VF Module Scale Out Use Case

Scaling out VF modules with ONAP requires a designer to create a service in SDC. The service uses Vendor Software Products (VSPs) that contain base Heat templates with all the VF modules that are instantiated first, and a non-base (e.g. scaling) Heat template for each VF module that will be scaled out at runtime. SDC creates and distributes a TOSCA model that describes the service, including, among the other things, the base and all the non-base modules. Before service instantiation, the configuration of each VF module needs to be specified, for example manually preloading SDNC.

Once a service is instantiated (i.e. all the base modules of the VNFs composing the service have been instantiated), ONAP manages the lifecycle of that service via open and/or closed loop operations. As part of those operations, ONAP controllers (APPC or SDNC) can execute different actions against the managed VNFs (e.g. reboot VM, change configuration, change management, config scale out, etc.)

Being the controllers VNF-agnostic and model-based, the service designer is required to define a VNF template using the Controller Design Tool (CDT). The template describes the operations that can be executed against a VNF (e.g. scale out, health check, modify configuration, etc.), the protocols that a VNF supports, port numbers, VNF APIs, and credentials for authentication. ONAP controllers use these templates to “learn” about specific VNFs and the supported operations. For Beijing release, only APPC supports CDT. Support for CDT in SDNC will be introduced in Casablanca.

In particular, for the Scale Out use case, the service designer specifies the API and the parameters that APPC will use to reconfigure the VNF after a new VF module has been created. See Figures 1 and 2 for examples about the vLB/vDNS VNFs used for Beijing release.

[image:]
Figure 1: Config Scale Out parameters for reconfiguring the vLB after creating a new vDNS

[image:]
Figure 2: API of the vLB that APPC uses to reconfigure the VNF after creating a new vDNS

Note that the VNF information provided by CDT is visible ONLY within APPC.

For the Beijing release, the use case is triggered manually via VID. VID sends a request to SO to create a new VF module. After SO creates the VF module, it sends a config scale out request to APPC that includes all the values of the parameters that APPC uses to reconfigure the VNF after scale out operation has completed. Below is a snippet of the payload that SO sends to APPC via DMaaP. The “configuration-parameters” section contains the values that APPC will assign to the parameters defined in the VNF template (see Figure 1) for VNF reconfiguration.

 "action-identifiers":{
 "vnf-id":"16ccff49-2c3a-4336-a49e-f476f3f04d40"
 },
 "payload":"{\"request-parameters\":{\"vnf-host-ip-address\":\"10.0.150.1\",\"vf-module-id\": \"37edf2c2-4167-4460-835b-3aa9fcab9706\"},\"configuration-parameters\":{\"ip-addr\":\"192.168.10.215\", \"oam-ip-addr\":\"10.0.150.7\",\"enabled\":\"true\"}}"

Finally, APPC reconfigures the VNF by using the values provided by SO and the API defined by the service designer in CDT (see Figure 2). For the vLB/vDNS VNFs used in Beijing, the result of VNF reconfiguration executed by APPC is to make the vLB aware that a new vDNS instance has been created. In the example above, the new vDNS has IP address = 192.168.10.215, OAM IP address = 10.0.150.7, and enabled = true, as specified in the SO request to APPC. The vLB saves this information in its internal state.

[bookmark: _GoBack]Problem
The problem we faced in Beijing is that the manual request from VID to SO doesn’t include enough information to reconfigure a VNF after scaling. In particular, SO doesn’t know which parameters APPC expects for executing the config scale out operation. Note, again, that the VNF template created in CDT is visible within APPC only. As such, other ONAP components don’t have access to this information. As workaround to make the vLB/vDNS scale out work, SO hardcodes in the CreateVfModuleInfra.groovy script the parameters that APPC expects to reconfigure the vLB (see Figure 1). Some of the values (i.e. the IP addresses) are part of preload that SO retrieves from SDNC at instantiation time for VF module configuration. The value of the “enabled” flag, instead, which is not in the SDNC preload, is directly hardcoded in the payload that SO sends to APPC. As a consequence, the Scale Out use case delivered for Beijing works only for the vLB/vDNS VNFs.

