APRIL 3-6, 2017 SANTA CLARA

OPEN NETWORKING // HARMONIZE, HARNESS, CONSUME

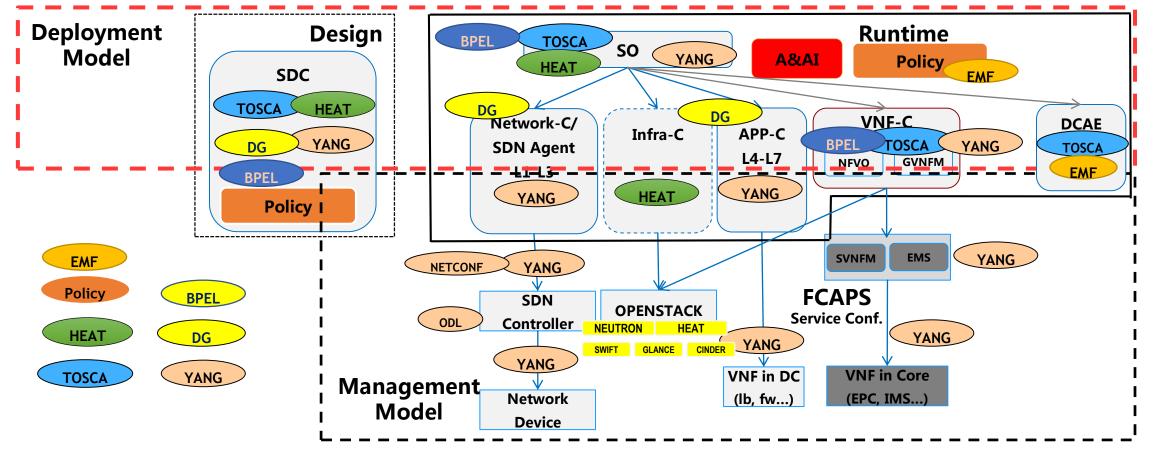
APRIL 3–6, 2017 SANTA CLARA

The Modeling interplay between Standards & Open Source NFV Orchestrator

Lingli Deng, China Mobile Rittwik Jana, AT&T Hui Deng, Huawei Bruce Thompson, Cisco

Agenda

- 1, Model Driven Architecture
- 2, Individual presentations
 - 2.1, Model Driven Platform
 - 2.2, YANG/TOSCA issues with Common NFV Modelling
 - 2.3, Coordination between SDOs and Open Source
- 3, Panel discussion
- 4, Open Floor



Model Terminology

- Model Driven
- Information Model v.s. Data Model
- Design Time Model v.s. Run Time Model
 - Template & instantiation parameters & running status/context
- Various Models involved
 - Deployment/Creation & Management
 - Object tempate (Resource, Service, Product, etc.), Workflow, Policy, Analytics

Data Model templates distribution in SDN/NFV

Outline

- Model Driven Architecture
- Model Driven Platform: Design & Run Time Modeling
- YANG/TOSCA issues with Common NFV Modelling
- Coordination between SDOs and Open Source

