
Documentation: APIs, Usability and Tool
Chain

Greg Glover – Documentation PTL

February 8, 2018

ONAP Documentation – Beijing Scope

ONAP Wiki

Informal, Open Community-based

• Introducing ONAP Platform
- High level Flows & Use Cases

• ONAP “light”
- SE’s/Architects try out platform

• Wiki Sandbox
- Developers try out code

• Forums
- Feedback
- Discussion

• Community

Readthedocs

Formal, Change Controlled by
Release

• Release Notes

• Developer Guides

• User Guides

• Modeling & Arch

• API Doc & Guidelines

• Glossary / Reference

• Enhanced Tool Chain

New Doc
Projects

Beijing
Updates

New
Doc
Projects

Migrate
seed

content

ONAP API Documentation – Agenda

1. Amsterdam Status

2. Beijing Goals

➢ Format & Structure

➢ ReadtheDocs

➢ Versioning

3. Community / TSC Questions

➢ SwaggerHub

➢ Model enabled vs. API driven

➢ Hosting

API Sub-Team Members

Rich Bennett - AT&T

Dana Bobko – AT&T

Tara Cummings - Erickson

Andy Meyer – AT&T

Dave Neary – Red Hat

Jack Pugaczewski – CenturyLink

Rene´ Robert – Orange

Other Doc Team Members

Eric Debeau´ - Orange

Audrey Fry – Accenture

Thanh Ha – LF

Anuj Kapoor – Amdocs

Victor Morales – Intel

Pawel Pawlak – Orange

Steven Wright – AT&T

ONAP API Documentation – Amsterdam Status

1. Good base

• APIs generally well-documented across projects (thank you PTLs!)

• Most projects use some sort of model in their software (e.g. SDNC/APPC

using ODL MD-SAL). A&AI and graphical data base schema, probably

some Django web apps in other places

• Most projects have export programs and/or have a spec in process

2. Areas to improve

• Format – no standard list of attributes and definitions, etc.

• Repository – API documentation both in ReadtheDocs and Wiki

• Versioning – need standards established

ONAP API Documentation – Beijing Goals

1. Consistent format & structure across projects

• Use OpenAPI spec (formerly known as Swagger)

• Standard set of attributes & definitions (e.g. Name, location, Type, Description)

➢ Clear and concise summary of each API, Primary object(s), and list of Consumers

➢ Differentiate RESTful from Healthcheck and Component APIs

#1 Format - OpenAPI Specification

OpenAPI Specification –OAI/S (aka swagger spec) https://www.openapis.org/about

➢ Helps define the API’s contract for API development teams and its end consumers
➢ Sets clear expectations for the experience of integrating with the API
➢ Provides language agnostic human-readable format for describing API operations

Background

The Open API Initiative (OAI) is as an open governance structure under the Linux

Foundation. It was created by a consortium of forward-looking industry experts who

recognized the value of standardizing on how REST APIs are described. The OAI is

focused on creating, evolving and promoting a vendor neutral description format for APIs,

regardless of the language they are developed and implemented in. SmartBear Software

donated the Swagger Specification directly to the OAI as the basis of this Open

Specification.

https://www.openapis.org/about

ONAP API Documentation – Beijing Goals

1. Consistent format & structure across projects

• Use OpenAPI spec (formerly known as Swagger)

• Standard set of attributes & definitions (e.g. Name, location, Type, Description)

➢ Clear and concise summary of each API, Primary object(s), and list of Consumers

➢ Differentiate RESTful from Healthcheck and Component APIs

2. ReadTheDocs as central repository for all API documentation

• Examples: Swagger.json, Postman collections, HTTP Headers (params/values), etc.

• Additional functional descriptions and interfaces as needed

#2 ReadtheDocs – Current API documentation

#2 ReadtheDocs – Current API documentation, cont’d

#2 ReadtheDocs – Current API documentation, cont’d

#2 ReadtheDocs – Current API documentation, cont’d

#2 ReadtheDocs – Element examples

Swagger.json Options:
a. Swagger json file displayed by Sphinx directive ..

Swaggerv2doc (Note: If projects need to add
information, an equivalent / ReStructured text
version can be created)

b. Actual json file referenced in a nexus.onap.org
artifact repo (probably raw site)

c. Reference to a specific gerrit repo branch/verision

Postman Collections
• Export from postman tools, commit to gerrit, release

in a nexus.onap.org raw site and then reference from
readthedocs

• Not required for all projects

HTTP Headers

ONAP API Documentation – Beijing Goals

1. Consistent format & structure across projects

• Use OpenAPI spec (formerly known as Swagger)

• Standard set of attributes & definitions (e.g. Name, location, Type, Description)

➢ Clear and concise summary of each API, Primary object(s), and list of Consumers

➢ Differentiate RESTful from Healthcheck and Component APIs

2. ReadTheDocs as central repository for all API documentation

• Examples: Swagger.json, Postman collections, HTTP Headers (params/values), etc.

