
ONAP Modularization

AT&T – Vimal Begwani, John Jensen, John Ng
Huawei - Chaker Al-Hakim, Margaret Chiosi, Seshu Kumar

Goal: Evolve ONAP to a more modular, agile architecture:
v Breaking ONAP components into smaller reusable modules
v Enabling technology swap-out for modules
v Reducing software footprint
v Allowing integration of non-ONAP components

Agenda
• Key ONAP challenges and critical gaps

� Issues identified by the broader ONAP user community
• Definitions of key terms
• Architecture principles and approaches as a guide to address challenges
• Refactor ONAP by leveraging common services to the fullest extent possible
• Approach: Focus on one major ONAP component at a time
• Examples: Service Orchestrator and Controller

Goal and Agenda

Problem Statement

• ONAP is too complex, too big and hard to make changes.
• ONAP Components are monolithic (SDN-C, SO) and large, not sharing common

utilities
• Service providers might have a specific module already implemented and would

like to integrate that module into ONAP
� External controllers (e.g. VNFM, SDN Controller), external orchestrators, collectors,

analytic microservices
• Service providers would like to deploy ONAP incrementally, whereas today

ONAP supports all-or-nothing approach
� Core components of ONAP such as SDC, SO, and A&AI must be deployed
� Other components can be added on as needed basis, depending on the scope of use

• Should ONAP modules migrate to cloud-native microservices?

Can incorporate additional issues and/or more details if available

Definitions of Key Terms

• Module: Implements a business capability accessed through a defined set
of APIs
� E.g. A DCAE Data Collector microservice, A&AI data repository

• Component: A collection of modules that are related in some form
� E.g. SO, Controllers, A&AI, etc

• ONAP: A collection of ONAP Components
• Microservice: Small, single-capability focused, standalone services

� E.g. IP address assignment, Tosca parser
• Cloud-Native: Container-packaged, dynamically managed, microservices-

oriented applications
� E.g. Containerized microservices managed by Kubernetes

• Service Mesh: Connective tissue between microservices
� E.g. traffic control, resiliency, security, observability
� Control plane (Istio, linkerd) and Data plane (Envoy, linkerd)
� Note: This is different from service chaining

Approach: One component at a time

Approach
1. Focus on solving component-specific problems
2. Adhere to principle of Refactoring
3. Validate new technologies on selected areas before broad use
4. Progressively build a platform of reusable technologies

� Establish project to collect Common Services over time
5. Focused partnership with selected PTLs to validate and refine our

approach
6. Learnings from initial implementation will benefit subsequent module

conversions
7. Maintain backwards compatibility
Avoids
1. Massive undertaking of decomposing all of ONAP

into functional elements in one go
2. Unnecessary disruption to ONAP User Community and

Planned Release Delivery

Evolutionary To Maintain Backwards Compatibility (Rather Than Greenfield Approach)

ONAP Architecture
Principles Applied

• Lifecycle Support
• Standardization
• Pluggable Modules
• Integration Friendly
• Backwards Compatibility
• Microservices
• Shared Services
• CI/CD Support
• Integration/Std APIs
• Cloud Env Support
• Scalability
• Availability/Resilience

High level view of functional approach and SO
functional decomposition plan

High level view of functional approach and SO functional
decomposition plan

Impacts and Issues in Current ONAP
ONAP modules are currently as
ØIndividual docker containers that are mostly bulky
ØConfined to a set of functionalities that are not allowed to develop in
parallel.
ØNot re-usable for a part of the functionality if required
ØModules have its own confined boundary space with no
transparency
ØDuplications across modules like Tosca Parsers / Dynamic Catalog …
ØIn short Monolithic non-replaceable and non re-usable components

Proposed Solution:
Microservice Based Architecture :
üThe idea is to get in the separation of concerns through
individual developed modules that could interact with each
other through a set of APIs and expose the desired
functionalities
üThese functionalities can thus be re-used across the ONAP as-
is-needed basis
üCurrent ONAP components would be needed to be segregated
to smaller functional deployable units with their interaction
driven through APIs

Micro Service

Simpler To Deploy

Simpler To Understand

Better Reusability

Faster Defect Isolation Minimized Risk Of Change

Reduced duplication

Modularity in ONAP

Message Bus

Micro Service A

Micro Service B Micro Service C

Micro Service D

User Interface

Typical Microservice Architecture Advantages of Microservice Architecture

ONAP Architecture from Deployment Perspective

Extensibility
Problem statement

In ONAP, every components implements common non-functional aspects
such as REST API handling, logging, configuration, db handling,
messaging on its own and maintained by themselves such as SO, SDC,
AAI, etc. This increases the development and maintenance efforts

This introduces the other side effects of

1. license violations,

2. security violations.

3. Sonar issues.

4. Code duplications

5. Duplicate efforts…

SDC

REST API router
& handler

Logging &
config

db messaging

SDNC specific
Business logic

messaging modelling

SO

REST API router
& handler

Logging &
config

db messaging

SO specific
Business logic

messaging modelling

REST API router
& handler

Logging &
config

db modelling

messaging

Common Libs

SDC
Common Libs

SDC

REST API
extension

Logging &
conf exten

Db extension Model ext.