ONAP Target Implementation - Design "Metadata Model Driven" Execution

ONAP Base Platform Framework – Release

Service Agnostic Functional Building Block

Register building block definitions into the

3A: Create Object data model & define

attributes for the resource or service

3B: Compose Recipes (eg., Instantiate,

management, etc.) with references to

3C: Test, Certify the designed metadata

3D: Distribute the Design Catalog content

ECOMP component use of the distributed

metadata to execute desired behavior

building block functions for lifecycle

model & store in the Design Catalog

management of the object

to Run-time Catalog

Execution – Continuously

configure, monitor, control loop, change

Development & Registration - Release

agnostic functional building blocks

Resource & Service Metadata Model

Design – Release Independent

Develop/test/build/release service

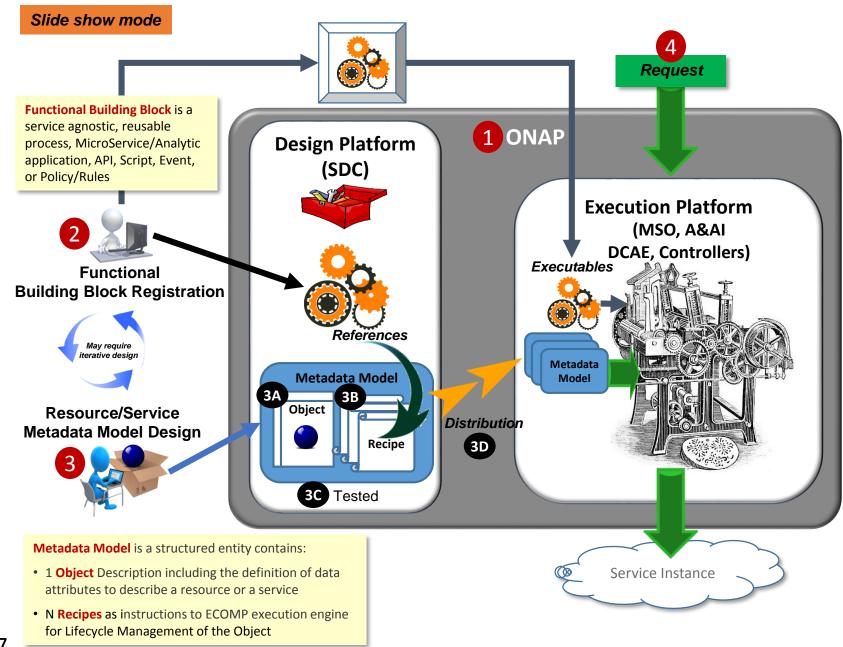
Design Platform (SDC)

Use Design Platform (SDC) to:

obiect

 \geq

 \geq


4.

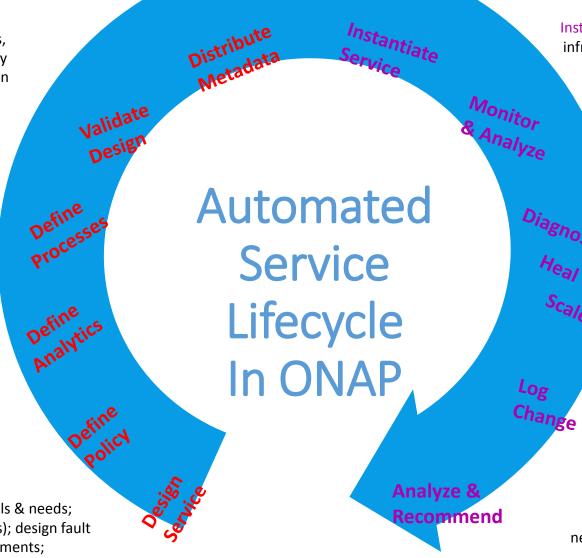
Provide Design & Execution Platform

capabilities

2.

3.

Distribute artifacts including design templates, Processes, Recipes, Analytics, Policies, etc. to Design Catalog for use by the execution environment in production


Distribute design templates / artifacts (Processes, Recipes, Analytics, Policies, etc.) to Design Test Catalog; iterate over the design & test; validate design in a Certification & Testing phase

Define processes for closed loop monitoring & diagnosis; adapt processes with experience

Define analytics governing service/resource behavior; ensure analytic applications are in place to manage behavior; adapt analytics

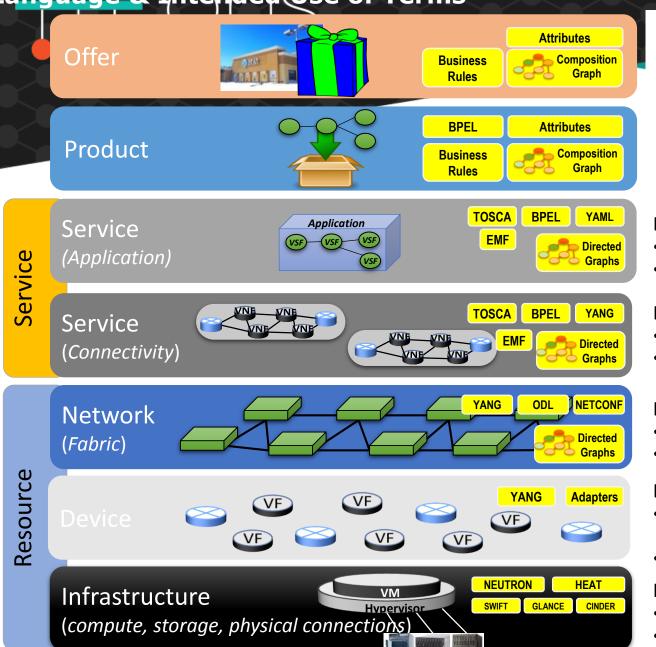
Specify policies governing service/resource behavior; adapt policy changes based on service lifecycle feedback

