

ONAP Offline Deployment
Architecture of current Samsung solution

v0.2, 9.7.2018

ONAP Offline Deployment

Content:

Version Control 3

Contributors 3

1. Concept description 4

2. Preparations 5

2.1 Configure nexus - npm hosted repo, docker hosted repo, realms, users 5

2.2 Populate nexus with docker images 6

2.3 Populate nexus with npm packages 7

2.4. Other stuff 7

3. Installation process 10

3.1 Deploy infrastructure 11

3.2 ONAP deployment 11

4. Planned activities and improvements 12

5. Questions / Concerns to be addressed 13

ONAP Offline Deployment

Version Control

Version Date Modified by Comment

0.1 27.06.2018 Michal Ptacek Initial draft

0.2 09.07.2018 Michal Ptacek Format improvements

Contributors

Name Mail

Michal Ptáček m.ptacek@partner.samsung.com

Jaroslav Šafka j.safka@partner.samsung.com

Milan Verešpej m.verespej@partner.samsung.com

Vladyslav Malynych v1.malynych@partner.samsung.com

ONAP Offline Deployment

1. Concept description

Purpose of this document is to describe concept of current design for offline ONAP

deployments. In our solution we are using local nexus repository. Docker containers are

accessing repositories over https, the nginx is in there as reverse proxy to arrange that.

“The main principle in place is that all docker images / pip packages / deb/ rpm packages /

cloudify blueprints / git repos / files which are needed during ONAP OOM installation are

downloaded during “online deployment” and pulled into local nexus accessible via nginx

proxy. Original DNS Domains remains unchanged in original deployment scripts and are

simulated by nginx.”

Nginx is fast proxy which provides also https support and distinguish to which port it

should direct requests (e.g. Port 443 is shared with Nexus GUI and docker repository).

Actually all traffic is directed to nginx which provide https access and then send data to

nexus over private docker network (named nexus_network). Nginx is used also for git repos

and normal http data based on host name.

ONAP Offline Deployment

2. Preparations

Essential part of our solution is in local nexus, which has to be populated by all required

artifacts. We’re using standard sonatype/nexus3 docker container.

 sonatype/nexus3 "sh -c ${SONATYPE_DIR}/start-nexus-repository-manager.sh"

19 hours ago Up 3 hours 8081/tcp nexus

2.1 Configure nexus - npm hosted repo, docker hosted repo,

realms, users

Nexus must be accessed by his FQDN, like http://nexus.student12/

(Because on port 80 is more services/domains, and it is distinguished by his fqdn on proxy)

● Login (default: admin / admin123)

● Settings -> repositories > create repository #docker

○ Select docker (hosted)

○ Name: anything you want (ex: onap)

○ Repository connectors: HTTP set to 8082

○ Force basic authentication: UNchecked

○ Enable docker V1 API: checked

● Settings -> Repositories > create repository #npm

○ Select npm (hosted)

○ Name: npm-private

○ Deployment policy: TODO (Allow redeploy)

● Settings -> Security -> Realms

○ Add Docker Bearer Token Realm

○ Add npm Bearer Token Realm

● Settings -> Security -> Users

○ Add user docker / pwd docker

○ Rights same as anonymous docker

http://nexus.student12/

ONAP Offline Deployment

2.2 Populate nexus with docker images

When you want add images to nexus, then you must login as admin to each domain.

Ex:

$ docker login // login to default docker.io

$ docker login gcr.io // login to gcr.io repository

Images are saved from “online deployment” using “

docker image save -o $filename".tar" $image:$tag

also tag is preserved (noted: in some cases more versions of same image are required by

ONAP components)

Subsequently images are loaded into docker cache by

docker load -i $filename

And eventually pushed into local nexus by

docker push $image_name:$tag

ONAP Offline Deployment

2.3 Populate nexus with npm packages

There are multiple containers in ONAP (e.g. sdnc-dgbuilder, appc-dgbuilder & sdnc-portal)

which requires npm packages. Those npm packages are collected from those containers

from ~/.npm directory and copied into install server.