Proposals for Casablanca Release
For Casablanca release, we plan to extend the current Scale Out use case with closed-loop operations. While the manual option via VID will be still available, a new, automated way to kick the workflow will be implemented. This will include:
· Defining policies for triggering scale out operations automatically as part of closed-loop;
· Designing microservices that will analyze VNF telemetry to detect policy violations.

To start, we can reuse policies and microservices that were developed for a Scale Out Proof of Concept (PoC) delivered for the initial OpenECOMP seed code release (i.e. the Threshold-crossing microservice and associated policies for the old vLB/vDNS use case).

As part of the improvements to the overall Scale Out use case, the limitation described above must be removed, so as to be able to scale multiple VNFs using the same workflow and building blocks. The options described below for making the use case more generic are NOT necessarily mutually exclusive, they could co-exist at the same time.

NOTE: The description below is not intended to catch all the flows and calls between ONAP components for the Scale Out use case. Its only purpose is to describe the use case options at high level. For each proposed option, detailed requirements and flows must be provided in separate documents.

Option 1: SO-to-APPC-payload approach
This approach is similar to the one adopted for Beijing release, without the limitation described above in the “Problem” section.

Before creating a new VF module, the user has to preload the VF module configuration to SDNC. All the configurations parameters are manually set. The user can preload N configurations ahead of time, but they still need to monitor if some configuration is still available when a new VF module is created.

To avoid the problem described before, SO needs to receive information about the parameters that will be used during VNF reconfiguration and their values. Note that these parameters can be part of the SDNC preload. If so, SO can retrieve their values from the preload itself, otherwise the default value specified by the service designer will be used. Then, SO builds a payload that contains the config scale out parameters and their values. The payload is passed to APPC via DMaaP, together with the UUID of the VNF and the new VF module (vnf-id and vf-module-id, respectively). Note that, unlike Beijing, SO has all the information required to build the payload (i.e. config scale out parameters and their values), so no hardcoded part is necessary. APPC uses vnf-id to query AAI to determine what type of VNF it is and also look at the VNF state. The vf-module-id, instead, is needed to drill down the VNF information in order to get the vf-model-name that allows the retrieval of the right template in the APPC database to build the scale out request. APPC matches the content of the received payload against the VNF template defined in CDT before executing the config scale out action against the VNF.

For manual scale out, the service designer or user can pass the config scale out parameters (e.g. as JSON object) to VID, which will attach them to the scale out request to SO. For automated scale out, instead, the service designer or user can define the config scale out parameters (e.g. as JSON object) in CLAMP during control loop design. CLAMP will push the config scale out parameters to the Policy engine. During closed loop, Policy will send a scale out request to SO, with the config scale out parameters as payload (in this design, Policy acts as a pass-through element).

Required work:
· For the automated use case, CLAMP needs to support config scale out parameters declaration;
· For the automated use case, Policy needs to pass the config scale out parameters to SO;
· For the manual use case, VID needs to support config scale out parameters declaration (e.g. as JSON object) and pass those parameters to SO;
· CreateVfModuleInfra.groovy script in SO (which implements the CreateVfModuleInfra workflow) needs to be made generic, removing hardcoded parts.

Pros:
· Low-risk solution. It reuses some blocks already developed for previous ONAP releases;
· Because some building blocks are already available (although some of them may require some change), use case development can start soon;
· A PoC is already available. The SO workflow delivered for Beijing has been cleaned up and is triggered manually using SO APIs (e.g. via Postman). Although the new code may need to be refactored to adapt to latest SO changes, the PoC can be used to drive the development of the use case for Casablanca

Cons:
· Although closed-loop automation will be developed to automate scaling operations, the scale out use case will not be fully automated because VF module configuration has to be manually preloaded into SDNC;
· Config scale out parameters declaration in CLAMP as part of closed-loop may be a temporary solution. In the future, scale out configuration may be modeled differently, either as part of SDC or “Option 2” described below.

