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• Why Microservice at OPEN-O   

• Challenges of Microservice  

• MSB(Microservice Bus) Solution 

• What can MSB bring to ONAP 
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Monolith vs Microservice 
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Monolith Microservices 

Scaling Monolith Scaling Microservices 

Process 
 
Machine 

The microservice architectural style  is an 
approach to developing a single application as a 
suite of small services, each running in its own 
process and communicating with lightweight 
mechanisms, often an HTTP resource API. 
                                                          -Martin Fowler 

No performance issue here 
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Why chose Microservice Architecture? 

How to make orchestration reliable and scalable? 
OPEN-O is a large, complex software system 
Each component may have different resource requirement 
Each component may have different working load 

How to integrate existing seed codes in 
different technical stack?  
We didn’t start from scratch 
A dozen of existing seed codes repos 
Ambitious release plan 

How to build an OPEN community? 
We have various members and we are 
expecting more joining in 
Each organization has its own tech Stack 
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Ambitions Sun Release Plan 

We had made an ambitions plan for SUN Release 
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Build an Open Community  

Build an open community so that everyone can enjoy the party 
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Challenges of Microservice Architecture 

 
Microservice Architecture comes at a price: Complexity 

 
How do the clients application access the back end services? 

How do the client or another service - discover the location of a 
service instance? 



Direct Client-to-Microservice Communication？ 

 

 
❑ Add complexity to client codes 
❑ Nightmare for firewall configuration 
❑ Coupling of client and individual 

services 
❑ Cross-domain issue for web app 

 

This approach has some 
problems: 

 



Solution: Service Gateway 

Service gateway hides the complexity 

Simplify the client codes.  
Reduce request roundtrips 
Provide API management 
Solve cross-domain issue for 
web app 

 



How to find the service? 

In order to access a service, you need to know 

the exact endpoint(IP & Port)  

 

 

 

IP & Port 
dynamically 

assigned 

IP & Port 
dynamically 

changing 
How to load 

balancing 

Service endpoint doesn’t change a lot 
Consumer can get the endpoint from  configuration 
files 

“Traditional” application 

The IP & port is dynamically allocated  
IP & port changes along with the scaling/ updating/ 
self-healing of service instances 

Microservice application 



Solution: Service Registration & Discovery 

Service Registration:  

➢ Service providers register 
themselves to the registry when start 
up 

➢ Update service information when 
service instances change 

 

Service Discovery： 

➢ Service consumers query registry to 
find the locations of service 

➢ Two approaches: Server-side 
discovery & Client-side discovery 
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OPEN-O Microservice Solution: High Level Architecture 

 Access Service 
(Server-side discovery) 
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Service Discovery Client 

OPEN-O Microservice Solution : MSB Components 
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MSB Features-High Availability 
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Service B 

Service C 

Service D 

Service E 

Service A 

Load balancer(DNS Server/LVS etc.) in the 
front end 
Service gateway cluster to avoid SPOF of 
service gateway 

Access Layer 

Service gateway as the load balancer for 
services 
Deploy multiple service instances to avoid 
SPOF of service 

Service Layer 



MSB Features-Separated gateway for External and Internal 

Routing 
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Stricter access control 
Protocol translation(eg. https->http) 
… Expose the services(Rest API, UI pages, etc.)which 

need to be accessed by external systems 
Solve the cross-domain issue for web app 
Stricter access control 
Adaption between external API and internal service 

External  service gateway 

Routing and load balancing of the API calls within 
the system 
Less control in trusted zone 
Light weight communication protocol 

Internal API gateway 
(router) 

Registry 

Can add more gateways according to 
deployment scenarios 



MSB Features-Extendability 

• Extendable architecture for adding 
functionality 
 Auth: add auth to APIs, integrated with 

Openstack keystone 

 Driver routing: add driver specify routing logic 
for devices 

 Logging: API calling logging 

 Service health monitoring 

 ACL,API Analytics,Transformations 

 Anything: new functionality can be added on 
demand by plugins 
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MSB Features-Service API Portal 
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MSB Features-Service Healthy Monitoring 
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MSB Features-API Monitoring 
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How MSB may fit into ONAP (Service Discovery & Routing) 
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Before: 

…… 

How to call service: 

After: 
"apigateway": "https://apigateway.onap.org:80" 
 

GET https://apigateway.onap.org/api/aai/v8/cloud-
infrastructure/cloud-regions/cloud-region/{cloud-owner}/{cloud-
region-id} 

API gateway routes the request to:  
GET https://c1.vm1.aai.simpledemo.openecomp.org:8443/aai/v8 
/cloud-infrastructure/cloud-regions/cloud-region/{cloud-
owner}/{cloud-region-id} 

Using a configuration file, we might have 
problems on scaling, failover and update 

MSB handles the service 
discovery & routing & LB 

MSB as the single 
entry point 



How MSB may fit into ONAP(reverse proxy for web app) 
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Before: 
The business logic(rest service) forwader must be  
add to front end server 
Solve the cross-domain issue cause coupling of 
business logic and UI pages 
 

Service Gateway 
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After: 
service gateway to solve cross-domain issue 
Cache for static resources (page, picture) 
Clearer boundary between UI and business logic 

page 

rest 
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Thank You 
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