
Microservice Powered Orchestration 

Huabing Zhao  ZTE, System Engineer, Network Management & Service, OPEN-O Common Service PTL 

zhao.huabing@zte.com.cn 

Zhaoxing Meng ZTE, NFV&SDN Architect, Network Management & Service, OPEN-O Common Service PTL 

zhaoxing.meng1@zte.com.cn 

 



Agenda 

• Why Microservice at OPEN-O   

• Challenges of Microservice  

• MSB(Microservice Bus) Solution 

• What can MSB bring to ONAP 

2 



Monolith vs Microservice 

3 

Monolith Microservices 

Scaling Monolith Scaling Microservices 

Process 
 
Machine 

The microservice architectural style  is an 
approach to developing a single application as a 
suite of small services, each running in its own 
process and communicating with lightweight 
mechanisms, often an HTTP resource API. 
                                                          -Martin Fowler 

No performance issue here 



4 

Why chose Microservice Architecture? 

How to make orchestration reliable and scalable? 
OPEN-O is a large, complex software system 
Each component may have different resource requirement 
Each component may have different working load 

How to integrate existing seed codes in 
different technical stack?  
We didn’t start from scratch 
A dozen of existing seed codes repos 
Ambitious release plan 

How to build an OPEN community? 
We have various members and we are 
expecting more joining in 
Each organization has its own tech Stack 



5 

Ambitions Sun Release Plan 

We had made an ambitions plan for SUN Release 



6 

SDN 
Driver 

VNFM 
Drivers 

VIM 
Drivers 

ACCESS/WAN SDN 
Controller Drivers 

NFV SDN  
Controller Drivers 

Orchestrator Service 

Model Designer 

Portal GUI Portal … Test 
& 

Lab 
(for 

feature) 
GS-O 

Service 
Decomposer 

Service 
Lifecycle Mgr. 

Service 
Parser 

Abstract NBI 

SDN-O 

SDN 
Res. 
Mgr. 

Abstract NBI 

Abstract SBI 

NFV-O 

NFV Res. Mgr. 

NFV Monitor 

NS Lifecycle Mgr. 

Abstract NBI 

Abstract SBI 

VPN 

SDN Lifecycle Mgr. 

Traffic 
Optimize 

VAS Mgr. 

… 

SDN 
Monitor 

O-Common 
External System 

Register 

Template Mgr. 

Analytics 

Policy 

Inventory 

… 

Common Service 

HA 

Log 

Driver Mgr. 

… 

Micro-Service Bus 

Protocol Stack 

Auth. 

EMS/NMS 
Driver 

Parser 

NFV 
Driver 

Workflow Engine 

Catalog 

VIM 
Drivers 

Challenge of Integration 
We get bigger challenge for ONAP 
integration 



7 

Build an Open Community  

Build an open community so that everyone can enjoy the party 

 Microservice Platform 

Vendor Operator 
Partner 

Individual Developers 

Portal 

Global Service-O 

Common 
Service 

Test 
& 

Lab 

O
rch

e
stra

to
r 

C
o

m
m

o
n

 SDN-O NFV-O 

Driver Driver Driver Driver Driver 

Legacy System Partner App 

SDN Controller VNFM VIM VNF 



Challenges of Microservice Architecture 

 
Microservice Architecture comes at a price: Complexity 

 
How do the clients application access the back end services? 

How do the client or another service - discover the location of a 
service instance? 



Direct Client-to-Microservice Communication？ 

 

 
❑ Add complexity to client codes 
❑ Nightmare for firewall configuration 
❑ Coupling of client and individual 

services 
❑ Cross-domain issue for web app 

 

This approach has some 
problems: 

 



Solution: Service Gateway 

Service gateway hides the complexity 

Simplify the client codes.  
Reduce request roundtrips 
Provide API management 
Solve cross-domain issue for 
web app 

 



How to find the service? 

In order to access a service, you need to know 

the exact endpoint(IP & Port)  

 

 

 

IP & Port 
dynamically 

assigned 

IP & Port 
dynamically 

changing 
How to load 

balancing 

Service endpoint doesn’t change a lot 
Consumer can get the endpoint from  configuration 
files 

“Traditional” application 

The IP & port is dynamically allocated  
IP & port changes along with the scaling/ updating/ 
self-healing of service instances 

Microservice application 



Solution: Service Registration & Discovery 

Service Registration:  

➢ Service providers register 
themselves to the registry when start 
up 

➢ Update service information when 
service instances change 

 

Service Discovery： 

➢ Service consumers query registry to 
find the locations of service 

➢ Two approaches: Server-side 
discovery & Client-side discovery 

 

 

 

Service 
Registry 

Service 
Consumer 

Load 
Balancer 

Service 
Instance A 

Service 
Instance A 

Service 
Instance A 

10.74.215.33:3564 

10.74.215.211:1522 

10.74.215.8:3281 

Invoke 

Load balance & 
invoke 

Query 

Register 

Server-side discovery 

Service 
Registry 

Service 
Consumer 

Client 
SDK 

Service 
Instance A 

Service 
Instance A 

Service 
Instance A 

10.74.215.33:3564 

10.74.215.211:1522 

10.74.215.8:3281 

Load balance & 
invoke 

Query 

Register 

Client-side discovery 



OPEN-O Microservice Solution: High Level Architecture 

 Access Service 
(Server-side discovery) 