Design Service based on resource models & needs; includes design of underlying resource(s); design fault & other data needed from managed elements; incorporate changes based on service lifecycle feedback

Instantiate Service based on customer request or infrastructure needs; set up monitoring controls; test and turn-up service

Monitor service by listening to events; compute analytics based on data collection; publish events that require healing or scaling based on defined policies

> Actors perform the required Actions using defined processes for various closed loop scenarios; some cases may trigger processes for diagnosis that further trigger closed-loop response; verify changes restore the service to needed levels; conditions not addressed by closed-loop response referred to Operations for further analysis


Actors log/publish events to record changes made for the required conditions.

Analyze behavior over time to identify changes needed in design, policies, analytics or thresholds governing response; could include new signatures, new analytics etc.

DESIGN PHASE

Define process

Artifacts associated with each type of the models in SDC Catalog Language & Intended Use of Terms

9

Offer

- A specific type or configuration of a given product, or a bundle of products
- Defines Market segment, availability, options, contract agreement, price/tax, promotion, discount, charging/billing options, payment options

Product

- A brand with single or combined services for customer
- Includes technical composition of the services & internal financial data for costs & revenue accounting

Layer 4+ Services

- Applications to provide network based services to customers
- Can be service components or E2E services

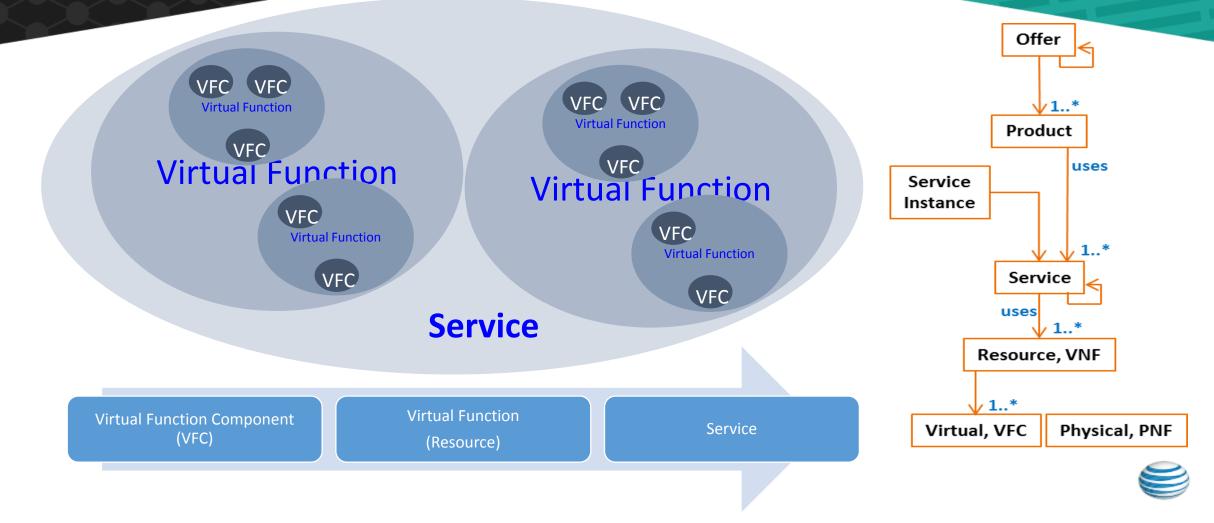
Layer 1-3 Services

- Service capabilities provided to customers
- Service components used to provide connections for application services

LAN & WAN Connections

- Connectivity configurations to provide a core backbone
- Provides connection paths across infrastructure

Device


- Physical or virtual component that provides Service connectivity and Network fabric (Includes managed or unmanaged CPE, UCPE) ?
- Components supporting the data plane

Infrastructure

- Compute and storage
- Physical connectivity between nodes (all types & locations)

Virtual Function Entity Relationship - Illustration

Outline

- Model Driven Architecture
- Model Driven Platform: Design & Run Time Modeling
- YANG/TOSCA issues with Common NFV Modelling
- Coordination between SDOs and Open Source