SO specific
Business logic

Messaging ext

messaging

db modelling

REST API router & handler Logging &
config

SO

New API

New
model

New schema

New extension

Proposed Solution:

ü Introduce a common Lib/ SDK for the entire ONAP
projects and make it avaialable for the extension of the
projects.

ü This would leverage the projects in concentrating on
their business specific functional logics and the other
aspects would be solved all in once.

Unified Programming interface
Problem statement

Ø In ONAP, every micro-service provides their own swagger document in
json format, and when one service wants to integrate with another
service, It implements the language specific client sdk and integrates.

Ø For example, Currently SO, SDNC, SDC, OOF, Holmes are having the
own implementation of AAI client sdk.

Ø Same applicable for DMaaP.

AAI

SO
AAI
Java
client

lib

SDC
AAI
Java
client

lib

SDNC
AAI
Java
client

lib

OOF
AAI

Python
client

lib

AAI

SO
AAI
Java
clien
t lib

SDC
AAI
Java
clien
t lib

SDNC
AAI
Java
clien
t lib

OOF
AAI
Pyth
on

client
lib

java

REST

java

java

python

REST

REST REST

Solution
ü This problem could be solved by making the respective services to

implement the client SDKs and whenever there is a change in API,

corresponding service could update the SDK and deliver it.

ü To automate this process, In ONAP, swagger-sdk component would help

in auto-generate the push the new client SDK into nexus. So other

services which is consuming could directly use it.

More details: https://wiki.onap.org/display/DW/swagger-sdk

https://wiki.onap.org/display/DW/swagger-sdk

Ø SO has started as a monolithic process handling multiple functional aspects within one docker component.

Ø In Short SO monolithic and large, not sharing common utilities

Ø This has created issues at different levels like the
Ø Tight coupling between the modules
Ø Hard to maintain as the functional aspects grow big and bulky and are relatively harder to maintain.
Ø Deployment issues due to the build time for the entire component to be ready

How to Solve:
ü The current problem is big enough to be solved all at once and should be taken in incremental approach.
ü First to all bring in the modularity by breaking the current SO into multiple smaller functional blocks
ü Break SO to small, single-capability focused, standalone services
ü Make the functional blocks re-usable across ONAP by providing a standardized APIs
ü Bring-in plug and play capability esp for the adapters to have them easy to integrate with other components (that

could even be external to ONAP)
ü Implement a business capability accessed through a defined set of APIs
ü Make the functional aspects more re-usable across the ONAP and give the capability for any component to call SO

for its fulfillment. Without the need to re-write the logic required
ü Make the SO components Scalable, distributable

Modularity within SO

New Code deployment scenario
Ø Base Image uses Alpine Linux

Ø Replace Wildfly with Tomcat

Ø Individual Docker images
Ø Individual deployment/scaling capability

Ø Utilizing SpringBoot Stack

Beijing Deployment Scenario
Ø Single webserver based

Ø Widlfy application server based

Ø Individual WAR deployments
Ø Scale of each WAR effects another

Ø Entire Java EE Stack

Docker Image : Ubuntu

Spring Boot Application

Modularity in ONAP

• This work effort will be targeted for Dublin and would cover the following:
� SO would be decomposed into functional areas – as a target for the Dublin release (e.g.):

• API handler
• Request DB

• BPMN Infra
• SDC controller

• Catalog Adapter
• Adapters for the controllers (SDNC/VFC/…) and

• Cloud Adapter

� Each functional area would maintain the current API technology when containerized (REST->REST,
RPCàRPC)

� Any functional areas that don’t support either REST or RPC in their current state would be differed to R5
� Unless otherwise noted, no new functionalities would be added to the new Microservice(s)
� This work effort would be further scoped and T&C’ed by the respective PTL’s of other module

SO in Dublin

ONAP Controller functional decomposition plan

PMO
Controller: Targeted Improvements

Run time
catalog

OOF (for queries) Policy

NF
Controller

Southbound Interface Adapters

Service Logic Processing

ChefNetconf

API Handler

Active & Available
Inventory

Ansible Others…

Orchestration Data Collection,
Analytics & Events

Closed Loop Actions Inventory
Updates

Orchestration

• Configure
• Audit
• SW upgrade
• Scale in/out

• Stop/start
• Health check
• L0-7 Service Create ??

Supports Model-Driven Lifecycle Mgmt.Service
LogicService

LogicService
Logic

…

Artifact
Distribution

VNFs
PNFs

Multi-
Cloud

Adapter

Multi-VIM/Cloud

MSB/Data Movement

MSB/Data Movement

M
SB

/D
at

a
M

ov
em

en
t

CE-2 CE-3

CE-5

CI-2CI-1 ??