 

Service 
Provider 
Instance 

A 

Service 
Provider 
Instance 

B 

Registration 
Proxy 

Service 
Discovery 
(DNS Server) 

Service 
Consumer 

 Listen 

 Register 
Heartbeat 
Unregister 

Service 
Gateway 

L7 Service 
Updater 

Cache 

 Listen to service change 

Query 
Service  Registry 

Access Service 
(Client-side discovery)  access service Service 

Consumer 

L4 Service  
Updater 

 Update 
Service Registry 

 Listen 
to  service 

change 

Modify  
and Reload 

 Load Balance 

 Access Service 

DNS Search 

Request Routing 

Service Discovery 

 Register 



Service Discovery Client 

OPEN-O Microservice Solution : MSB Components 

Docker Listener 

DockerProxy 

Discovery 
Client 

Other Listeners 

OtherProxy 

Discovery 
Client 

register 

Service Gateway 

Service Discovery Server Cluster 
Discovery  

Server 

Discovery 
Server 

Discovery 
Server 

Discovery 
Client 

Service 
Management 

Healthy 
Check 

forward registration request 

forward registration request 

Registration Proxy Service Discovery 

Docker Cluster 

register 

OpenResty 

L7 Service 
Updater 

L4 Service 
Updater 

Cache 

Docker events 

Service Gateway 

query 

External Systems 

        3-party App 

         UI Portal 

Microservices 

Service A 

Service  
request 

forward service request 

register 

Healthy Check 

update 

Service A Service A Service B Service A Service B 

Other Cluster(VM, Mesos, K8S, Swarm …) 

Service A Service A Service A Service B Service A Service B 

Service lifecycle events 



MSB Features-High Availability 

15 

Service B 

Service C 

Service D 

Service E 

Service A 

Load balancer(DNS Server/LVS etc.) in the 
front end 
Service gateway cluster to avoid SPOF of 
service gateway 

Access Layer 

Service gateway as the load balancer for 
services 
Deploy multiple service instances to avoid 
SPOF of service 

Service Layer 



MSB Features-Separated gateway for External and Internal 

Routing 

16 

Stricter access control 
Protocol translation(eg. https->http) 
… Expose the services(Rest API, UI pages, etc.)which 

need to be accessed by external systems 
Solve the cross-domain issue for web app 
Stricter access control 
Adaption between external API and internal service 

External  service gateway 

Routing and load balancing of the API calls within 
the system 
Less control in trusted zone 
Light weight communication protocol 

Internal API gateway 
(router) 

Registry 

Can add more gateways according to 
deployment scenarios 



MSB Features-Extendability 

• Extendable architecture for adding 
functionality 
 Auth: add auth to APIs, integrated with 

Openstack keystone 

 Driver routing: add driver specify routing logic 
for devices 

 Logging: API calling logging 

 Service health monitoring 

 ACL,API Analytics,Transformations 

 Anything: new functionality can be added on 
demand by plugins 

 
17 

M
SB

 

Authentication 

API Monitoring 

Logging 

Other Plugin 



MSB Features-Service API Portal 

18 



MSB Features-Service Healthy Monitoring 

19 



MSB Features-API Monitoring 

20 



How MSB may fit into ONAP (Service Discovery & Routing) 

 

 

 

MSB 

External 
Service 

gateway 

Service 
Discovery 

Internal API Router 

O
th

e
r 

M
o

d
u

le
s …

 
V

F-C
 

Before: 

…… 

How to call service: 

After: 
"apigateway": "https://apigateway.onap.org:80" 
 

GET https://apigateway.onap.org/api/aai/v8/cloud-
infrastructure/cloud-regions/cloud-region/{cloud-owner}/{cloud-
region-id} 

API gateway routes the request to:  
GET https://c1.vm1.aai.simpledemo.openecomp.org:8443/aai/v8 
/cloud-infrastructure/cloud-regions/cloud-region/{cloud-
owner}/{cloud-region-id} 

Using a configuration file, we might have 
problems on scaling, failover and update 

MSB handles the service 
discovery & routing & LB 

MSB as the single 
entry point 



How MSB may fit into ONAP(reverse proxy for web app) 

 

 

 

Backend 
Server 

FronEnd 
Server 

Before: 
The business logic(rest service) forwader must be  
add to front end server 
Solve the cross-domain issue cause coupling of 
business logic and UI pages 
 

Service Gateway 

Backend 
Server 

FrontEnd 
Server 

Other 
Services 

After: 
service gateway to solve cross-domain issue 
Cache for static resources (page, picture) 
Clearer boundary between UI and business logic 

page 

rest 



s 

Thank You 

 

www.onap.org 

http://www.open-o.org/
http://www.open-o.org/