NFV Orchestration with TOSCA and Yang

Yang is a Data Modeling Language

Defines Language Constructs for Defining Any Schema

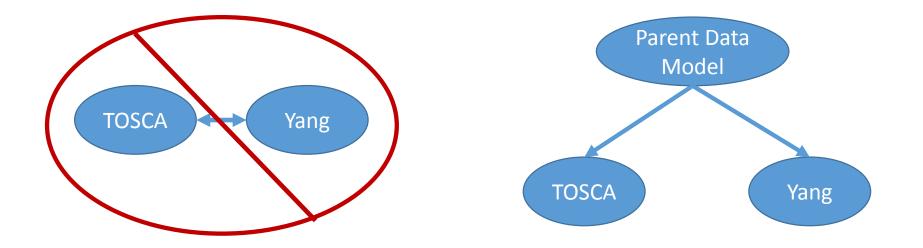
Yang was Originally Designed for Configuration of Appliances

Yang Schemas Have Been Defined For NFV Orchestration

OASIS Defines TOSCA Data Modeling Language and Base Schema in a Single Specification

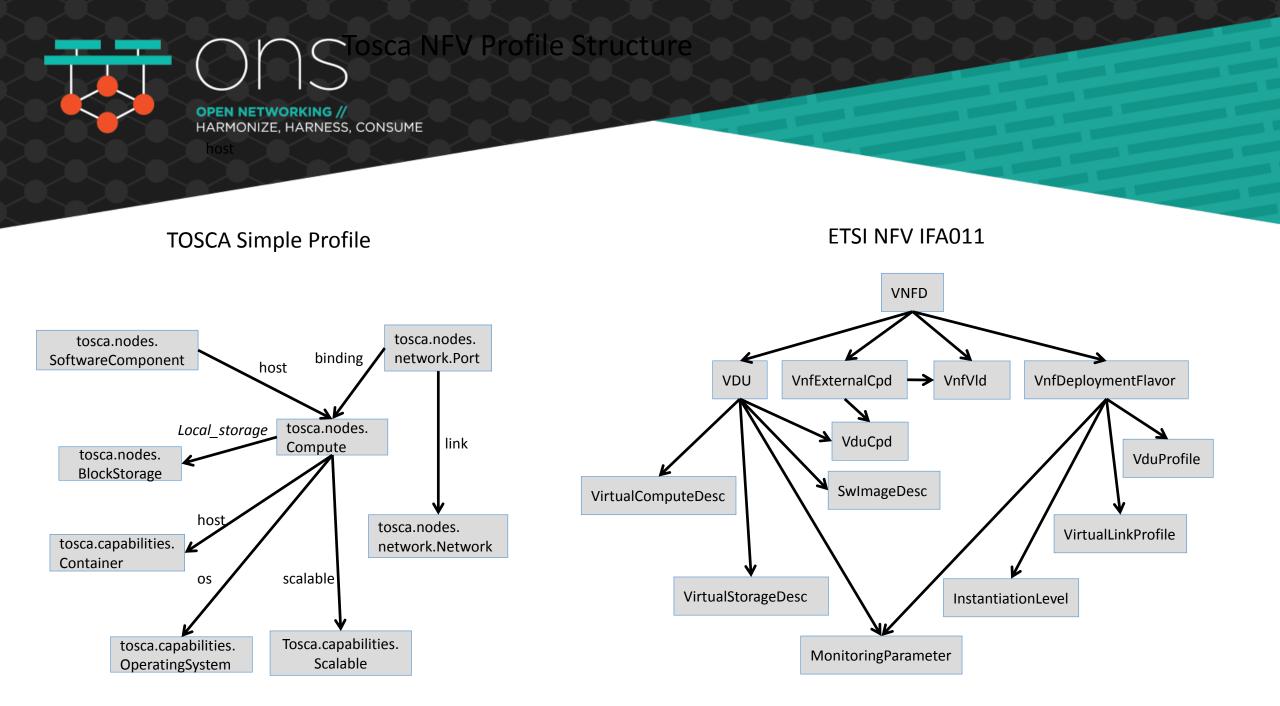
TOSCA Was Designed Specifically for Cloud Orchestration

TOSCA and Yang Provide Similar Functionality to Define Models for NFV Orchestration


	Structured Schemas	Relationships	Schema Extensions	Life Cycle Primitives	Execution Environment
TOSCA	Node, Capabilities, etc.	Requirements / Capabilities	Derived From	Defined in TOSCA Simple Profile	get_input, get_property, get_attribute
Yang	Containers	LeafRef, Identity / IdentityRef	Augment	Defined in Yang Schema	Netconf HTTP Rest

