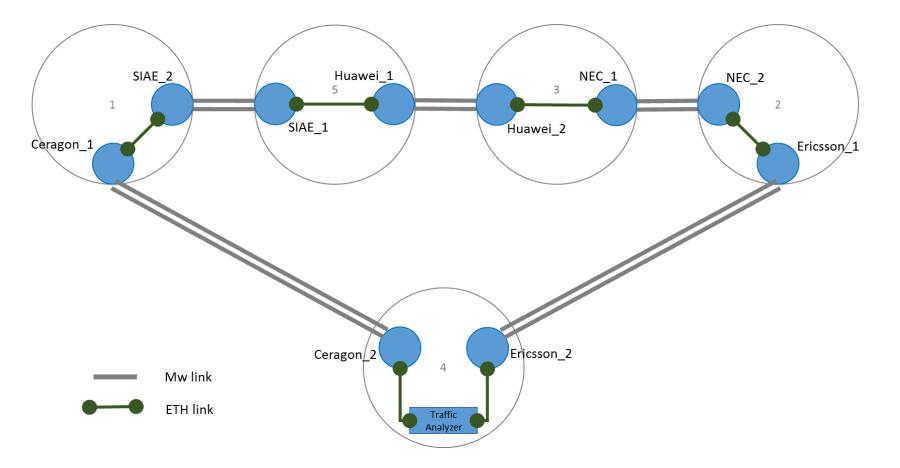
Tracy Van Brakle (AT&T)


Overview and background

Proofs of Concept (PoCs) have been executed by the Open Networking Foundation Wireless Working Group(s) roughly every six months to demonstrate progress and to verify functionality and enhancements in a multi-vendor wireless network using <u>real network devices</u>, beginning with µWave/mmWave and now inclusive of eNB, RRH, DAS, IoT sensors. The work began with ONOS, then ODL stand-alone, and now ONAP SDN-C

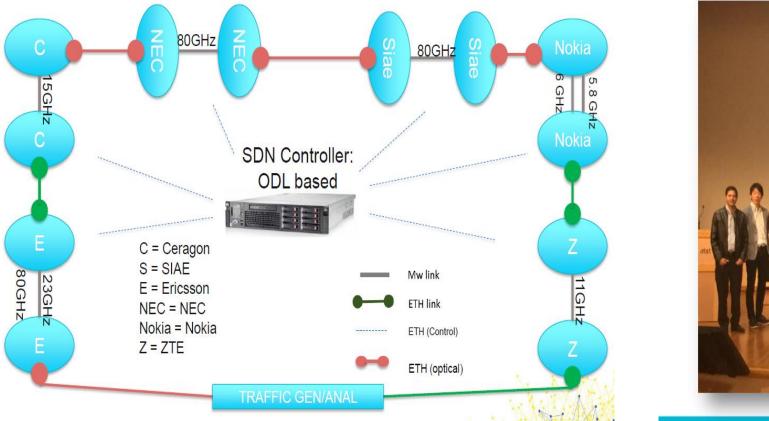
Date + Sponsor	SDN controller and platform	ONF CoreModel (TRs 512 & 532)	SBI protocol
1 st PoC; 4Q'15; Telefonica	ONOS	n/a	OpenFlow
2 nd PoC; 2Q'16; Telefonica	ODL Lithium SR4	n/a	Netconf/YANG
3 rd PoC; 4Q'17; AT&T	ODL Beryllium SR2 (ECOMP)	CM 1.1	Netconf/YANG
4 th PoC; 2Q'17; Deutsche Telekom	ODL Boron SR1 (ONAP release 0)	CM 1.2	Netconf/YANG
5 th PoC; 4Q'17; AT&T	ODL Boron / Carbon (ONAP "pre" Amsterdam)	CM 1.2	Netconf/YANG
6 th PoC; 2Q'18 - TBD	ODL Nitrogen (ONAP Beijing)	CM 1.3	Netconf/YANG

1st Proof-of-Concept \rightarrow two basic SDN applications, OpenFlow – October 2015



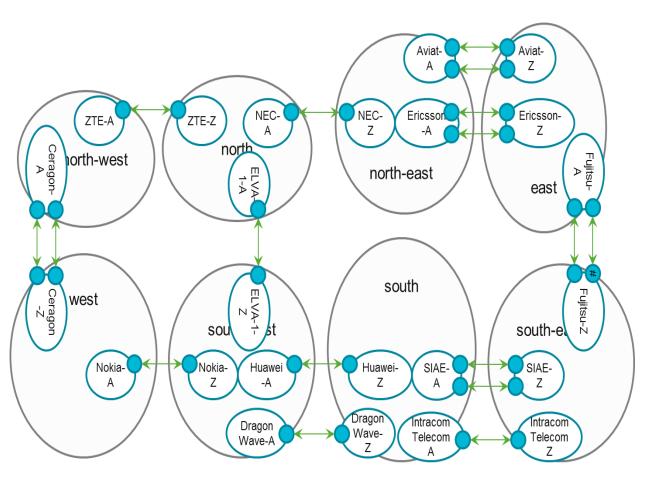
- 1st PoC took place in Madrid, Spain, October 2015
- Sponsor/Host = Telefónica and IMDEA Networks, AT&T (observer)
- Equipment vendors (in alphabetical order): Ceragon, Coriant, Ericsson, Huawei, NEC and SIAE