Those are then inserted into local nexus by following 3 steps:

set registry to local nexus

$ npm config set registry https://nexus.student12/repository/npm-private/

add user admin / admin123 to access nexus

$ npm adduser

collect all tgz files and publish them into nexus

$ for i in `find . -name *.tgz`;do npm publish $i --access public;done

2.4. Other stuff

To be able to fully deploy ONAP several git repos, cloudify blueprints, binaries (helm,

kubectl) and files are needed as well. Those are not changing that often and are statically

stored inside our installation repo. They are deployed during kubernetes cluster deployment

or later accessible via nginx simulated domains when they are requested from ONAP pods.

Additionally OOM was modified on several places to handle offline deployment:

kubernetes/common/dgbuilder/templates/deployment.yaml

38,45c38,39

< command:

< - /bin/bash

< - -c

< - >

< UPDATE_HOSTS_FILE >> /etc/hosts;

< UPDATE_NPM_REGISTRY;

< cd /opt/onap/ccsdk/dgbuilder/;

< ./start.sh sdnc1.0 && wait

> command: ["/bin/bash"]

> args: ["-c", "cd /opt/onap/ccsdk/dgbuilder/ && ./start.sh sdnc1.0 && wait"]

103d96

<

https://nexus.student12/repository/npm-private/

ONAP Offline Deployment

kubernetes/dcaegen2/charts/dcae-bootstrap/templates/job.yaml

74,81d73

< - mountPath: /etc/pki/ca-trust/source/anchors

< name: root-ca

< command:

< - /bin/sh

< args:

< - -c

< - /scripts/bootstrap.sh; sleep infinity

< - update-ca-trust extract; /scripts/bootstrap.sh; sleep infinity

106,108d97

< - name: root-ca

< hostPath:

< path: /usr/local/share/ca-certificates/extra

kubernetes/dcaegen2/charts/dcae-cloudify-manager/templates/deployment.yaml

71,72d70

< - mountPath: /etc/pki/ca-trust/source/anchors

< name: root-ca

85,86d82

< echo -e '\nREQUESTS_CA_BUNDLE="/etc/ssl/certs/ca-bundle.crt"' >>

/etc/sysconfig/cloudify-restservice

< update-ca-trust extract

100,102d95

< - name: root-ca

< hostPath:

< path: /usr/local/share/ca-certificates/extra

kubernetes/onap/values.yaml

42,43c42

< #pullPolicy: Always

< pullPolicy: IfNotPresent

> pullPolicy: Always

101d99

< openStackUserName: "vnf_user"

103,105c101

< openStackKeyStoneUrl: "http://1.2.3.4:5000"

< openStackServiceTenantName: "service"

< openStackEncryptedPasswordHere: "c124921a3a0efbe579782cde8227681e"

> openStackVNFTenantId: "1234"

ONAP Offline Deployment

kubernetes/sdnc/charts/sdnc-ansible-server/templates/deployment.yaml

50,60c50,51

< command:

< - bash

< - "-c"

< - |

< pip install /root/ansible_pkg/*.whl

< dpkg -i /root/ansible_pkg/*.deb

< cp /etc/ansible/ansible.cfg /etc/ansible/ansible.cfg.orig

< cat /etc/ansible/ansible.cfg.orig | sed -e 's/#host_key_checking/host_key_checking/'

> /etc/ansible/ansible.cfg

< touch /tmp/.ansible-server-installed

< cd /opt/onap/sdnc

< ./startAnsibleServer.sh

> command: ["/bin/bash"]

> args: ["-c", "cd /opt/onap/sdnc && ./startAnsibleServer.sh"]

86,87d76

< - mountPath: /root/ansible_pkg

< name: ansible-pkg

106,108d94

< - name: ansible-pkg

< hostPath:

< path: /root/ansible_pkg

110,111c96

< - name: "{{ include "common.namespace" . }}-docker-registry-key"

<

> - name: "{{ include "common.namespace" . }}-docker-registry-key"

\ No newline at end of file

kubernetes/sdnc/charts/sdnc-portal/templates/deployment.yaml

52,58c52,53

< command:

< - /bin/bash

< - -c

< - >

< UPDATE_HOSTS_FILE >> /etc/hosts

< UPDATE_NPM_REGISTRY;

< cd /opt/onap/sdnc/admportal/shell && ./start_portal.sh

> command: ["/bin/bash"]

> args: ["-c", "cd /opt/onap/sdnc/admportal/shell && ./start_portal.sh"]

ONAP Offline Deployment

3. Installation process

Before real ONAP offline deployment is started, self-contained archive is generated from our

repo. This archive is encapsulating all data needed for ONAP deployment and it usually

consumes ~60G of disc space. As of now we’re supporting just one type of deployment

consists of 3 nodes (install server + 2 kubernetes nodes)

We have bash scripting, which will perform complete deployment of kubernetes cluster and

subsequently ONAP pods.