TOSCA and Yang Models for NFV

Difficult to Translate Directly Between Yang and TOSCA TOSCA and Yang Have Similar Functionality to Define Data Models TOSCA Defines a Data Model and an Execution Environment Yang Separates Data Model from Execution Environment


Yang and TOSCA Data Models Can be Derived from the Same Parent Data Model

Parent Data Model for NFV

Potential Parent Data Models for TOSCA and Yang NFV Models ETSI NFV IFA011 UML Model – Designed Specifically for NFV TOSCA Simple Profile in Yaml - Data Center Centric Model Can be Applied to NFV ETSI NFV and TOSCA Data Models Were Developed Independently ETSI NFV and TOSCA Define Similar Information Elements, Different Structure Difficult to Create a Data Model Derived from TOSCA Simple Profile That is Consistent with ETSI NFV Original TOSCA NFV Profile – TOSCA NFV Profile CSD003 **Derived from TOSCA Simple Profile** Node Hierarchy Different Than ETSI NFV Data Model New TOSCA NEV Profile – FTSI NEV Sol Work Item #1 Node Hierarchy The Same as ETSI NFV Data Model Most Nodes, Capabilities, etc. Not Derived from Existing TOSCA Simple Profile **TOSCA Simple Profile and / or ETSI NFV Models Must Change to be Consistent**

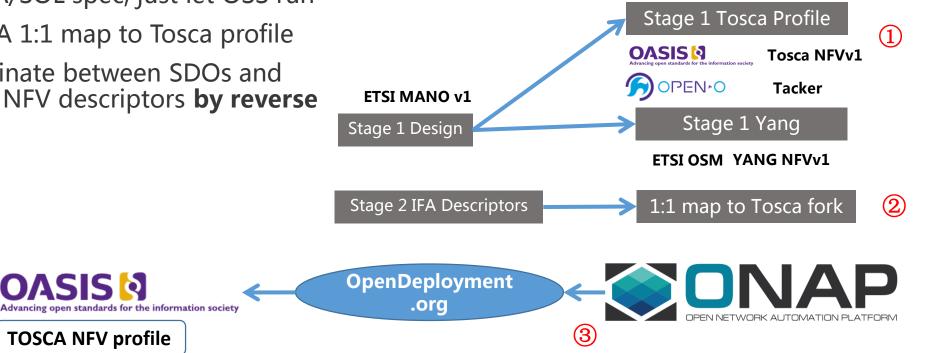
Outline

- Model Driven Architecture
- Model Driven Platform: Design & Run Time Modeling
- YANG/TOSCA issues with Common NFV Modelling
- Coordination between SDOs and Open Source

What is the issue?

ETSI						
Working Group	No.	Version	Title	OPEN-O	OSM	Tacker
MAN	GS NFV-MAN 001	v010101	Management and Orchestration	1	~	
IFA	GS NFV-IFA 007	v020101	Management and Orchestration; Or-Vnfm reference point	/		×
IFA	GS NFV-IFA 011	v020101	Management and Orchestration; VNF Packaging	×	×	×
IFA	GS NFV-IFA 014	v020101	Management and Orchestration; Network Service Templates	×	×	×
SOL	SOL001		TOSCA based NFV Descriptors (VNFD/NSD)	×	×	×
SOL	SOL003		Or-Vnfm Protocols	×	×	×
SOL	SOL004		VNF Package	\times	×	×
OASIS						
Document Name	Version	Chapter	Title			
TOSCA NFV (MANO based)	v1.0 CSD03	-	TOSCA Template for VNFD, VLD, VNFFGD, NSD	1	×	1
TOSCA NFV (IFA based)	v1.1 CSD04	8,9,10,11	TOSCA Template for VNFD, VLD, VNFFGD, NSD	×	×	×
TOSCA Simple Profile YAML	v1.1	3.9	Basic TOSCA yaml feature	1	×	1
TOSCA Simple Profile YAML	v1.1	6	CSAR	1	×	

ETSI


NFV SOL 001

Stage 3 YANG

OpenDeployment.org about NFV Modeling between standard and open source

- Give up ETSI NFV ISG IFA/SOL spec, just let OSS run (1)
- Tosca fork because of IFA 1:1 map to Tosca profile (2)
- **Opendeployment** coordinate between SDOs and (3) various OSS projects on NFV descriptors by reverse direction

TOSCA NFV profile

Panel discussion

Thank You