D₉THE**LINUX** FOUNDATION


2nd Proof-of-Concept → FCAPS, ODL – April 2016

- 2nd PoC took place in Munich, Germany, April 2016
- Service Providers / Operators: Telefónica (lead), AT&T, Deutsche Telekom (observer)
- Equipment vendors (in alphabetical order): Ceragon, Ericsson, Huawei, NEC and SIAE

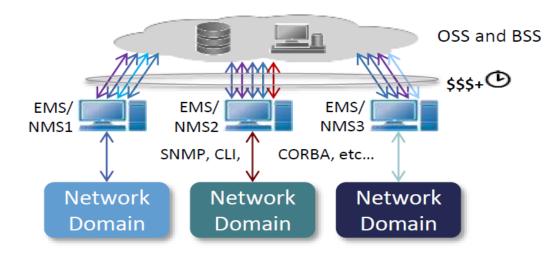
3rd Proof-of-Concept → ECOMP (closed loop), Spectrum Access System inter-op

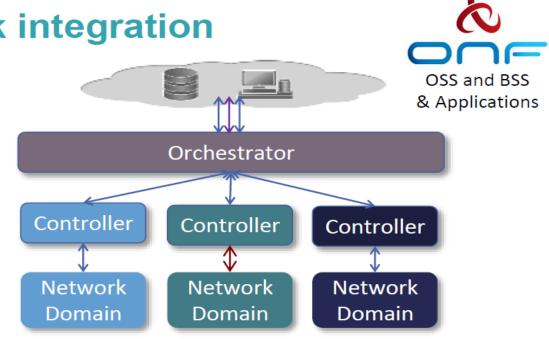


- 3rd PoC took place in Rutgers University Winlab, October 2016
- Service Providers / Operators: Telefónica, AT&T (lead), Deutsche Telekom
- Equipment vendors (in alphabetical order): Ceragon, Ericsson, Huawei, NEC, Nokia, SIAE, ZTE

4^{th} Proof-of-Concept \rightarrow 1588v2, connection-oriented Ethernet with re-routing

		Netconf/YANG (ONF-TR-512, 532)	Ethernet model	PTP (1588) model
	ADVA		Х	Х
	Aviat	Х		
	Ceragon	Х	Х	
	DragonWave	Х		
	ELVA-1	Х		
S	Ericsson	Х	Х	Х
Vendors	Fujitsu	Х		
Ver	Huawei	Х		Х
	Intracom			
	Telecom	Х		
	NEC	Х	Х	Х
	Nokia	Х	Х	Х
	SIAE	Х	Х	Х
	ZTE	Х	Х	Х

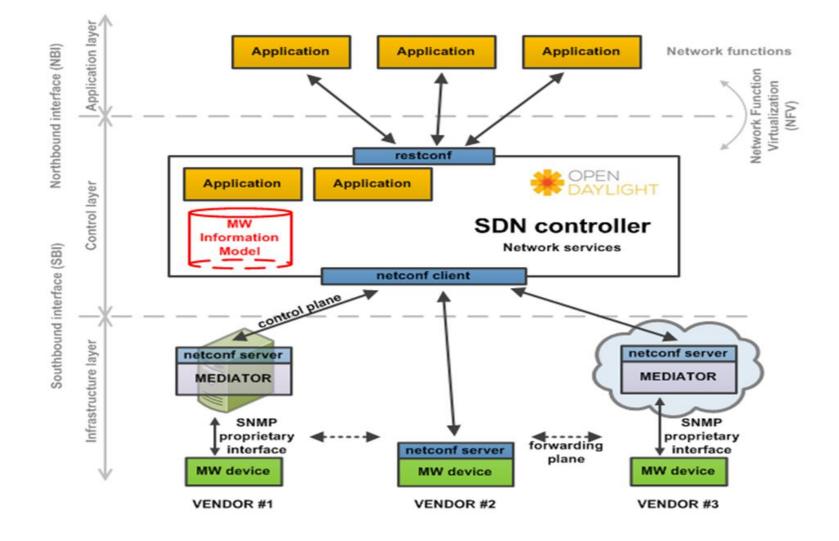

- 4th PoC took place in Bonn and Prague, June 2017
- Service Providers / Operators: Deutsche Telekom (lead), Telefónica, AT&T, Orange (observer)


Overarching objectives for PoCs 2/3/4

Use Case: Multi-Vendor network integration

Current Situation:

- Individual EMS/NMS per vendor
- Huge complexity and cost in building/maintaining OSS/BSS – EMS/NMS interfaces
- Complex and slow for introducing new services spanning multiple network domains