There are multiple configuration entries (either asked during deployment or provided prior

deployment in local_repo.conf)

e.g.

LOCAL_IP=10.2.2.6

NEXUS_FQDN=nexus.oom-beijing-preRC2-master

NODE_MAIN_IP=10.2.2.12

NODE_SLAVE1_IP=10.2.2.11

CERT_ORGANIZATION=Samsung

CERT_COUNTRY=PL

CERT_STATE=Poland

CERT_LOCALITY=Krakow

ONAP Offline Deployment

3.1 Deploy infrastructure

In this part infrastructure will be deployed. More specifically local nexus, dns, docker,

rancher & docker will be deployed on install server. Kubernetes nodes will get rancher agent

running and form kubernetes cluster.

Note: During the execution of provided install script several questions will be asked, if you

don’t want to fulfil required information during script execution, there is an option to preset

config file skipping this step.

● To execute a script simply run (from installation directory):

○ /path_to_script/selfinstall_onap_beijing.sh

Note: it is not necessary to have the script in installation directory (e.g. onap).

● Answer questions asked by the script

Note: questions will be asked only when script won’t be able to find config file

in the current folder, otherwise script will use existing config file.

● Wait until script finish execution.

Check-box:

One can verify, that 4.1 was successful in following way:

kubectl get cs should display healthy etcd-0 component

kubectl get nodes should display 2 kubernetes nodes in “Ready” state.

3.2 ONAP deployment

Before ONAP is deployed ./oom/kubernetes/onap/values.yaml in OOM should be configured

accordingly to cover correct VIM (Openstack) credentials. Also number of deployed ONAP

components might be modified in there.

ONAP installation is afterwards triggered via ./deploy_onap.sh

ONAP Offline Deployment

4. Planned activities and improvements

In July/2018 we are working on following topics to further improve our current offline solution.

1) vFWCL demo - Up to now we verified stability and vitality of offline installed

environment by running robot healthchecks and we have reached all green 43/43

result. However being able to run vFWCL demo seems to be for us another important

indication that it’s working fine.

2) Adding RHEL support - important for some future ONAP customers

3) Automating / simplifying of preparation for installation medium - currently we need to

make an online reference deployment in order to collect all artifacts for offline

deployment. By having static list of versions we would like to automate that

preparation part and remove necessity of running online installation deployment for

obtaining installation medium.

(* this will fly just for static/verified deployments of ONAP - assuming no new dependency

pops-up)

Afterwards we would like to further improve installation scripting and replace bash based

core scripts by ansible solution, which should give us more benefits in a sense of flexibility of

deployments, easier and faster maintainability of the overall solution and much more.

ONAP Offline Deployment

5. Questions / Concerns to be addressed

Our current understanding is that solution described in this document can’t be used “out of

the box” for community offline deployment approach. Instead of simulating currently used

domains, we should probably extend current support in OOM to specify own nexus for

deployments and eliminate areas where data are downloaded directly from internet (Adding

them into current docker images ?)

If we want to have offline deployment possible, we need to prohibit changes across all

ONAP projects, which can bring new dependency in upstream. How to arrange that ?

It looks like having local nexus is the only viable option as of now. Probably the only

reasonable option would be like what we’re doing, means prepare some way how to easy

collect all dependencies and populate own nexus based on actual requirements, any other

options ?

Apart of having offline nexus, there must be some installation logic utilizing modified OOM

project in order to deploy ONAP offline way. As of now we have bash scripting for that and

we plan to rewrite it to ansible solution, which is in our opinion more flexible and suitable for

various ONAP deployments. Is ansible solution acceptable for that ? To which repo such

implementation should be proposed ?

Do we need to run online deployment for getting all artifacts ?