Option 2: Using the Controller Design Studio
The Controller Design Studio (CDS) will be contributed to ONAP as part of Casablanca release. CDS extends the current capabilities of CDT, allowing a service designer to create both a VNF template (as in Beijing) and a configuration template that will be used to configure VF modules once they are created. SDNC will support collection of resource instantiation artifacts modeled at design time using CDS. SDNC will leverage the NETBOX capability to automate IP assignment and a Naming microservice for policy-driven resource naming generation. Default name values can also be used, if preferred. When the automated capabilities are used, SDNC automatically creates and assigns a name to a resource (e.g. a VM, network, etc.), based on predefined resolution strategies indicated in the Data Dictionary (DD). DD allows service designers and users to define how the parameters defined in the instantiation model can be resolved (automated capability, static value, or default value) and where the to retrieve resolution information from (MSDAL or database). Thanks to model-driven automation, the service designer or users can choose not to preload SDNC with VF module specific configuration before instantiating a VF module, but to rely on a fully automated approach.

Regarding the application of CDS to the Scale Out use case, the service designer will design the service in SDC and use the CDT tool in APPC to define a VNF template, as for Beijing release. In addition, the service designer will use DD to specify how each parameter used for config scale out will be resolved (e.g. how to assign values to “ip-addr”, “oam-ip-addr”, and “enabled” in case of the vLB/vDNS VNFs – see Figure 1).

The scale out workflow in SO can be triggered manually or as part of closed loop. In both cases, SO passes to APPC the UUID of the VNF and the new VF module (vnf-id and vf-module-id, respectively). APPC uses vnf-id to query AAI to determine what type of VNF it is and also look at the VNF state. The vf-module-id, instead, is needed to drill down the VNF information in order to get the vf-model-name that allows the retrieval of the right template in the APPC database to build the scale out request. APPC will then use the resolution strategy defined in DD for assigning values to the config scale out parameters previously declared in CDT as part of the VNF template. Finally, APPC executes the config scale out action.

Pros:
· With CDS, Scale Out is fully automated: no SDNC preload needs to be provided, unless, for some reason, a VNF doesn’t support CDS. In this case, Option 1 could be used;
· Config scale out parameters resolution can leverage DD functionalities;
· CDS functionalities can be used for both automated (i.e. closed-loop) and manual triggers.

Cons:
· Being a new contribution to ONAP, CDS needs to be fully integrated and tested with other components. Although CDS is already part of ECOMP, contributing CDS to ONAP may require some code or functionality changes. As such, full availability of CDS may come later or after Casablanca release.
· APPC needs to be integrated with DD. This requires new work (i.e. DD adapter/connector) that may not be available until later in the release process.

Further comments:
· If CDS will be part of the ONAP architecture, it’s adoption can be considered for the Scale Out use case. However, this would be a stretch goal. Depending on the progress made on integrating CDS with ONAP, development of additional code (e.g. DD adapters/connectors), and resource availability, some of the capabilities described in this section may be considered for the Scale Out use case that will be delivered for Casablanca. If this is not possible, the approach based on CDS will be considered when ready (perhaps for Dublin release).

image1.png
Reference Data Template Parameter Definition
Action Vnf Type Vnfc Type Protocol
[CDnﬁgSmlaOln] [vLoadBaInnDelMSleoadBalanee(MS 0 } [J [NETCONF-XML]

Template Identifier

[Upload parameters from PC UPLOAD PD FILE
UPLOAD KEY FILE

[Upload key file from PC. You can upload a key file only if you have some parameters.
NAME DESCRIPTION TYPE REQUIRED DEFAULT SOURCE RULETYPE
ip-addr ([true)
oamvip-addr (e &)

enabled

image2.png
Action Vnf Type Vnfc Type Protocol

ConfigScaleOut vLoadBalancerMS/vLoadBalancerMS 0 J ‘ ‘ [NETCONF-XML

Template Identifier

Upload template from PC

File Editor

>
>${ip-addr}</ >
>${oam-ip-addr}</

>${enabled}</ >
>
>

VF Module Scale Out Use Case

gt st Ot et s i Tk
e S 8 DR XN o 0
i Bt i o e s e e
o o o Ao S

O s it i s s s s oo e s e
O e o o e G
T ey
[

R rg e o e o 1 T e s e e
AT o s S S et ety g)
s for e, s 1 g 1 S

[et e