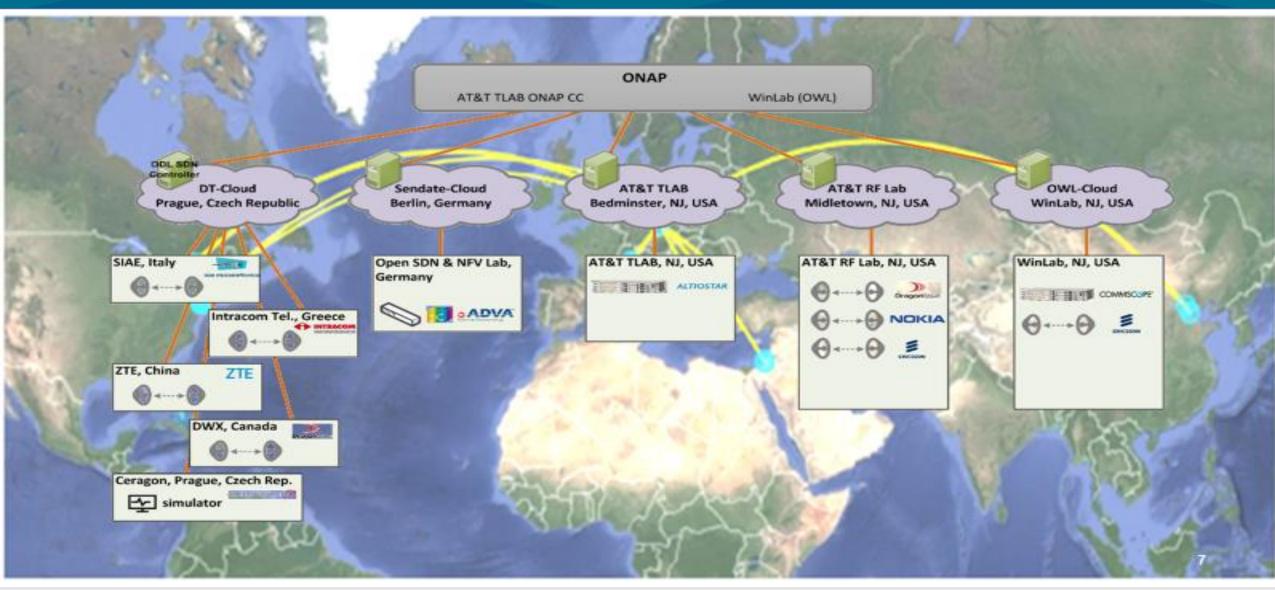


SDN:

- New level of programmability on top of orchestrator
- EMS/NMS bypassed for service creation standardised & simplified workflow
- Open Source based orchestrators for project speed up
- Reduced complexity through abstraction & virtualization in controller / orchestrator NBI

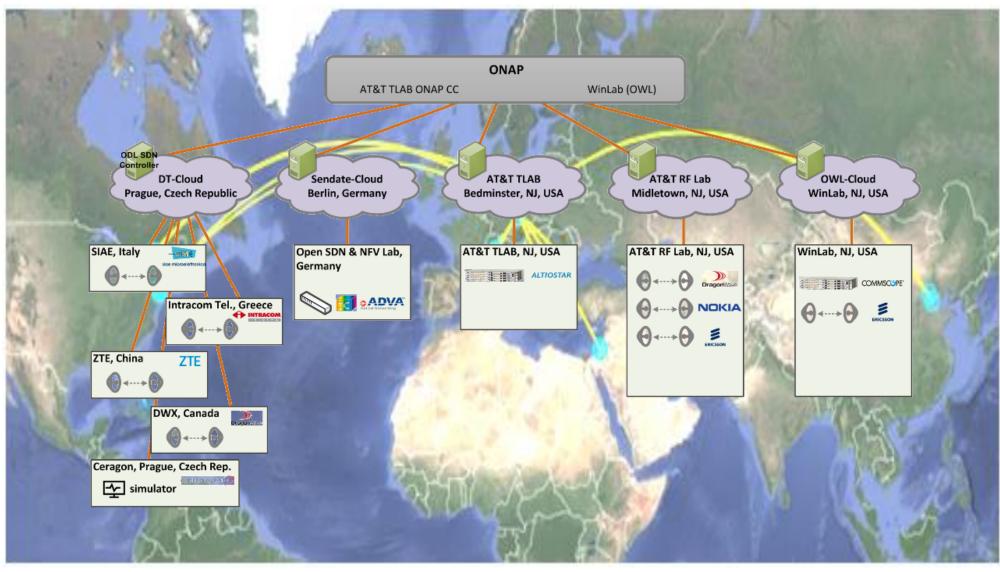
Basic architecture for ONF Wireless PoCs 2,3,4

CENTENNIAL


- CENTENNIAL is the open source project being used for (and by) the ONF Wireless Project to deliver code that implements the microwave (and now more generalized model) defined by the ONF Wireless WGs.
- Applications developed in the context of the PoC are also available in CENTENNIAL project repository.