• Additional functional descriptions and interfaces as needed

3. Versioning

• Need more prescriptive naming standards & version control

• Possible recommendations include: Semantics (e.g. “Major, Minor, Patch”), Backwards

Compatibility (BWC) Policy, and Custom Headers

ONAP API Versioning

Potential recommendations* for standardizing OAP APIs:

• Standard semantics (e.g. “Major, Minor, Patch”) would ensure all APIs will be “speaking
the same language”

• Backwards compatibility policy would define / limit how long previous versions need
to be active/available

• URL Structure and Custom headers would allow API clients to target specific versions
and servers and evolve APIs without breaking existing clients

* Subject to PTL support and TSC approval

ONAP API Documentation – Other PTL / TSC Questions

1. Use of SwaggerHub for E2E API Design, Build, Documentation, and Deployment?

2. Hosting options

➢ SwaggerHub

➢ CloudCode

➢ Other?

3. Model enabled vs. API driven approaches

➢ Are both appropriate?

➢ When should we use one versus the other?

Benefits

✓ Cloud-Based Hosting

✓ Auto synching with GitHub, etc.

✓ Collaboration

✓ Workflow

✓ Versioning

Costs

o Funding

o Set-up & Training

o Changing current workflows

ONAP API Documentation – SwaggerHub Description

Swaggerhub components:
• Swagger UI – human readable version provides interaction with API without coding

• Swagger Editor – document and validate API according to OAS

• Swaggerhub – team collaboration, maintains secure version repository, integration to other dev
and management tools

• Swagger Codegen – generate client/server sample code in 30+ programming languages

SwaggerHub is an integrated API Development platform, built for teams,
that brings the core capabilities of the Swagger framework to design, build,
document and deploy APIs. SwaggerHub enables development teams to
collaborate and coordinate the entire lifecycle of an API with the flexibility
to integrate with the toolset of your choice.

• http://app.swaggerhub.com

http://app.swaggerhub.com/

ONAP API Documentation – SwaggerHub Features

ONAP API Documentation – SwaggerHub Benefits

• Cloud-Based Editor with Advanced Design Capabilities
• Write and edit your Swagger definition in a cloud-based editor with built-in style validation to reduce errors, and auto-mocking that lets you

preview how your API will behave and validate design decisions without writing any code.

• Integrated Documentation Workflow
• Write your Swagger definition, work with your documentation, and generate code and client SDKs in one intuitive interface, without the need

to work across multiple tools. SwaggerHub keeps everything in sync and seamlessly integrates with source control and API management
platforms.

• Secure Cloud-Hosting
• Store all of your API definitions, and associated documentation, in a platform built for APIs. SwaggerHub auto-saves your work throughout the

design process and provides a central place to host your documentation, without the need to setup a server.

• Privacy and Access Control
• Control who can access your APIs, and keep sensitive information secure with SwaggerHub’s built-in privacy controls. Use access controls when

designing new APIs, or documenting an existing Swagger definition.

• Versioning and Publishing
• Update and iterate continuously, with the ability to manage multiple versions of your API in SwaggerHub. New versions copy existing syntax

from the last updated version so you’ll never have to start building from scratch.

• Collaboration & Team Management
• SwaggerHub provides a central platform for teams to collaborate throughout the design and documentation of your API. Securely share your

APIs with internal and external contributors, and track issues in real-time with comments in the SwaggerHub editor. SwaggerHub will
automatically notify collaborators whenever a change is made the definition.

• Sync with Source Control and API Management Platforms
• Manage the entire lifecycle of your API from a central platform, which syncs the different versions of your API definitions with source control

tools and API management platforms — allowing you to update your Swagger definition and automatically update your documentation, server
code, and deployment.

• Reuse Common Models
• Store all your common components in Domains, which can then referenced from all your APIs, standardizing work and saving time and effort.

ONAP API Documentation – SwaggerHub Pre-Planning

1. Identify team –API clients, API providers, API governance
• Sign up for team or enterprise plan

https://app.swaggerhub.com/prices?_ga=2.71334490.893424181.1517237482-
936456995.1511884392

2. Establish process
• PayPal example:

3. Issue guidelines
• Security
• Naming of resource, parameters, responses
• Error handling
• Data format handling
• Versioning
• Zalando example: http://zalando.github.io/restful-api-guidelines/index.html#general-guidelines

https://app.swaggerhub.com/prices?_ga=2.71334490.893424181.1517237482-936456995.1511884392
http://zalando.github.io/restful-api-guidelines/index.html#general-guidelines

ONAP API Documentation – SwaggerHub Set-up

• Setup environment

• Define Organizations and Teams

• Create APIs under Organizations

• Invite Collaborators

• Training

• Create, import, document, version, fork, merge API

• Sync API definitions with GitHub, GitLab, Bitbucket

• Mock API

• Generate server stub and client SDK

Details for above steps: https://app.swaggerhub.com/help/tutorials/getting-started

https://app.swaggerhub.com/help/tutorials/getting-started

ONAP API Documentation – SwaggerHub API-1st approach

Diagram from: https://www.codeguru.com/cpp/frameworks/the-value-of-specification-first-development-using-swagger.html

https://www.codeguru.com/cpp/frameworks/the-value-of-specification-first-development-using-swagger.html

ONAP API Documentation – SwaggerHub Code-1st approach

https://blog.philipphauer.de/enriching-restful-services-swagger/