CI-4VNF Descriptors

Run Time Catalog
Cache

Config Templates
Engineering Rules

Service Logic

Policy Cache/Event Match

Operational Tree/Config
Tree (Service Model)

CI-7

CI-6

CI-3

CI-5

CE-4

…

CE-1

Design studio

Configuration Data

VNF Assignment

VNF Topology

VNF State

VNF INV/Config

Model Mapper

Design time
catalog

Service Design
& Creation Controller Framework

Ansible ServerAnsible ServerAnsible Server*

Netconf adapterNetconf adapterNetconf adapter

SB clusters

NB APIHNB APIHNB APIH

Data
Model
Parser

DBaaS
Client

Shared Platform

Application
Authorization

Framework
Logging

ONAP
Optimization
Framework

Common Platform Services

Data Management

Micro Services Bus
Data Movement

Event Mgmt
Access Control

File Xfer/ETL
Traffic Cntl/Queuing

Audit TracingTesting

Platform
Scaling &
Resiliency

…

Design Run Dev

Logs ReplicationHistory

SRs/Orders File Mgmt.Versions

DBaaS Data/Event
Streaming DS

Cloud
Adapter

Data
Model
Parser

DBaaS
Client

Service Logic Engine ContainerService Logic Engine ContainerService Logic Engine Container

• Extend and expand use of shared platform: AAF, Logging, DMaaP, …
• Common logging, audits and tracing: Platform-wide analytics
• Scaling and Resiliency through platform features (e.g. Kubernetes)
• DBaaS: Use common DB instead of today’s component DB
• Runtime catalog: Avoid caching copy as today
• Decouple from ODL where needed
• *Evolve to autonomous microservices

• Some shared across controller personas
• Some as common services, consumed by any component (e.g., ansible)
• Scalable independently

FMO

Assignment
Microservices* Ansible Server*

Config/LCM Function
Microservices*

Config/LCM Function
Microservices*

Config/LCM Function
Microservices*

Model Map/Parser
Microservices*

Controller Refactoring Example

Modules Controller (PMO) Controller Framework (FMO) Goals Achieved
Run Time Catalog Cache Controller Platform: Data Mgt., Controller: DBaaS

client
Reduce footprint of Component

Data Store Controller –MySQL Platform: Data Mgt., Controller: DBaaS
client

Eliminate DB duplication; unify data
management

Model Mapper/Parser (yang,
tosca)

Controller Platform Model Parser/Mapper App Single reusable parser set – no duplicity

Other Utilities Controller Platform – audit, history, logging … Relies on platform services & Reduces Dev $
Cloud API Controller Controller – adapter container Reuse multi-cloud for all cloud/container infra
NB API Handler Controller Controller NB REST adapter Consolidated API adapter across platform
SB adapters (yang/nc, ansible ..) Controller/ODL Platform common service or Controller

level containers
Consolidated API adapter across platform &
reuse platform services

Operational/Config Tree Controller ODL Platform: Data Mgt., Controller: DBaaS
client

Eliminate DB duplication and redundancy

Karaf bundle – service logic
(java)

Controller ODL Controller microservices Scalable, reusable, modular m-services

Resiliency & Scalability Active-passive Platform - dynamic on-demand scaling Consistent platform scaling for all modules

Refactor controller to focus on SL execution, delegate
common services/Data Mgt to the Shared Platform layer

Evolved ONAP Architecture

DESIGN-TIME

Policy Creation & Validation

Analytic Application Design

V
N

F
/

PN
F

O
nb

oa
rd

in
g

Resource Onboarding

Service Design

Catalog

O
N

A
P

O
pe

ra
ti

on
s

M
an

ag
er

Dashboard OA&M

Active &
Available
Inventory

External Registry

ONAP External APIs

Shared Platform

Application
Authorization

Framework

Data Collection,
Analytics, &

Events
Event Correlation

Logging

Policy
Framework

NF Controllers

ONAP
Optimization
Framework

Optional External Systems

Network Function Layer

Hypervisor / OS Layer OpenStack AzureVMware RackSpace

…
3rd Party Controller

Kubernetes

VNFs

Public
Cloud

Private
Edge Cloud

Private
DC Cloud

IPMPLS

M
an

ag
ed

En

vi
ro

nm
en

t

Orchestration

Closed Loop Design

Change Management Design

Configuration
Management

Design Test & Certification

CLIOSS / BSS ONAP Portal

Specific VNF Manager Element Management System

RUN-TIME

Multi-Cloud
Adaptation

U-UI

CC
SD

K

PNFs

Common Platform Services

Data Management

Micro Services Bus
Data Movement

Event Mgmt
Access Control

File Transfer/ETL
Traffic Control/Queuing

Audit TracingTesting

Platform
Scaling &
Resiliency

…

Design

Run-Time

Dev

Logs ReplicationHistory

SRs/Orders File Mgmt.Versions

DBaaS Data/Event Streaming
Repository

Intra-Platform Communications Service Mesh

Life Cycle
Management

Refactor ONAP components as microservices, and build
out Common Platform Services and Data Management

Goals:
• Breaking ONAP components

into smaller reusable modules
• Enabling technology swap-out

for modules
• Reducing software footprint
• Allowing integration of non-

ONAP components

Next Steps for Dublin:
• Extract IP assignment from

the controllers as a common
microservice

• Extract Tosca Parser from SO
and make a common
microservice

• Thoughts and Comments?

Conclusion and Next Steps

Evolve ONAP to a more modular, agile architecture