5th Proof-of-Concept →October 2017

Special thanks to the Community!



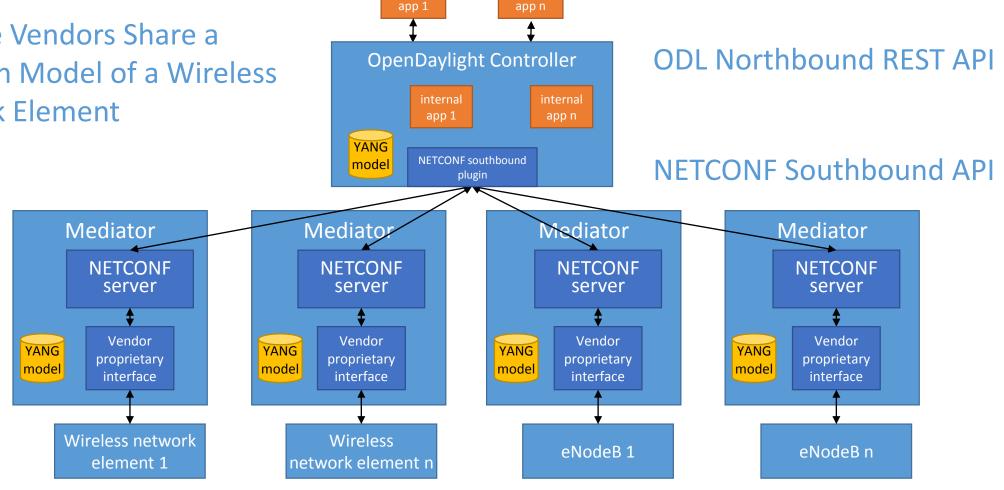
First Joint ONF/ONAP Demonstration with SDN-R

George Clapp

ONF Open Transport Working Group -Wireless Transport Project – Proof-of-Concept Demo

ONF / ONAP joint PoC participants and locations

Vendor	Type of test devices	Location of test devices	Connected via (location of ODL SDN controller)	
ADVA	2x ETH switch	Open SDN & NEV(Leb Berlin Cormon)	Sondata Claud in Barlin, Cormony	
	3x ROADM Reconfigurable Optical Add-Drop Multiplexer	Open SDN & NFV Lab, Berlin, Germany	Sendate-Cloud in Berlin, Germany	
AltioStar	RRH Remote Radio Head	WinLab, NJ, USA	OWL-cloud (WinLab) in NJ, USA	
Ceragon	Simulator	VM inside DT-Cloud, Prague, Czech Republic	DT-Cloud in Prague, Czech Republic	
CommScope	DAS Distributed Antenna System WinLab, NJ, USA C		OWL-cloud (WinLab) in NJ, USA	
DragonWave-X	6x MW devices 4x Horizon Compact Plus (HC+) 2x Horizon Quantum	Ottawa, Canada	DT-Cloud in Prague, Czech Republic	
	2x MW devices	AT&T Lab, NJ, USA	AT&T-cloud in NJ, USA	
Ericsson*	4x MW devices	WinLab, NJ, USA	OWL-cloud (WinLab) in NJ, USA	
Intracom Telecom	2x MW devices OmniBAS OSDR ODU	Athens, Greece	DT-Cloud in Prague, Czech Republic	
Nokia*	2x MW devices	AT&T Lab, NJ, USA	AT&T-cloud in NJ, USA	
SIAE	2x MW devices AGS20 IDU split-mount	Milan, Italy	DT-Cloud in Prague, Czech Republic	
ZTE*	2x MW devices	Tianjin, China	DT-Cloud in Prague, Czech Republic	



Basic Architecture for ONF Proof-of-Concept Demo's

external

Multiple Vendors Share a **Common Model of a Wireless Network Flement** YANG

external

Common Information Model

Microwave Information Model

Version 1.0 December 2016

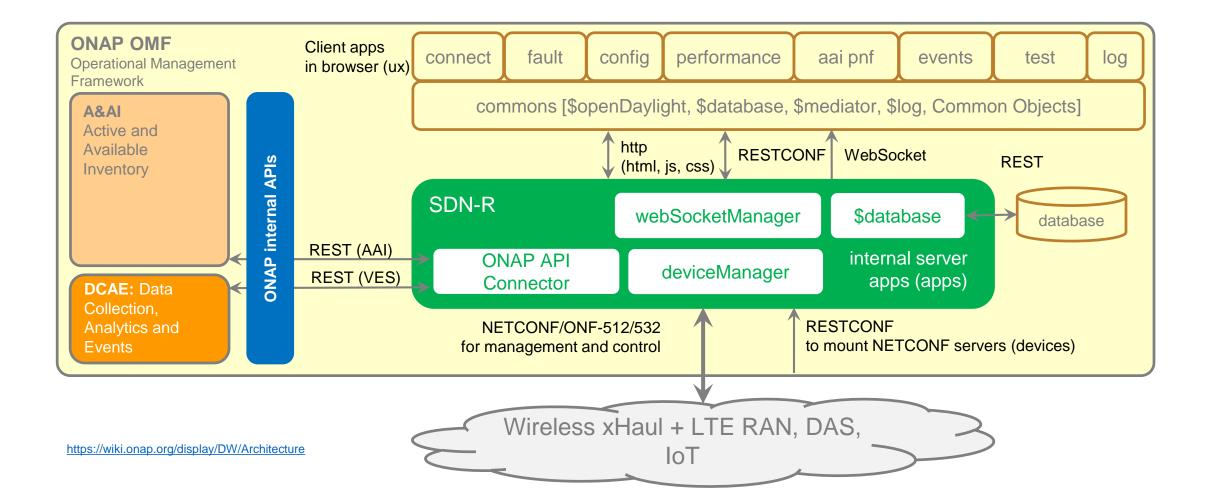
TR-532

ONF Technical Recommendation (TR) 532

Features Business	Features Business Explore Marketplace Pricing This repository Search						
🖟 OpenNetworkingFoun	dation / CENTENNIAL		• Watch	32 ★ Star	9 ¥ Fo	ork 24	
♦ Code ① Issues ③	្លាំ Pull requests 0 🌐 Projects 0 💷 Wiki l	Insights 🗸					
Branch: master - CENTENN	IIAL / models /			Create new file	Find file	History	
<i>i demx8as6</i> ptp-dataset with	config false			Latest comn	nit 2a0b2ba o	n Jun 20	
tools	ptp-dataset with config false				2 mon	nths ago	
Tree tree	init synch model				4 mon	nths ago	
🖿 uml	uml adding simple ethernet model 4 months ag						
yang-odl	yang-odl Ref to CoreModel updated and config false removed. 3 months ac						
yang	Ref to CoreModel updated and config false removed. 3 months ago						
yin-odl	Ref to CoreModel updated and config false removed. 3 months ago						
🖬 yin	Ref to CoreModel updated and config false removed. 3 months ago						
README.md	housekeeping				8 mon	nths ago	

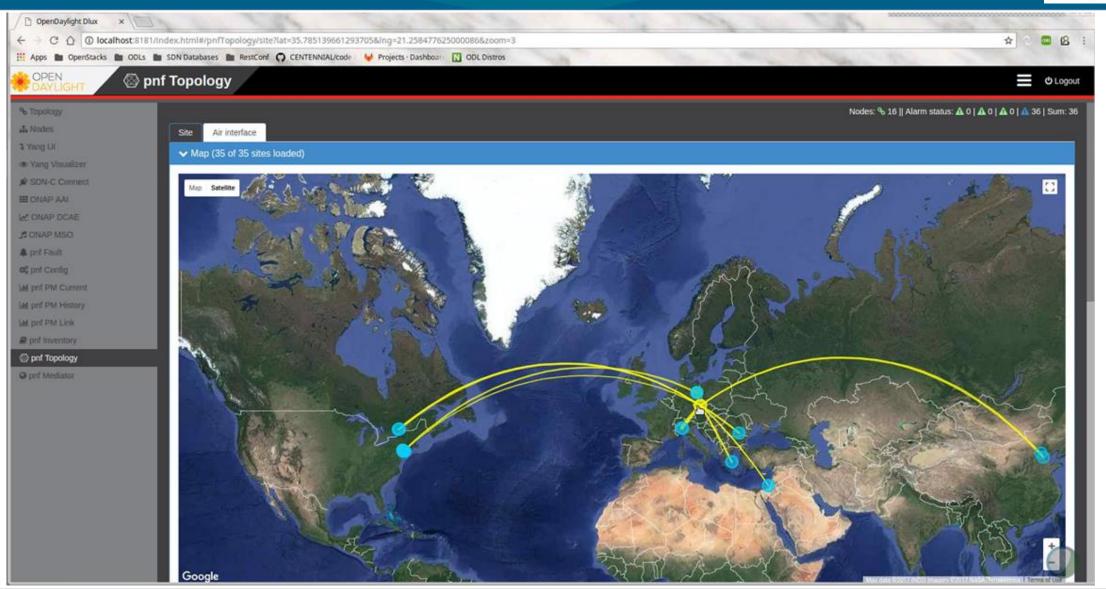
E README.md

Reduced Core Model and Microwave/mmWave Model

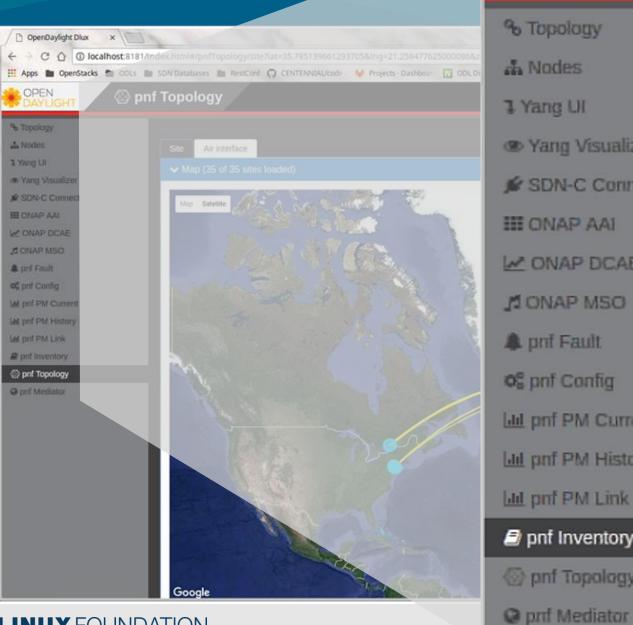

Status

Date: 2016-09-01

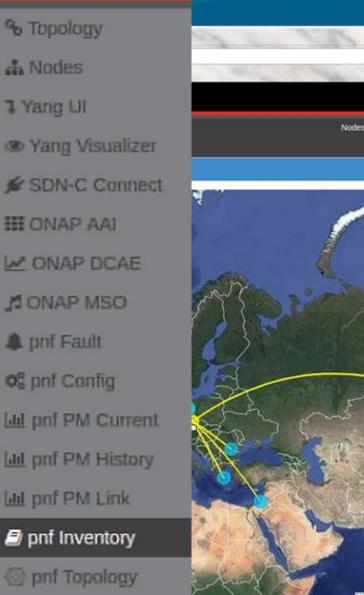
- YANG files are valid according to pyang 1.7.
- YANG files are valid according to OpenDaylight yang-validation-tool-0.8.2-Beryllium-SR2'


Changes compared to 24-reducedCoreModel-MWTN-Prio1 of the 2. PoC

- Prio2 and prio3 attributes added.
- Timeslots converted to segments
- Yang containter arouned status conditional packages lists
- bug-fixes



SDN-R Web-based GUI Using OpenDaylight DLUX



SDN-R Functions

Inventory

N <mark>LIGHT</mark> III pnf I	nventory							≡
gy							Nodes: % 6 Alarm s	status: 🗥 9 🛦 0 🛧 4 🛦 0
	AltioStar-RRH-1							
li Visualizer	🗸 ibbu ibbu							
C Connect AAI P DCAE	Manufacturer: Altiostar	Serial: C1L23DFE2989	Version: 1.4.0	Date: Sep 9, 2017	Description: intelligent Baseband Unit	Part Type Id: PLHP13B2SXR1	Model Identifier: ibbu	Type Name: ibbu
MSO	✓ irrh1 irrh1							
nfig M Current M History	Manufacturer: Altiostar	Serial: PLW39160042	Version: V2.0-Build 360	Date: Sep 9, 2017	Description: intelligent Remote Radio Head #1	Part Type Id:	Model Identifier: irrh1	Type Name: irrh1
M Link	🗸 spm spm							
rentory pology diator	Manufacturer: Altiostar	Serial: PLW39150094	Version: 8	Date: Sep 9, 2017	Description: Signal Processing Module	Part Type Id: 330-01-0068	Model Identifier: spm	Type Name: spm
	🗸 tla tla							
	Manufacturer: Altiostar	Serial: PLW39160042	Version: 21	Date: Sep 9, 2017	Description: tla	Part Type Id: 340-00-0058	Model Identifier: tla	Type Name: tla
	✓ radio radio							
	Manufacturer: Altiostar	Serial: PLW37160009	Version: 2	Date: Sep 9, 2017	Description: radio	Part Type Id: 330-01-0078	Model Identifier: radio	Type Name: radio

Drill Down to Components within a Network Element

	pnf Inventory										
ogy							Nodes: % 6 Alam	n status: 🛦 0 🛕 2 🛦 0 🖞			
	Nokia-62										
ui.	▼ SHELF-110.011	licrowave Service Switch S	Shelf								
Visualizer C Connect											
PAAI	Manufacturer:	Serial:	Version:	Date:	Description:	Part Type Id:	Model Identifier:	Type Name:			
DCAE	VG	VG113460439	BACK2U	Aug 26, 2011	MSS-8	3DB18485ABAA01	CRMLB10HRA	MSS-8			
MSCI	✓ CARD-1.1.9.01	E-FANS Card in MSS She	f. Slot 9								
a.dt					and the second		Constant and the				
antig	Manufacturer: SAN	Serial: TH1528Q015B	Version: FANS	Date: Jul 11, 2015	Description: MSS/E-FANS	Part Type Id: 3EM23911BBAA01	Model Identifier: CRCCASZJAA	Type Name: E-FANS			
M Current	SAN	14122020128	PAND	50111,2015	MODIE-PAND	SEW23911DDAA01	CRUCASZJAA	E-PANa			
M History	> CARD-113.01	P8ETH Card in MSS Shelf,	Slot 3								
J Link											
ventory		P8ETH Card in MSS Shelf,									
spology ediator	> CARD-1.1.1.0	CorEvo Card in MSS Shelf,	Slot 1								
Clorator	← CARD-1.1.7.0	CARD-1.1.7.0 P32E1DS1_A Card in MSS Shelf, Slot 7									
	Manufacturer: SAN	Serial: TH1122Q01V0	Version: P32E1DS1	Date: Jun 8, 2011	Description: MSS/DS1	Part Type Id: 3DB18126AEAB01	Model Identifier: CRG2ABUDAA	Type Name: P32E1DS1_A			
	> CARD-1.1.5.0	MPTACC Card in MSS She	II, Slot 5								
	CAPD-116.01	MPTACC Gard in MSS She	If Slot 6								

ん

NETCONF Connected Network Elements

🖋 SDN-C Connect

	_
=	0 Logout

1

₩	OPEN <mark>DAYLIGHT</mark>

% Topology

- A Nodes
- 🤋 Yang Ul
- Yang Visualizer

💅 SDN-C Connect

- III ONAP AAI
- M ONAP DCAE
- CONAP MSO
- 🌲 prit Fault
- og pnf Config
- Lui pnf PM Current
- Ltd pnf PM History
- Lul prif PM Link
- 2 pnf Inventory
- 🛞 pnf Topology
- 😔 prif Mediator

equired network element	s					
Name 🔺	 Connection status 	IP address	Port ~	Radio signal ids 🛛 👻	Actions	
\$						
C AltioStar-RRH-1	✤ connected	10.31.1.141	14001	["41"]	% <mark>%</mark> € C A	PS
C CommScope-DAS	& connected	10.100.0.18	14005	["Test01"]	<mark>%</mark> ଓ ୮ ୦ A	PS
C Ericsson-A1	% connected	10.100.0.11	8301	["INT3"]	% <mark>%</mark> 0 F C A	PS
Ericsson-A2	% connected	10.100.0.11	8302	["INT4"]	% <mark>%</mark> 0 F C A	PS
C Ericsson-B1	% connected	10.100.0.11	8303	["RUBY_low"]	% <mark>%</mark> 0 F C A	PS
C Ericsson-B2	% connected	10.100.0.11	8304	["RUBY_high"]	% 🕺 0 F C A	PS

ONAP Active and Available Inventory

% Topology									
🗛 Nodes	1	ID ~	Name	×ту	ype ~	Vendor ~	Model ~	If OAM \checkmark	Maintenan
L Yang UI									
> Yang Visualizer	×	12345-123-12345-22	ADVA-ROADM-B	R	OADM	ADVA	FSP 3000R7	10.20.4.12	false
SDN-C Connect		192.168.2.33:14007	DragonWave-A3	W	VirelessTransport	DragonWav	Horizon Quantum	0	false
		192.168.2.33:14006	DragonWave-Z2	w	VirelessTransport	DragonWav	Horizon Compact Plus	0	false
ONAP DCAE	1 ×	12345-123-12345-23	ADVA-ROADM-C	R	OADM	ADVA	FSP 3000R7	10.20.4.13	false
ONAP MSO	1	10.10.240.53:4060	Quantum_FarEnd	W	Vireless Transport	DragonWave	Horizon Quantum	0	false
, prif Fault	1	192.168.2.7:33002	SIAE-S2	w	VirelessTransport	SIAE	AGS-20	0	false
🖁 pnř Config		192.168.2.18:830	Intracom-A	W	VirelessTransport	Intracom	OSDR-13H13	0	false
I pnf PM Current	1	10.10.235.10:40011	Nokia-62	W	VirelessTransport	Nokia	Nokia 7.1	0	false
l pnf PM History		192.168.2.51:830	ZTE-24	w	VirelessTransport	ZTE	ZXMW NR8120A	0	false
<u>il</u> pnf PM Link		10.100.0.11:8303	Ericsson-B1	w	VirelessTransport	Ericsson	MINI-LINK 6352	0	false
pnf Inventory	1	12345-123-12345-21	ADVA-ROADM-A	R	OADM	ADVA	FSP 3000R7	10.20.4.11	false
pnf Topology	1	10.100.0.11:8304	Ericsson-B2	W	VirelessTransport	Ericsson	MINI-LINK 6352	0	false
pnf Mediator	1.1	192.168.1.4:13001	Ceragon-A1	w	VirelessTransport	Ceragon	Simulator	0	false
	1	192.168.1.4:13003	Ceragon-Z1	W	VirelessTransport	Ceragon	Simulator	0	false
		10.10.232.30:8307	Ericsson-23	W	VirelessTransport	Ericsson	MINI-LINK 6352	0	false
	~	192.168.2.33:14005	DragonWave-A2	W	VirelessTransport	DragonWav	Horizon Compact Plus	0	false
		102 160 2 22-14000	DragonWave 72	140	ViroloceTransport	DragonWay	Horizon Quantum	0	falco

Total Items: 33

SDN-R Subproject

Subproject Name:

• SDN controller for Radio (SDN-R)

Subproject description:

The SDN-R subproject adds features/functionality to the OpenDaylight-based controller SDN-C (Core) that is built on the Common Controller Framework to configure and control wireless resources.

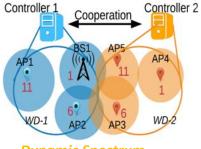
Scope:

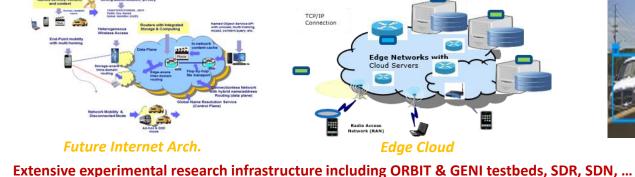
The following features are in scope for the SDN-R subproject for ONAP release 2...

		Particulation (Control Control
TLAB	AT&T Advanced Technologies	Rich Bennett (RB2745@att.com) John Murray (JM2932@att.com)
Multi-Geo Labs via an IPSec GRE VPN tunnel	Wind River	Stephen Gooch (stephen.gooch@windriver.com)
WINLAB ONAP Wireless Lab (OWL)	Rutgers University/AT&T	Ivan Seskar (seskar@winlab.rutgers.edu) Tracy Van Brakle (tv8394@att.com)

WINLAB / ORBIT

WINLAB Tech Center Facility

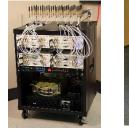

WINLAB founded in 1989 as a collaborative industry-university research center with specialized focus on wireless networking


~25 faculty/staff, most from the ECE and CS departments at Rutgers

~40-50 grad students (80% PhD, 20% MS)

Center's research portfolio spans information theory, radio technology, wireless systems, mobile networks and computing

Dynamic Spectrum



Connected Vehicle

Massive MIMO

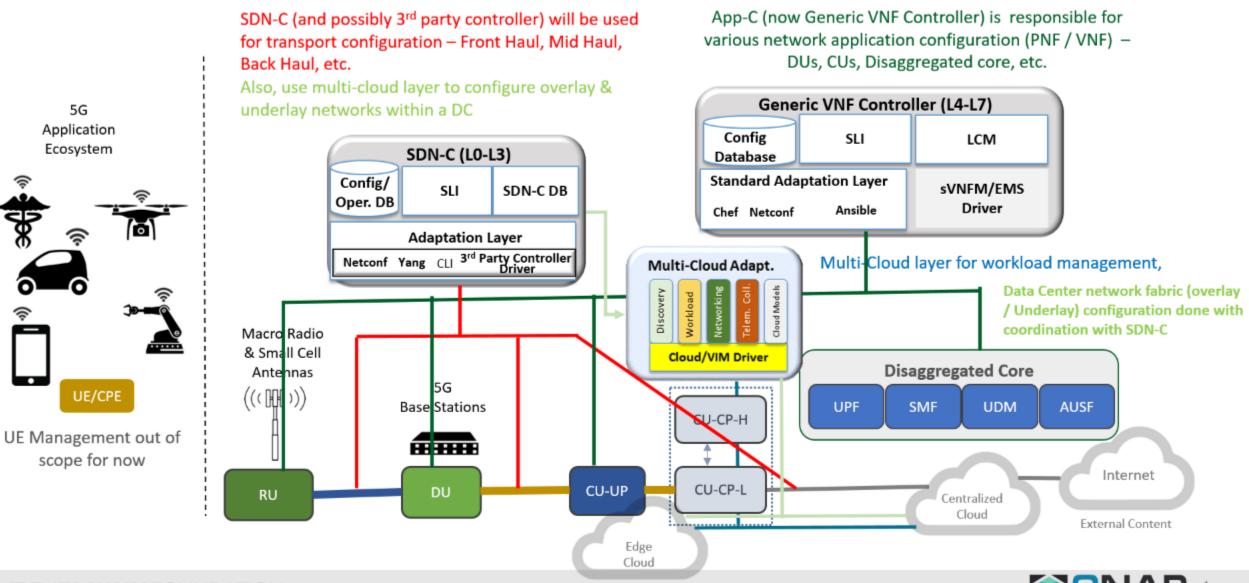
SDR

GENI Rack

SDN

CloudLab Rack

Thank You!



BACKUP SLIDES

Controller Scope to support anticipated 5G use cases

New Challenges in 5G Use Case

- Support a hybrid network consisting of PNF & VNF across RAN, WAN and EPC
- Support Design, Deploy, Monitor and Management of Network Slice(s)
- Design studio (SDC) enhancement
- Component models: e.g., RAN VNFs, Core VNFs, PNFs, etc.
- E2E model(s): e.g. service chain (tosca) topology, policy model(s)
- AAI enhancements to capture topology & inventory
- SO / App-C / DCAE / Policy enhancements to support for PNF and slice lifecycle management, slice deployment and management
- DCAE / Policy enhancements to support open framework for near-real time network optimization, conflict resolution during design time as well as run time across multiple microservices
- OOF enhancements to support multi-cloud and 5G network optimizations

